
Frequency Distribution of Candidate Solutions in
Angle Modulated Particle Swarms

Barend J. Leonard
Department of Computer Science

University of Pretoria

Pretoria

South Africa

Email: bleonard@cs.up.ac.za

Andries P. Engelbrecht
Department of Computer Science

University of Pretoria

Pretoria

South Africa

Email: engel@cs.up.ac.za

Abstract—This paper investigates the frequency distribution
of candidate solutions in the search space when angle modulation
is applied to particle swarm optimisation (PSO). It is shown
that angle modulated particle swarm optimisers (AMPSO) have
non-uniform solution frequency distributions. A new technique
is introduced to ensure that the frequency distribution of can-
didate solutions is uniform. The new technique is compared
with AMPSO and three AMPSO variants, as well as binary
PSO (BPSO) on a number of problem cases. It is shown that
AMPSO algorithms obtain lower average fitness values on binary
minimisation problems whose optimal solutions contain repeti-
tion. However, when optimal solutions do not contain repetition,
AMPSO and its variants are at a clear disadvantage.

I. INTRODUCTION

In optimisation theory, an optimisation problem is referred
to as a continuous optimisation problem, if the input variables
to the objective function f are real values. That is, for some
objective function f(x) : S → R, S = R

nx is the search
space, and xj ∈ R for each dimension j = 1, . . . , nx. When
S is restricted to some discrete subset of R, f is referred to
as a discrete optimisation problem. In particular, if S = B

nx ,
where B = {0, 1}, then xj ∈ B, and f is a binary optimisation
problem. In this paper, the term “continuous optimisation
problem” is used synonymously with “continuous problem”.
Similarly the terms “binary optimisation problem” and “binary
problem” are used interchangeably.

The particle swarm optimisation (PSO) algorithm was
introduced in by Kennedy and Eberhart in 1995 [2], [6].
The algorithm was later modified by Shi and Eberhart [16].
PSO is defined for continuous optimisation problems. In order
to solve binary problems, Kennedy and Eberhart introduced
a discrete version of PSO that they called binary particle
swarm optimisation (BPSO) [7]. The BPSO algorithm has been
criticised in literature for varying too much from the original
PSO algorithm. Specifically, a new interpretation of particle
velocities means that particle swarm optimisation theory—
which describes the trajectories and convergence behaviour
of particles—does not apply to BPSO [13]. Additionally, the
control parameters (ω, c1, and c2) of the PSO algorithm have
different meanings in the context of BPSO [4], [8].

Pampara et al. introduced angle modulated particle swarm
optimisation (AMPSO) as an alternative method to optimise

binary problems using PSO [14]. However, the concept of
angle modulation in the context of optimisation algorithms was
originally suggested by Franken [5]. In AMPSO, a standard
PSO is used to optimise the coefficients of a trigonometric
function g. The coefficients control the shape of g. In or-
der to generate a binary solution, the coefficients found by
PSO are first substituted into the function. Subsequently, the
function is sampled at regular intervals. The value of g at
each sampling interval is then mapped to binary digit. Thus,
AMPSO enables PSO to solve nb-dimensional binary problems
in gc-dimensional real-valued space, where gc is the number of
coefficients of g. Because the coefficients of g are continuous,
AMPSO requires no modifications to the PSO algorithm. That
is, particle positions and velocities are still real-valued vectors.
Therefore, PSO theory conveniently applies to AMPSO.

The AMPSO algorithm has been shown to outperform
other binary optimisation algorithms on a number of binary
problems [13], [14]. In addition the algorithm has been suc-
cessfully applied to real-world scenarios [11], [12].

Despite the success of AMPSO, Leonard and Engelbrecht
identified a number of potential flaws in the algorithm and
introduced three variants to overcome those issues [9]. While
the AMPSO variants showed better performance in some
specific problem cases, the study failed to provide clear reasons
as to why the normal AMPSO algorithm performed poorly
in those cases. In order to better understand the underlying
reasons that causes AMPSO to fail on some problems, Leonard
et al. investigated various aspects of AMPSO, including the
effect of the generating function on the algorithm’s search
capabilities [10]. It was hypothesised that the generating func-
tion causes a non-uniform frequency distribution of candidate
binary solutions in the search space. If this is indeed the
case, it would mean that some binary solutions are easier
to find simply because they exist in the search space with
higher frequencies than other candidate solutions. This paper
investigates how the non-uniform frequency distribution of
binary solutions arises and how it affects the performance of
the AMPSO algorithm. In addition, a new method is suggested,
which guarantees that all solutions exist in the search space
with the same frequency.

The rest of this paper is structured as follows: section II
gives an overview of the PSO algorithm, while the BPSO al-
gorithm is explained in section III. The AMPSO algorithm and

2015 IEEE Symposium Series on Computational Intelligence

978-1-4799-7560-0/15 $31.00 © 2015 IEEE

DOI 10.1109/SSCI.2015.45

251

its variants are discussed in sections IV and V, respectively.
In section VI the frequency distribution of binary solutions
in the AMPSO search landscape is investigated. Section VII
introduces a technique to ensure that the frequency distribution
of solutions is uniform. Section VIII explains the experimental
setup, while the results are discussed in section IX. The paper
is concluded in section X.

II. PARTICLE SWARM OPTIMISATION

The PSO algorithm is a stochastic, population-based search
algorithm. PSO maintains a population of candidate solutions,
known as particles. The population of particles is referred to as
the swarm. Each particle has a position xi and a velocity vi in
the nx-dimensional search space. Additionally, every particle
in the swarm keeps track of its personal best position yi, which
is the best solution it has found during the search process. The
best position ŷ found by the swarm is referred to as the global
best position.

At every time step t + 1, the velocity of every particle in
the swarm is updated using the following equation:

vi(t+ 1) = ωvi(t) + Fcog + Fsoc, (1)

where
Fcog = c1r1(t)[yi(t)− xi(t)] (2)

is the cognitive component,

Fsoc = c2r2(t)[ŷ(t)− xi(t)] (3)

is the social component, ω is an inertia weight, c1 and c2 are
acceleration coefficients, and r1j and r2j are random values,
sampled from U(0, 1), in each dimension j = 1, . . . , nx.

After the velocities have been updated, each particle’s
position in the search space is updated as follows:

xi(t+ 1) = xi(t) + vi(t+ 1). (4)

The cognitive attraction force Fcog attracts the particle
towards its own personal best position. The c1 acceleration
coefficient scales Fcog , with larger values of c1 encouraging
exploration.

The force Fsoc is an attraction force in the direction of the
global best position ŷ. The c2 acceleration coefficient is used
to scale Fsoc. Larger values for c2 enables faster exploitation.

The inertia weight ω scales the influence of a particle’s pre-
vious velocity. The purpose of ω in PSO is to smooth particle
trajectories to prevent sudden, large changes in direction until
enough evidence has been gathered to justify such changes. For
specific configurations of ω, c1, and c2, swarm convergence is
theoretically guaranteed [1], [3], [15], [17].

III. BINARY PARTICLE SWARM OPTIMISATION

In order to solve binary problems with PSO, the algorithm
has to be modified such that the positions of particles are
binary vectors. That is, for any particle i, xi ∈ B

nx . However,
to achieve this, a new interpretation of the velocity vector is
required.

Kennedy and Eberhart proposed that the velocity vij in
each dimension should be interpreted as the probability that

the position xij in that dimension is equal to 1. The immediate
implication of this interpretation is that particle velocities
must be restricted, such that vij ∈ [0, 1]. In BPSO, particle
velocities are normalised to the range [0, 1] by using the
sigmoid function:

v′ij(t) = sig(vij(t)) =
1

1 + e−vij(t)
. (5)

The position of a particle is then updated using

xij(t+ 1) =

{
1 if r3j < v′ij(t)
0 otherwise,

(6)

where r3j ∼ U(0, 1) is a random variable.

Under BPSO’s interpretation of particle velocities, the
acceleration coefficients c1 and c2 no longer control the trade-
off between exploration and exploitation. Instead, maximum
exploration capabilities are achieved when v′ij = 0.5, so that
every bit of a particle’s position has a 50% chance of being 1.
Note that, because of the sigmoid normalisation, v′ij = 0.5 iff
vij = 0.

Furthermore, the meaning of the inertia weight ω changes,
because particles no longer follow a trajectory through the
search space. The inertia weight in BPSO should be small
initially to prevent particle velocities from growing too fast.
In this way, exploration is facilitated during the beginning of
the search process.

Finally, the concept of a particle’s position in the search
space no longer makes sense. This is because a particle
does not have a position until its velocity is evaluated using
equation (6). Furthermore, because of the random variable r3j
in equation (6), repeated evaluations of the same particle are
likely to result in different binary position vectors. Therefore
the two attraction forces Fcog and Fsoc in equation (1)—that
are supposed to guide particles to good regions in the search
space—become meaningless in this context.

IV. ANGLE MODULATED PARTICLE SWARM

OPTIMISATION

AMPSO is a binary optimisation technique that makes
use of PSO to optimise the coefficients of the following
trigonometric function:

g(x) = sin[2π(x− a)b cos(2π(x− a)c)] + d. (7)

This function is referred to as the generating function. The
coefficients of g control its shape by acting on the function’s
frequency and displacement. To optimise the coefficients of g,
particle positions in PSO take the form xi = (a, b, c, d).

In order to generate a binary solution, the position of a
particle is substituted into the generating function. Then, the
function is sampled at regular intervals x = 1, 2, 3, . . . , nb,
where nb is the required number of binary digits. A binary
solution B ∈ B

nb is then constructed by noting the value g(x)
at each sampling position:

Bj =

{
0 if g(x) ≤ 0,

1 otherwise.
(8)

This process is illustrated in figure 1. The binary solution is
then evaluated in order to assign a fitness value f(B) to the

252

Fig. 1. A 5-bit binary solution is constructed by sampling the generating
function at regular intervals. In this illustration, a = 0, b = 0.5, c = 0.8, and
d = 0. Or xi = (0.0, 0.5, 0.8, 0.0).

given particle, where f is the nb-dimensional binary objective
function.

In this way, an nb-dimensional binary problem can be
solved using a 4-dimensional PSO. Furthermore, because the
coefficients of g are continuous, no modifications have to be
made to the PSO algorithm. This implies that the meanings
of the PSO parameters and the PSO theory, as discussed in
section II, apply to AMPSO without modification.

V. AMPSO VARIANTS

This section describes two variants of AMPSO that were
introduced by Leonard and Engelbercht [9], [10]. It was
found that these two variants produced better results than
AMPSO on a number of specific problem cases. The amplitude
AMPSO (A-AMPSO) algorithm is discussed in section V-A.
Section V-B gives an overview of the Min-Max AMPSO (MM-
AMPSO) algorithm.

A. Amplitude AMPSO

The A-AMPSO algorithm adds an additional coefficient e
to the generating function. The e coefficient controls the am-
plitude of the generating function. Thus, equation (7) changes
to

g(x) = e sin[2π(x− a)b cos(2π(x− a)c)] + d. (9)

Particle positions in PSO then become five-dimensional vectors
of the form x = (a, b, c, d, e).

The ability to control the amplitude of the generating
effectively influences the effect of the vertical shift parameter
d. For smaller values of e, d has a greater effect on the binary
solution that is generated.

B. Min-Max AMPSO

Min-Max AMPSO (MM-AMPSO) allows the algorithm
to control the sampling range within which the generating
function is sampled to produce a binary solution. To achieve
this, particle positions in PSO become six-dimensional vectors
of the form x = (a, b, c, d, α1, α2).

Let αl = min{α1, α2} and αu = max{α1, α2}. Then,
the generating function is sampled at every δth interval in the
range [αl, αu), where

δ =
αu − αl

nb
. (10)

Controlling the sampling range of g allows the MM-
AMPSO algorithm to focus on specific parts of the generating
function, making some solutions easier to generate.

C. Ensemble AMPSO

Ensemble AMPSO (E-AMPSO) was suggested by Leonard
et al. as a way to solve high dimensional binary problems by
dividing the problem into multiple parts. A generating function
is then assigned to each binary sub-problem, and PSO is used
to optimise the coefficients of all the generating functions.

If an nb-dimensional binary problem is divided into φ parts,
then the position of a particle in PSO has the form

x = (ψg11, ψg12, . . . , ψg1cg , ψg21, ψg22, . . . , ψg2cg ,

. . . ψgφ1, ψgφ2, . . . , ψgφcg),
(11)

where ψgij is the jth coefficient of the ith generating function,
and cg is the number of coefficients of g.

This approach was suggested as a way to solve a specific
issue with AMPSO that was identified and discussed in [10],
but has not yet been tested. Essentially, E-AMPSO ensures
that all possible candidate solutions exist in the AMPSO
search space, whereas this is not guaranteed when solving
binary problems with more than 16 dimensions using a single
generating function, assuming that equation (7) is used as the
generating function.

VI. FREQUENCY DISTRIBUTION OF BINARY SOLUTIONS

In order for PSO to find good solutions, it is desirable
that every potential candidate solution must exist in the search
space with the same frequency. Without a uniform solution
frequency distribution, PSO may not be able to find good
solutions if they happen to be rare compared to bad solutions.
When solving continuous problems, the solution frequency
distribution is uniform, because every real number exists in
R exactly once. However, when angle modulation is applied
to PSO, the relationship between the continuous generating
function and the binary solution space causes a non-uniform
frequency distribution of binary solutions in the AMPSO
search space. This is because there are more permutations of
the coefficients of g than there are binary solutions. The result
is that, for any given binary solution, there is very likely more
than one permutation of the coefficients that will generate that
same binary solution.

To illustrate, consider an arbitrary 8-bit binary problem
being optimised with AMPSO. Any given permutation of the
coefficients of g will result in a specific binary solution. The
frequency distribution of binary solutions can then be seen
by generating a solution for every possible permutation of the
coefficients of g and counting the number of times that each
unique solution is generated. Obviously this is not possible,
because the coefficients of g are real values, which means
that there is an infinite number of permutations. However, the
frequency distribution of solutions in the AMPSO search space
can be estimated by limiting the values that any coefficient may
assume to some subset C ⊆ R. Figure 2 shows the frequency
distribution of 8-bit binary solutions in the AMPSO search
space when C = {−1,−0.99, 0.98 . . . 0.0, 0.01, 0.02, . . . 1.0}.
The range [−1, 1] was chosen, because this is the range within

253

which AMPSO is generally initialised [9], [13], [14]. The
total number of permutations of the coefficients of g in this
estimation is |C|4 = 214 = 194, 481. The total number of 8-bit
binary solutions is 28 = 256. In figure 2, every value on the
x-axis is an integer which represents the corresponding binary
solution. For example, the value 0 corresponds to the binary
string ‘00000000’, the value 1 corresponds to ‘00000001’, etc.

It is clear from figure 2 that—although every 8-bit binary
solution exists—the frequency distribution of binary solutions
in the AMPSO search space is not close to uniform. In fact,
20% of the search space is dominated by the ‘00000000’
and ‘11111111’ solutions. A number of smaller spikes in the
frequency distribution plot indicate that some solutions are
much more common than others. The twelve most common
solutions (not counting the two solutions mentioned above)
are listed below:

410 = 000001002,

810 = 000010002,

1610 = 000100002,

3210 = 001000002,

6410 = 010000002,

12710 = 011111112,

12810 = 100000002,

19110 = 101111112,

22310 = 110111112,

23910 = 111011112,

24710 = 111101112,

25110 = 111110112.

The two least common solutions are:

7110 = 010001112, and

18410 = 101110002.

It is obvious from the above observations that the most
common solutions in the AMPSO search space are the ones
that contain a lot of repetition. This trend is also true for binary
solutions of higher dimensionality, although the frequency
distribution plots become difficult to read because of the
exponential growth in the number of binary solutions.

The cause of this trend is the generating function. Reg-
ularities in the shape of the generating function mean that
some solutions are much easier to generate than others by
varying the values of the coefficients. The solutions that are
easy to generate may overshadow good solutions in the search
space. Furthermore, common solutions may cause plateaus in
the fitness landscape, thereby complicating the search even
more.

This problem can potentially be alleviated by using a
different generating function. However, it is difficult to imagine
a generating function that would produce a uniform solution
frequency distribution. For this reason, a simpler approach
might be to replace angle modulation with a different method
that naturally produces a uniform search space.

Fig. 2. An estimation of the frequency distribution of binary solutions in the
AMPSO search space, for 8-dimensional binary problems.

VII. OBTAINING A UNIFORM SOLUTION FREQUENCY

DISTRIBUTION WITH NATURAL NUMBERS

This section details a new approach to solving binary
optimisation problems with PSO. The method is explained
in section VII-A, while two potential problems with the new
approach are addressed in sections VII-B and VII-C.

A. PSO with Natural Numbers

To obtain a uniform solution frequency distribution, some
uniform mapping from R

nx to B
nb is required. That is, a

mapping M : R
nx → B

nb is needed, such that for every
B ∈ B

nb , there is an equal number of values x ∈ R
nx that

map to B.

Consider the set of natural numbers N
0 = {0, 1, 2, . . .}.

Every element in N
0 can be mapped to a binary value by

converting the element from base-10 to base-2. Furthermore,
the mapping is a one-to-one mapping, meaning that is always
uniform. Now, clearly N

0 �= R. However, the floor �x	 of every
x ∈ R≥0 is a natural number. Therefore, PSO can be used to
find a real value x ∈ R≥0 such that �x	 is the natural number
that maps to the desired binary solution. Furthermore, to ensure
that a mapping exists from S to every element B ∈ B

nb , only
a subset of R≥0 is required, such that S ⊆ R≥0 = [0, 2nb),
and nx = 1.

For example, if nb = 3, then there are 23 = 8 candidate
binary solutions, which map to the following eight natu-
ral numbers: {0, 1, 2, 3, 4, 5, 6, 7}. Therefore, the continuous
search space S, whose floored elements are equal these eight
natural numbers, is S = [0, 8). A one-dimensional PSO
can now be used to search S for the natural number that
maps to the optimal three-bit binary solution. This technique
will henceforth be referred to as the natural numbers PSO
(NNPSO). Note that the frequency distribution of binary
solutions in S is naturally uniform in the case of NNPSO.

Because NNPSO guarantees that all the possible candidate
solutions are contained in S = [0, 2nb), particles in NNPSO
should not update their personal best positions unless they are
within these bounds.

B. Hamming Cliffs

An immediate point of concern in NNPSO is that similar
solutions in R could lead to dissimilar solutions in B

nb . For
example, assume that nb = 3 and, consequently, S = [0, 8).
Now consider the values 3.5 ∈ S and 4.2 ∈ S . To map

254

these values to binary solutions, the floor function is computed
before converting the value to base-2. That is,

�3.5	 = 310 → 0112, and

�4.2	 = 410 → 1002.
(12)

The values 3.5 and 4.2 produce consecutive natural numbers,
but the hamming distance between the two binary solutions is
3. This is clearly not desirable, because it means that similar
solution are not grouped together in the search space, which
is a fundamental assumption that PSO exploits to perform
optimisation. Fortunately, this problem is easily addressed by
using a gray code conversion, instead of a binary conversion.
Gray code ensures that consecutive values in N

0 always
produce binary strings with a hamming distance of 1. In
the case above, gray code conversion produces the following
binary strings:

�3.5	 = 310 → 010, and

�4.2	 = 410 → 110.
(13)

C. Search Space Explosion

Another problem with NNPSO is that the size of the search
space S grows exponentially with nb. Recall from section
VII-A that S = [0, 2nb). The effect is that the search space
quickly becomes so large that one would need a huge number
of particles in the swarm in order to get close to a uniform
coverage of the search space during swarm initialisation. As
a result, PSO becomes ineffective when solving large binary
problems with NNPSO.

One potential (although not full-proof) way to address this
problem is to divide the binary problem into separate, smaller
problems, at the expense of increased particle dimensions. For
example, an 8-dimensional binary problem can be split into
two four-dimensional binary problems. Then, NNPSO would
be used to find two natural numbers �x1	 and �x2	 whose gray
codes can be concatenated to produce one 8-dimensional bi-
nary solution. This obviously implies that particles in NNPSO
are now two-dimensional. That is, where it used to be the
case that S = [0, 256)1, now S = [0, 16)2. This approach will
henceforth be referred to as ensemble NNPSO (E-NNPSO).

To formalise, the E-NNPSO algorithm can be used to
solve nb-dimensional binary problems in a φ-dimensional real-
valued search space S = [0, 2nb/φ)φ. As mentioned above, this
approach is not full-proof, because the search space still grows
exponentially, albeit not in a single dimension. The hope is that
PSO will be able to cope better with the growth if the domain
can be kept relatively small in each dimension.

VIII. EXPERIMENTS

This section details the experimental procedure that was
followed for this study.

For the purpose of this study, the following algorithms
were tested: AMPSO, A-AMPSO, MM-AMPSO, E-AMPSO,
E-NNPSO, and BPSO. The NNPSO algorithm was ommited,
because the size of the search domain in a single dimension
became so large that overflows occurred in extreme cases.
The algorithm is therefore deemed impractical. In all cases,
algorithms executed for 1000 iterations, and the global best

fitness was recorded at every iteration. All reported results are
averaged over 30 independent runs.

Three binary problems were considered in this study with
varying dimensionality. Each problem—together with the al-
gorithmic setup for that problem—is discussed in its own
subsection below.

A. N-Queens

The N-Queens problem is a chess board problem where
the goal is to place n queens on an n × n chess board B in
such a way that no queen threatens any other queen, by the
standard rules of chess.

For this study, a solution to the n-queens problem was
encoded as a binary string B of length
log2 n�n. Each

log2 n�-bit group in B represents a column on the chess board,
with the decimal value of the bits indicating the row number
for the queen in that column. Now, every square Bij on the
board can be assigned a value ‘0’ if it is empty, or ‘1’ if it
contains a queen. To calculate the fitness of a given solution,
the following objective function was used:

f(B) = [k + (n−Q)2]× (|Tn−1 −R|+ 1), (14)

where k is the total number of conflicts between queens on
the board, Q is the number of queens on the board,

Tn =
n(n+ 1)

2
(15)

is the nth triangular number, and

R =

n−1∑
j=0

n−1∑
i=0

rij , (16)

where

rij =

{
i if Bij = 1

0 otherwise.
(17)

Note that R = Tn−1 iff every row i on the chess board contains
exactly one queen. Therefore, the term |Tn−1−R|+1 penalises
the objective function if the queens are not properly spread out
on the chess board.

All algorithms were compared on the N-Queens problem,
with n = 8, 15, and 25. In the case of E-AMPSO and E-
NNPSO, the problem was divided into n parts. That is, E-
AMPSO optimised n generating functions to find the position
of the queen in each column, and E-NNPSO searched for n
natural numbers that mapped to the position of the queen in
each column.

B. Knights’ Coverage

Th knights’ coverage problem is another chess board
problem. In this case, the aim is to place the minimum number
of knights on the board such that every square on the board
is covered. A square is considered to be covered when either
of the following two conditions hold: 1) the square contains a
knight, or 2) at least one knight can move to the square with
a single move, according to the standard rules of chess.

For this problem, the solution was again encoded as an n2-
dimensional bit string. Each bit in B represented a square on

255

the chess board. A ‘1’ bit indicated the presence of a knight,
while a ‘0’ bit indicated an empty square. The following
objective function was used:

f(B) = K
C + 1

+
n2 − C
K + 1

, (18)

where K is the number of knights on the board, and C is the
number of covered squares on the board.

The knights’ coverage problem was tested for board sizes
of n = 8, 15, and 25. For E-AMPSO and E-NNPSO, the
problem was divided into n parts, as was the case for the N-
Queens problem. However, in the case of the knights’ coverage
problem, each column may contain more than one knight.

C. Random Bit String Matching

The final problem that was considered in this study is
the problem of matching random bit strings. Random target
bit strings of length 50, 200, and 300 were generated. The
objective in each case was to find a binary solution B, such
that the hamming distance between B and the target bit string
was minimised.

In the case of E-AMPSO and E-NNPSO, the problem was
divided into 5-bit parts in all cases.

IX. RESULTS AND DISCUSSION

Figures 4 to 6 show the average fitness profiles for all
algorithms the N-Queens problems. In all three problem cases,
E-NNPSO obtained a much lower average fitness than all
the other algorithms. To understand why E-NNPSO obtained
the lowest average, it is helpful to visualise a solution to
the N-Queens problem. Figure 3(a) shows the best solution
found by the E-NNPSO algorithm on the N-Queens problem
with n = 15. The solution is not complete. An “X” in the
figure shows the location where the final queen could have
been placed. However, a queen in that position would cause
a conflict with another queen to the right and down. Note
that there is no obvious repeating pattern in this solution to
the N-Queens problem. While the solution in figure 3(a) is
not optimal, it resembles the typical non-repetitive pattern that
solutions to the N-Queens problem exhibit—at least, when they
are encoded as binary strings.

Recall from section VII-A that candidate solutions that
contain repetition are relatively common in the AMPSO search
space. Therefore, AMPSO and all of its variants have a very
hard time in finding those solutions and tend to converge
to sub-optimal solutions instead. Essentially, the AMPSO
algorithms already fail during the exploration phase of the
search. The same argument explains why BPSO obtained a
lower average than AMPSO. However, the lack of sensible
guides in BPSO ultimately means that the algorithm cannot
effectively exploit the search space.

The fitness profiles for the Knights’ Coverage problems are
shown in figures 7 to 9. For this problem, the MM-AMPSO
and E-AMPSO algorithms obtained the lowest average fitness
in all cases. Again, a visualisation of the solution is helpful.
Figure 3(b) shows the best solution obtained by E-AMPSO on
the Knights’ Coverage problem, with n = 15. The repetitive
pattern in the solution is immediately obvious. This solution

(a) E-NNPSO solution (b) E-AMPSO solution

Fig. 3. Figures (a) and (b) show the best solutions found for N-Queens and
Knights’ Coverage, respectively. In both cases, n = 15. The “X” in figure (a)
marks the location where the final queen should have been placed.

Fig. 4. Fitness profiles for N-Queens with n = 10.

Fig. 5. Fitness profiles for N-Queens with n = 15.

Fig. 6. Fitness profiles for N-Queens with n = 25.

256

Fig. 7. Fitness profiles for Knights’ Coverage with n = 10.

Fig. 8. Fitness profiles for Knights’ Coverage with n = 15.

also happens to be optimal. The AMPSO algorithms have
an advantage on this problem, because the optimal solutions
happen to be common in the AMPSO search space. E-AMPSO
obtained a lower average fitness in all cases, because the
algorithm breaks the problem up into individual columns. In
that case, each column’s solution is a bit-string of either only
‘1’ bits, or only ‘0’ bits. Recall from section VII-A that those
solutions make up 20% of the search space. In the case of MM-
AMPSO, the algorithm is able to isolate parts of the generating
function that exhibit the required pattern and thus obtained a
lower average fitness than other AMPSO or A-AMPSO.

Finaly, figures 10 to 12 show the fitness profiles for the bit
string mapping problems. The AMPSO algorithms obtained
the high average fitness values across all problem cases. This
was expected, because random bit strings are not likely to
contain patterns. E-NNPSO obtained the lowest average fitness
on 50- and 200-dimensional problem cases. This was also
expected for the reasons given above. However, for 300-
dimensional problems E-NNPSO obtained the highest average
fitness, while the lowest average fitness was obtained by

Fig. 9. Fitness profiles for Knights’ Coverage with n = 25.

Fig. 10. Fitness profiles for Random Bit String Matching with nb = 50.

Fig. 11. Fitness profiles for Random Bit String Matching with nb = 200.

BPSO. The reason for this dramatic change in the relative
performance of E-NNPSO is not currently clear, but warrants
further investigation.

X. CONCLUSION

This paper studied the frequency distribution of solutions
in the angle modulated particle swarm optimisation (AMPSO)
search space. In addition the effect that non-uniform frequency
distributions have on algorithm performance was investigated.
It was shown that candidate binary solutions are not uniformly
distributed in the AMPSO search space. In fact, some individ-
ual solutions may occupy as much as 10% of the AMPSO
search space.

A new technique was introduced to solve binary problems
using particle swarm optimisation. The new technique makes
use of the one-to-one mapping between the natural numbers
and binary solutions to ensure that candidate solutions are
uniformly distributed in the search space. The technique was
named natural numbers PSO (NNPSO). An exponential growth
in the size of the search domain makes NNPSO somewhat im-

Fig. 12. Fitness profiles for Random Bit String Matching with nb = 300.

257

practical. However, the problem can be managed by breaking
the binary problem up into smaller problems at the expense
of increased particle dimensionality in PSO. The resulting
algorithm is called ensemble NNPSO (E-NNPSO).

Empirical results showed that the uniform frequency dis-
tribution of candidate solutions in the E-NNPSO search space
is beneficial to algorithm performance in many problem cases.
However, problems whose optimal solutions contain repetitive
patterns grant a clear advantage to AMPSO algorithms, be-
cause those solutions are common the AMPSO search space.

It was observed that E-NNPSO performance suffers dra-
matically in the high-dimensional random binary string match-
ing problem cases. The reason for this result is not currently
understood. Further investigation into the use of E-NNPSO to
solve binary problems is certainly warranted.

Future work will include studying the performance of E-
NNPSO relative to other binary optimisation algorithms on
a wider range of problems. A thorough scalability study—in
terms of problem dimensionality—will also be performed.

REFERENCES

[1] C.W. Cleghorn and A.P. Engelbrecht. A generalized theoretical deter-
ministic particle swarm model. Swarm Intelligence, 8(1):35–59, 2014.

[2] R. Eberhart and J. Kennedy. A new optimizer using particle swarm
theory. In Proceedings of the sixth international symposium on micro
machine and human science, volume 1, pages 39–43, 1995.

[3] R.C. Eberhart and Y. Shi. Comparing inertia weights and constriction
factors in particle swarm optimization. In Proceedings of the Congress
on Evolutionary Computation, volume 1, pages 84–88. IEEE, 2000.

[4] A.P.P. Engelbrecht. Fundamentals of computational swarm intelligence.
John Wiley & Sons, 2006.

[5] N. Franken. Pso-based coevolutionary game learning. Master’s thesis,
University of Pretoria, 2004.

[6] J. Kennedy and R. Eberhart. Particle swarm optimization. In Pro-
ceedings of the IEEE International Conference on Neural Networks,
volume 4, pages 1942–1948, 1995.

[7] J. Kennedy and R. Eberhart. A discrete binary version of the particle
swarm algorithm. In IEEE International Conference on Systems, Man,
and Cybernetics. Computational Cybernetics and Simulation, volume 5,
pages 4104–4108. IEEE, 1997.

[8] M.A. Khanesar, M. Teshnehlab, and M.A. Shoorehdeli. A novel binary
particle swarm optimization. In Mediterranean Conference on Control
& Automation, pages 1–6. IEEE, 2007.

[9] B.J. Leonard and A.P. Engelbrecht. Angle modulated particle swarm
variants. In Swarm Intelligence, volume 8667, pages 38–49, 2014.

[10] B.J. Leonard, A.P. Engelbrecht, and C.W. Cleghorn. Critical con-
siderations on angle modulated particle swarm optimisers. Swarm
Intelligence, submitted.

[11] L. Liu, W. Liu, D. Cartes, and I. Chung. Slow coherency and angle
modulated particle swarm optimization based islanding of large-scale
power systems. Advanced Engineering Informatics, 23(1):45–56, 2009.

[12] W. Liu, L. Liu, D. Cartes, et al. Angle modulated particle swarm
optimization based defensive islanding of large scale power systems.
In Power Engineering Society Conference and Exposition in Africa,
pages 1–8. IEEE, 2007.

[13] G. Pampara. Angle modulated population based algorithms to solve
binary problems. Master’s thesis, University of Pretoria, 2013.

[14] G. Pampara, N. Franken, and A.P. Engelbrecht. Combining particle
swarm optimisation with angle modulation to solve binary problems. In
IEEE Congress on Evolutionary Computation, 2005, volume 1, pages
89–96, 2005.

[15] R. Poli. Mean and variance of the sampling distribution of particle
swarm optimizers during stagnation. IEEE Transactions on Evolution-
ary Computation, 13(4):712–721, 2009.

[16] Y. Shi and R. Eberhart. A modified particle swarm optimizer. In
Proceedings of the IEEE Congress on Evolutionary Computation, pages
69–73. IEEE, 2002.

[17] F. Van den Bergh and A.P. Engelbrecht. A study of particle swarm
optimization particle trajectories. Information Sciences, 176(8):937 –
971, 2006.

258

