2015 IEEE Symposium Series on Computational Intelligence

Transistor Sizing Using Particle Swarm Optimisation

Lyndon White*, Lyndon While', Ben Deeks' and Farid Boussaid*
*School of Electrical, Electronic & Computer Engineering
The University of Western Australia, Perth, Australia
Email: lyndon.white@research.uwa.edu.au, farid.boussaid@uwa.edu.au
School of Computer Science & Software Engineering
The University of Western Australia, Perth, Australia
Email: lyndon.while @uwa.edu.au, ben.deeks @ graduate.uwa.edu.au

Abstract—We describe an application of particle swarm op-
timisation to the problem of determining the optimal sizing of
transistors in an integrated circuit. The algorithm minimises the
total area of silicon utilised by a given circuit, whilst maintaining
the propagation delay of the circuit within a hard limit. It assesses
designs using the well-known circuit simulation engine SPICE,
making allowance for the inability of SPICE to assess poorly-
designed circuits within a reasonable timeframe. Experiments on
three different types of circuits demonstrate that the algorithm is
able to derive excellent designs for a range of problem instances,
including several problems where the Monte Carlo method is
unable to find any feasible solutions at all.

I. INTRODUCTION

Circuit design in micro-electronics can be considered as
a two-stage process[13], [9]: designing a circuit schematic
for a given specification, and then selecting a (usually large)
number of parameters to determine the layout of the circuit in
silicon. The second step is sometimes further split into two:
determining the smallest possible size for the transistors in the
circuit, subject to other design constraints; then determining a
good layout for the transistors, given the connections required
between them. Important objectives to be optimised throughout
include the silicon area of the circuit, which directly influences
production costs; and the propagation delay in the circuit,
which directly influences its performance. The second step is
a difficult task for designers, due to the number of parameters
involved and the interactions and dependencies between them:
even small changes can have major effects on the circuit’s
performance that are hard to predict. This task is commonly
done manually by assigning parameters intuitively, and testing
designs using a circuit simulation engine such as SPICE[6],
[8]; or sometimes with the aid of simple tools such as
Monte Carlo simulation[5]. Neither of these approaches is
likely to produce designs that are optimal. The task seems
ripe for the use of global optimisation technology.

The principal contribution of this paper is an implemen-
tation of particle swarm optimisation (PSO)[3] that takes a
defined integrated circuit as input, and that determines dimen-
sions for each of the transistors making up the circuit. PSO has
a population of “particles” that move through the search space
sampling different solutions: the particles remember the best
solutions that they have already found, and they influence each
other’s movement by communicating these findings. SPICE
is used to assess the performance of the designs generated.
The goal is to minimise the total area of silicon utilised

978-1-4799-7560-0/15/$31 (©2015 IEEE

978-1-4799-7560-0/15 $31.00 © 2015 IEEE
DOI 10.1109/SSC1.2015.46

259

for the transistors, whilst observing tight constraints on the
propagation delay in the circuit. Experiments on three circuit-
types of varying complexity show that the algorithm derives
excellent results for all of them; it easily out-performs the
Monte Carlo method, and in some cases it returns feasible
solutions where Monte Carlo fails to do so. The designs
returned by the algorithm could be used as a good benchmark
for manual designers of final circuit layouts, or they could
serve as input to a second process that performs the layout
process automatically.

The rest of the paper is structured as follows. Section II
discusses previous work in this area. Section III defines the
exact problem that we address here, and Section IV describes
the PSO implementation that we have constructed. Section V
presents the three circuits that we use to test our algorithm,
and the results achieved. Section VI concludes the paper.

II. PREVIOUS WORK

Transistor optimisation is a difficult task, where humans
struggle to create good solutions, let alone optimal ones.
The traditional approach of relying on designer intuition and
experience, combined with simple heuristic methods and “trial
and error” testing using circuit simulation programs such as
SPICE[6], is difficult for novice designers and not necessarily
optimal even with the most experienced design team. As such,
many algorithms have been developed in order to automate the
process, saving time and money while being a useful tool for
those who are unable to take the traditional approach.

There are two broad categories of algorithms and methods
which have been developed and documented for completing
this optimisation task. Methods in the first category opt not
to use a simulation engine: instead they build up and use a
simplified model of the circuit using analytical techniques[2],
or they use a combination of simulation-based macromodels[4]
which has propagation delay embedded in the model, allowing
for the information to be easily analysed to create optimal
solutions. The second category of algorithms are those that
make use of a simulation engine, most commonly the SPICE
engine, to evaluate the performance and other details about
the circuit given the transistor size parameters. This method
can include using a non-linear optimization tool set such
as in DELIGHT.SPICE[7], or stochastic elements such as
Monte Carlo or genetic algorithms[10] to choose solutions to
be tested by the simulator. The PSO approach fits into this
latter category of simulation approaches.

IEEE
computer
® psouety

The model-based approach has advantages over the other
category of algorithms in its ability to easily extract propaga-
tion delay information for the model that is generated, reducing
the amount of computation time needed. Not being reliant
on a third-party simulation engine has additional optimisation
benefits through not incurring the significant overhead required
to interface with external systems. While the mathematical
solving of the modelled system provides a definite optimal
solution, the solving itself can be computationally intensive,
and the solution produced is optimal only in the scope of the
model: its actual performance depends on how accurately the
model agrees with reality.

On the other hand, solutions generated by the simulation-
driven approach are more likely to accurately reflect reality,
due to the legacy of high accuracy which circuit simulators
boast, SPICE in particular. This accuracy comes at the price
of overheads in the algorithm due to the need to interface with
external systems and longer evaluation times resulting from the
computational intensity of the simulator engine. As a result,
the algorithms in this category focus more heavily on the intel-
ligent choice of solutions to test with the simulator, as opposed
to the creation of an accurate and easy-to-solve model of the
system. Within the category of simulation-based optimisation,
approaches employing non-linear optimisation techniques tend
to frequently choose consecutively better solutions, but are
often limited to finding local optima in the solution space;
while approaches employing stochastic elements will often
evaluate less-optimal solutions as part of a global search of
the solution space.

The PSO[3] algorithm presented here sits squarely within
the simulator-driven category for the automatic optimisation of
transistor-sizing. However, the technique incorporates stochas-
tic elements, making the search more likely to find a global
optimum.

III. THE PROBLEM

The most widely-used transistor today is the Metal Oxide
Semiconductor Field Effect Transistor (MOSFET), which is
the building block for Complementary Metal Oxide Semi-
conductor (CMOS) Logic[9]. MOSFETs are basically switches
that come in two main types, P-channel and N-channel, that
pass current on a low or high input signal, respectively. The
transistors are not ideal switches: their operation involves a
propagation delay due to the resistances and capacitances
induced. Both increasing resistance and increasing capacitance
will increase the delay, and assuming a rectangular transistor
with fixed length and with width W, the capacitance C' x W,
while the resistance R o 1/W. Thus there is a trade-off
in the sizing of MOSFETs: W must be not so large as to
create high capacitance, but not so small as to create high
resistance. Additionally, when several transistors are connected
in a circuit, their individual characteristics must be designed
such that they work together well.

The convention in the industry is to fix the length of a
transistor at the minimum feature size available, and to treat
propagation delay as a constraint to be kept below a threshold
determined by the context in which the circuit will operate.
Thus we can express the circuit design problem formally as
follows.

260

Given a set of transistors 7" making up a circuit C,
determine a width for each transistor such that

> e width(t) is minimised, and such that the
propagation delay for C' is less than a pre-defined
threshold ¢}, ;44

Note that we are ignoring here the requirement to produce
an actual layout for the transistors. The designs produced by
our algorithm could be used by manual designers as part of the
process of deriving a layout, or they could be used as input
to a subsequent automated layout process. Future work will
include incorporating the layout requirement with sizing in a
single optimisation process.

IV. THE ALGORITHM

This section describes the structure of our algorithm for
designing circuits: the basics of the PSO technology, the
representation used for solutions, fitness calculations using
SPICE, and dealing with invalid solutions generated.

A. PSO Basics

Particle swarm optimisation[3] is inspired by the behaviour
of flocking birds. If we imagine a flock of birds searching for
the best food source in a field, the birds view each point in
the field as a potential solution, and each bird flies around the
field sampling solutions over time. The birds choose where to
fly next by two main methods: individually, by remembering
the location of the best food source that they have seen so far,
and favouring locations near that; and collectively, by com-
municating to other birds when they find new good sources,
and also favouring locations near those. This is formalised
in PSO by modelling birds as particles in n dimensions, by
modelling time as a sequence of generations, by each bird
remembering its best solution so far (pbest), and by the group
remembering the best solution that any of them has seen so
far (gbest). In each generation, each bird modifies its current
velocity to favour both (its own) pbest and gbest, each bird
samples a new solution, and the birds update (their own) pbest
and gbest appropriately. The process terminates either after a
fixed number of generations, or when the flock has converged
on the current location of gbest.

The principal parameters that must be set when applying
PSO to a given problem are the size of the population, and
three parameters that determine how each particle modifies
its velocity in each generation: how much weight is given
to its current velocity (intuitively the “inertial” aspect[11]),
how much weight is given to pbest (intuitively the “cognitive”
aspect), and how much weight is given to gbest (intuitively
the “social” aspect). The values used in our experiments for
these latter three parameters are 0.9,2.0,2.0 respectively, as
recommended in [11].

Initialisation of the population is also important. In com-
mon with other optimisation technology, initialisation in PSO
is a balance between randomness and prior knowledge: more
of the latter can accelerate the search process, but it can also
limit innovation. In this work we just initialise our particles
randomly.

Other aspects of PSO that must be determined on a
problem-specific basis include the representation used for
solutions, and the fitness function that is used to assess their
performance.

B. Solution Representation

We use a straightforward representation of circuit designs.
For each transistor in the circuit, we store the width of that
transistor, thus a design with d transistors will be searching in
d-dimensional space. The width of each transistor is restricted
to the range [1.2,1000.0]um: the lower limit is the minimum
feature size of the 1.2um technology that we assume in our
experiments, while the upper limit is a very high value chosen
to allow a thorough search of the available space. We note that
it isn’t normally possible to manufacture transistors at every
value in this range, but that the PSO algorithm and the fitness
function assume that the range is continuous.

C. Fitness Calculations

The fitness of a circuit C' that uses a set of transistors with
widths W is given by Equation 1.

{L ZwGW w,

Amaac + tpv
L is the length of a transistor (in our case 1.2pm), t, is the
propagation delay of C, t, e is the threshold cut-off, and
Aimaz = 1000Ld is the maximum possible area of a circuit.
Thus the fitness of a feasible solution (one that beats the
threshold) is its area; and the fitness of an infeasible solution
is the maximum area plus its delay.

if t, <tpmaw
otherwise

fitness(W) = (1)

Using this definition:

e all designs that beat the threshold are ranked better

than all those that don’t;

designs that beat the threshold are ranked by their
areas, as expected,;

designs that don’t beat the threshold are ranked by
their propagation delays, encouraging the particles to
move towards feasible solutions.

We use the circuit simulation engine SPICE to calculate the
propagation delay of a circuit, sourced from [12]. SPICE
defines many levels at which MOSFETs can be modelled,
from simple resistor/capacitor models, up to advanced models
describing individual electrons and quantum effects. In this
work, focused on 1.2um technology, we use the Level 3
model, which models capacitive effects down to hundreds of
picofarads. This is sufficient to expose the trade-offs which we
want to optimise. We interface with SPICE through the use of
MATLAB: Figure 1 illustrates this process.

D. Invalid Solutions

With complex circuits such as those discussed in Sec-
tions V-B-V-C, many points in the search space represent
“invalid” solutions which SPICE is unable to simulate. The
two most common reasons for this are that the iterative process
used by SPICE fails to converge, or that the propagation delay
is so high that the simulation does not complete in the allowed

261

Design circuit
in SPICE GUI

Export Netlist and
make MATLAB template

MATLAB takes parameters
and calls SPICE

SPICE simulates circuit
and writes results

MATLAB reads results
and calculates delays

Fig. 1. The MATLAB/SPICE interface. The first two steps are performed
once per circuit: the others are performed for each simulation.

time. In either case, the solution is given an infinite fitness,
and thus it will play no further part in the operation of the
algorithm.

The principal problem this causes is when it happens in
the initialisation phase. A particle which has seen only invalid
solutions has no sensible pbest, and if all particles have seen
only invalid solutions, there will be no sensible gbest either.
In practice, we found that the latter problem never arose.
We solved the former problem by simply re-initialising each
particle until it landed on a valid solution. This approach may
have implications for the algorithm’s ability to explore the
edges of the valid space: this is a topic for further investigation.

V. EXPERIMENTS

This section describes the three circuit-types that we use to
test our algorithm, and for each one it presents and discusses
the results obtained.

e The inverter in Section V-A is a very simple circuit
for which we can perform an exhaustive search, and
which demonstrates that the PSO delivers an optimal

result.

The inverting buffer in Section V-B is the main experi-
mental workhorse: it demonstrates that the PSO works
for examples with difficult settings and constraints.

The ripple carry adder in Section V-C is a larger
circuit which demonstrates that the PSO works for
more complex examples.

All experiments were run on a Windows server 20082 VM,
with 4Gb of RAM and a 2.39GHz virtual CPU. For the two
main experiments, each collection of runs with a given cut-off
took about 18-20 hours.

A. Inverter
Figure 2 shows the inverter circuit that we use.

The inverter takes one bit as input and outputs its negation.
It comprises two transistors, one P-channel with width Wp

10>
L=12u
—] E W = {WP}
vin vout
~N <
- <
+ L=12u
. 3 cL
C) Vin T W= {WN L
Fig. 2. The inverter. vin is negated to produce vout. Two transistors are
used.

and one N-channel with width WN. Therefore the problem has
only two parameters, and an exhaustive search is possible. The
PSO algorithm was run with twenty particles, each run taking
around 11 minutes.

Figure 3 shows the results of an exhaustive search with
a cut-off of 0.1ns. The colours represent a “heat-map” of

WP

100

200 300 400 500 BOD

WN

700 800 900 1000

Fig. 3. The search space for the inverter, and the result of the exhaustive
search. The background brown colour represents infeasible solutions, and the
other (lighter) colours represent the fitness at each feasible point in the search
space: bluer implies a better fitness, in the lower-left corner of the graph. The
white X marks the location of the PSO result.

feasibility and performance: the background brown colour
represents infeasible solutions, and the other colours represent

262

the fitness at each feasible point in the search space, with bluer
colours in the lower-left region denoting better fitness. The
shape of the feasible region shows the asymmetry between the
two transistors, due to the different relative permittivity of the
P-type and the N-type channels.

The exhaustive search reports an optimal fitness of
29.82um?: the PSO algorithm locates a solution with a fitness
of 29.83m?, denoted by the white X on Figure 2. As noted
above, these two likely represent the same solution when
fabricated.

B. Inverting Buffer

Figure 4 shows the inverting buffer circuit that we use.

The buffer takes one bit as input and repeatedly inverts
it. With an odd number of stages the output is the negation
of the input: with an even number of stages the output is the
same as the input, and it acts as a non-inverting buffer. Buffers
have several uses in electronics, including imposing a fixed
delay in a circuit, and passing strong current to charge large
capacitances in a subsequent part of the circuit[1].

Figure 5 illustrates the timing flowing through an inverting
buffer: the figure reported as the propagation delay for the
entire circuit is the worst-case of its reaction time to either a
change in the input signal from low to high, or from high to
low.

10F
@ B
M|
2l
DD . DI2 D.‘fi D.‘E D.IE 1I:
Time (s)
Fig. 5. Propagation of signal through the inverting buffer. The changes in

V0 denote changes in the input to the circuit, and the changes in V1, V5, and
V9 show the times at which these transistors respond. The overall delay in
the circuit is given by the larger of ¢, 1 and ¢, 5.

The buffer shown in Figure 4 has nine inverters, each with
two transistors, therefore there are eighteen parameters. All
experiments on the buffer were run with eighty particles: each
run took 45-60 minutes.

We test our algorithm against this circuit with three differ-
ent thresholds on the propagation delay.

1) A generous cut-off of bns: Figure 6(a) shows twenty
runs of the PSO algorithm with a cut-off of 5ns, plus the
best result achieved by Monte Carlo using the same total
number of SPICE invocations. It is clear that PSO substantially
outperforms Monte Carlo: fourteen of the twenty runs return
a (roughly) optimal result of 28;:m?2, and even the other six
achieve significantly better fitness.

Fig. 4. The inverting buffer. vin is negated repeatedly to produce vout. Two transistors are used for each stage, thus n stages implies a total of 2n transistors.

150 200 250 300
Generations

(a) Twenty runs of the PSO. The dashed line indicates the best fitness achieved
by Monte Carlo in 480,000 attempts.

27.979127.990 | 27.993 [27.995 | 1,268
27.980 | 27.990 [27.993 [27.995 | 1,275
27.990 [27.991 [27.994 | 1,232 | 1,278
27.990 |27.992 {27.995| 1,265 | 1,284

(b) The fitness of the best solution returned in each run, in qu.

2.9
12 12 12 12 12 12 12 12

12 12 1.2 1.2 12 12 12 12 13

(c) The best design from the twenty runs. For each transistor, the top number is
the width of the P-channel and the bottom number is the width of the N-channel,
both in pum.

Fig. 6. Results for the inverting buffer with a cut-off of 5ns.

263

Figure 6(b) shows the actual fitnesses achieved by PSO,
and Figure 6(c) shows the best design returned.

2) A tighter cut-off of 2.5ns: Figure 7(a) shows twenty runs
of the PSO algorithm with a cut-off of 2.5ns. Again, fourteen
of the twenty runs return a (roughly) optimal result around
38.5m?: using the same total number of SPICE invocations,
Monte Carlo is unable to locate even one feasible design.

Figure 7(b) shows the actual fitnesses achieved by PSO,
and Figure 7(c) shows the best design returned.

3) A very tight cut-off of 1.5ns: This is a difficult con-
straint, specifically chosen to produce more-complex designs:
it should be noted that even when optimising solely for
minimum delay (ignoring area), the PSO algorithm could only
get down to 1.3ns. Once again Monte Carlo is unable to
locate even one feasible solution. Figure 8(a) shows sixteen
runs of the PSO algorithm with a cut-off of 1.5ns, omitting
four runs that failed to locate any feasible solutions. Of the
successful runs, eight achieve good fitness and appear to still be
improving after 300 generations: the eight others are probably
stuck in local optima.

Figure 8(b) shows the actual fitnesses achieved by PSO,
and Figure 8(c) shows the best design returned.

4) Observations: We note the following.

e For generous cut-offs, the best answer is simply for
all transistors except the last to be the minimum size.
The PSO finds these solutions.

e As the cut-off shrinks, the size required of the last
transistor grows, until its size creates a capacitance
that requires the penultimate transistor to be non-
minimal. This effect can propagate backwards through
the buffer, as each transistor causes its predecessor to
grow.

e The fact that the algorithm sometimes falls into local
optima may be partly down to the large upper limit
(1,000um) on transistor widths. However such a large
limit will be needed for some circuits, for example
one that was driving a device requiring a significant
current.

aft a2 a3 a4
o Ll T .8 T .8 T .
Lh gl So . . g So £ e G, So N g So ¢ -
I I [f L ceo
1
cs1 cs2 cs3 cs4 P
3:19 == 1p == 1p == 1p

Fig. 9. The ripple carry adder. Each stage takes one bit from each summand (a; and b;) plus the carry bit ¢; from the previous stage, and it outputs the sum
bit s; and the next carry bit c;4.1. 28 transistors are used for each stage, thus n stages implies a total of 28n transistors.

C. Ripple Carry Adder
Figure 9 shows the ripple carry adder circuit that we use.

The ripple carry adder takes two n-bit numbers and adds
them by “rippling” the carry through n full adders, from the
least-significant bit to the most-significant. Each full adder
takes as input one bit from each summand and a carry-in, and
it outputs the sum and the carry-out for the next stage. We
assume that the delay for the circuit is that for propagating
carries all the way to the most-significant bit. This is usually
true, and is adequate for the purposes of our algorithm.

The circuit shown in Figure 9 has four adders in series,
each with 28 transistors, therefore there are 112 parameters in
total. All experiments on the ripple carry adder were run with
forty particles: each run took 6-7 hours.

We test our algorithm against this circuit with two different
thresholds on the propagation delay.

1) A generous cut-off of 4ns: Figure 10(a) shows three
runs of the PSO algorithm with a cut-off of 4ns, plus the best
result achieved by Monte Carlo using the same total number
of SPICE invocations. Again it is clear that PSO outperforms
Monte Carlo in all three runs, even with only forty particles:
in every case it generates improved solutions in less than forty
generations.

Figure 10(b) shows the actual fitnesses achieved by PSO.

2) A tighter cut-off of 2ns: Figure 11(a) shows three runs
of the PSO algorithm with a cut-off of 2ns, plus the best
result achieved by Monte Carlo using the same total number
of SPICE invocations. Again PSO outperforms Monte Carlo
in all three runs: it is also clear from the graphs that in both
experiments the PSO is still improving in all runs.

Figure 11(b) shows the actual fitnesses achieved by PSO.

VI. CONCLUSIONS

We have described an implementation of PSO that deter-
mines the sizes of transistors required for a given integrated
circuit, optimising for minimal area whilst observing hard
limits on the propagation delay in the circuit. We have de-
scribed experiments on three different circuit-types of varying

264

complexity which demonstrate that the algorithm is able to
derive excellent results, and in many cases is able to derive
results where Monte Carlo simulation fails. The occasional
inconsistency in the results derived can easily be overcome
by employing multiple runs, a standard ploy with stochastic
optimisation technology. These results could be used as input
either to a manual circuit layout process, or to a subsequent
automatic optimisation process to produce an actual circuit
layout.

Future work will focus on three main areas. Firstly, we aim
to combine the circuit layout problem with the sizing problem
to produce a single optimisation process that generate layouts
directly. Secondly, we aim to use a multi-objective approach to
investigate the trade-off surface for silicon area vs. propagation
delay: this may lead to a more-generally useful tool for circuit
designers. Thirdly, we will investigate the application of PSO
to other circuit design problems, such as power minimisation
or analogue amplifier design.

REFERENCES
[1]1 S. D. Brown and Z. G. Vranesic. Fundamentals of Digital Logic with
VHDL Design, volume 70125910. McGraw-Hill, 2000.

J. P. Fishburn and A. E. Dunlop. Tilos: A polynomial programming
approach to transistor sizing. In The Best of ICCAD, pages 295-302.
Springer, 2003.

J. Kennedy and R. Eberhart. Particle swarm optimization. In IEEE
Int. Conf. on Neural Networks, volume 4, pages 1942—-1948, November
1995.

M. Matson and L. Glasser. Macromodeling and optimization of digital
MOS VLSI circuits. [EEE Trans. on Computer-Aided Design of
Integrated Circuits and Systems, 5(4):659-678, October 1986.

C. Mooney. Monte Carlo Simulation. Sage Publications, 1997.

(2]

(3]

(4]

L. Nagel and D. Pederson. SPICE (simulation program with integrated
circuit emphasis), Memo. ERL-M382, University of California, Berke-
ley, April 1973.

W. Nye, D. Riley, A. Sangiovanni-Vincentelli, and A. Tits. DE-
LIGHT.SPICE: an optimization-based system for the design of inte-

grated circuits. [EEE Trans. on Computer-Aided Design of Integrated
Circuits and Systems, 7(4):501-519, Apr 1988.

J. Rabaey, A. Chandrakasan, and B. Nikolic. Digital Integrated Circuits.
Prentice Hall, 2002.

J. Rabaey. The SPICE page, http://bwrcs.eecs.berkeley.edu/Classes/IcBook/SPICE.

5,000

4,000 ¢ jl—l

3,000

2,000

Total area (um?)

1,000

1
Generations

(a) Twenty runs of the PSO. Each line starts from the first generation when the
algorithm finds a feasible solution. Monte Carlo failed to find a feasible solution
in 480,000 attempts.

3,000

2,500

2,000

Total area (um?)
-
u
8

...

3

8
)

g

o

100 150
Generations

(a) Sixteen runs of the PSO. Each line starts from the first generation when
the algorithm finds a feasible solution. Four other runs failed to find a feasible
solution in 300 generations. Monte Carlo failed to find a feasible solution in
480,000 attempts.

38.511 | 38.519 | 38.535 | 38.581 | 1,240
38.512|38.519 | 38.544 | 38.657 | 1,612
38.514138.529[38.544 | 1,171 | 1,963
38.518 | 38.530 | 38.577 | 1,240 | 2,500

140 260 | 1,405 | 1,867 | failed
142 291 | 1,421 | 2,368 | failed
155 368 | 1,467 | 2,621 | failed
212 509 | 1,542 | 2,636 | failed

(b) The fitness of the best solution returned in each run, in ,umz.

9.2

12 1.2 12 12 12 12 12 12

12

12 1.2 12 12 12 12 12

(c) The best design from the twenty runs. For each transistor, the top number is
the width of the P-channel and the bottom number is the width of the N-channel,
both in pum.

Fig. 7. Results for the inverting buffer with a cut-off of 2.5ns.

265

(b) The fitness of the best solution returned in each run, in umz.

32
83 7.5
4 P2 46 37 52
0
[| .|
SRS
42
L] 54
6.9
142

(c) The best design from the twenty runs. For each transistor, the top number is
the width of the P-channel and the bottom number is the width of the N-channel,
both in pm.

Fig. 8. Results for the inverting buffer with a cut-off of 1.5ns.

60,000 [10] R. Rogenmoser, H. Kaeslin, and T. Blickle. Stochastic methods for

w000 transistor size optimization of CMOS VLSI circuits. In Parallel Problem
' _:\E—ﬂ_\t _________________________ Solving from Nature, pages 849—858. Springer, 1996.
_ S0 [11] Y. S. and R. Eberhart. A modified particle swarm optimizer. In
“i 45,000 %‘\ IEEE World Congress on Computational Intelligence, pages 69-73,
Lol May 1998.
.—gw,uoo m [12] J. Van der Spiegel. SPICE models for selected devices and components,
25,000 S —— http://www.seas.upenn.edu/jan/spice/spice.models.html.
20000 [13] J. Wakerly. Digital Design Principles and Practices. Prentice Hall,
’ e 2005.
25,000
[50 100 200 250 300

150
Generations

(a) Three runs of the PSO. The dashed line indicates the best fitness achieved
by Monte Carlo in 36,000 attempts.

[27.996 32,057 33.538 |

(b) The fitness of the best solution returned in each run, in qu.

Fig. 10. Results for the ripple carry adder with a cut-off of 4ns.

80,000

70,000 \

-
e N
[S —

[50 100 150 200 250 300
Generations

Total area (um?)

30,000

(a) Three runs of the PSO. The dashed line indicates the best fitness achieved
by Monte Carlo in 36,000 attempts.

(29,707 34,228 [38,161 |

(b) The fitness of the best solution returned in each run, in um2.

Fig. 11. Results for the ripple carry adder with a cut-off of 2ns.

266

