
Evolving Snake Robot Controllers using Artificial
Neural Networks as an Alternative to a

Physics-Based Simulator

Grant W. Woodford
Department of Computing Sciences

Nelson Mandela Metropolitan University

Port Elizabeth, South Africa

Email: grant.woodford@nmmu.ac.za

Mathys C. du Plessis
Department of Computing Sciences

Nelson Mandela Metropolitan University

Port Elizabeth, South Africa

Email: mc.duplessis@nmmu.ac.za

Christiaan J. Pretorius
Department of Mathematics and

Applied Mathematics

Nelson Mandela Metropolitan University

Port Elizabeth, South Africa

Email: cpretorius@nmmu.ac.za

Abstract—Traditional simulators can be complex, time-
consuming and require specialized knowledge to develop while
still being unable to adequately model reality. Artificial Neural
Networks (ANNs) can be trained to simulate real-world robots
and therefore serve as an alternative to traditional approaches of
robot simulation during the Evolutionary Robotics (ER) process.
ANN-based simulators require little specialized knowledge and
can automatically incorporate many real-world peculiarities. This
paper reports a simulator that consisted of ANNs which were
trained to predict changes in the position of a real-world snake-
like robot. Navigational behaviours were evolved in simulation
and subsequently verified on the real-world robot. This paper
demonstrated that ANNs are a viable alternative to traditional
simulators for evolving controllers for snake-like robots.

I. INTRODUCTION

The field of Evolutionary Robotics (ER) seeks to automate

the development of intelligent control structures for robotic

systems using Evolutionary Computing approaches [1]. The

manual development of robot controllers becomes infeasible

as robots, environments and tasks increase in complexity

[2]. ER has been shown to automatically evolve many robot

behaviours, such as path following, inverted pendulum stabi-

lization, light following and obstacle avoidance [3], [4].

In ER, many controllers are evaluated and their relative per-

formances quantified in order to evolve better controllers. The

evaluation of many controllers on a real-world robot is time-

consuming and can damage hardware [5]. These issues can be

overcome through the use of simulators as an alternative to

real-world evaluations [2]. Traditional simulators are physics-

based or modelled on empirically collected data [3]. These

simulators can be time-consuming and complicated to develop

because it may require the use of complex physics-based

models and/or the gathering of large amounts of experimental

data.

It has been shown that alternatively, simulators can be

constructed using ANNs that are trained to predict robot

behaviours using experimentally collected data [3], [4], [6],

[7]. In this paper, ANN-based simulators will simply be

referred to as Simulator Neural Networks (SNNs). The use

of SNNs have shown much promise as an alternative to

traditional approaches to simulation during the ER process [4].

SNNs have been shown to be computationally efficient, require

little specialized knowledge, possess good prediction accuracy,

noise-tolerance and generalization abilities in modelling of cer-

tain robot phenomena [7]. Previous work has mainly focused

on simple robots, therefore this paper aims to investigate the

use of SNNs during the ER process on a complex robot.

This paper is structured as follows: Section II-A describes

the ER process while Section II-B addresses the use of

simulators during the ER process. Related work on snake-

like robots is discussed (Section II-C) while the experimental

robot used in this paper is considered (Section III). The

simulator developed in this paper is proposed in Section IV-A.

The robotic controller and method of behavioural tracking

used in this paper are discussed in Sections IV-B and IV-C

respectively. The experimental procedure followed for simu-

lator training and the subsequent validation of the proposed

simulator are addressed in Sections V-A and V-B. The results

determined that the proposed simulator is indeed viable, with

the simulator’s accuracy and real-world validation experiments

presented in Sections VI-A and VI-B respectively. These

results are discussed in Section VII and finally conclusions are

drawn and possible future work is discussed (Section VIII).

II. BACKGROUND

A. Evolutionary Robotics

In ER, robotic controllers are evolved to develop behaviours

using Genetic Algorithms (GA) [1]. To develop the appropriate

behaviours, a population of encoded candidate controllers is

created. Each controller’s fitness relative to each other is

determined based on how well the controller exhibits the target

behaviour on the experimental robot or in simulation, after

which a new generation of controllers is created to replace the

previous generation. The new generation is generated using

reproduction operators (crossover and mutation) between the

controllers of the previous generation.

Controllers with a higher fitness have a greater probability

of being chosen to produce offspring for the new generation.

2015 IEEE Symposium Series on Computational Intelligence

978-1-4799-7560-0/15 $31.00 © 2015 IEEE

DOI 10.1109/SSCI.2015.47

267

During the crossover process, genetic material between parent

controllers are combined and passed onto the new generation.

The mutation operator can then be applied, causing small

random perturbations in controllers which allows for a more

diverse controller population. This process is repeated for a

large number of generations and controllers ideally converge

towards the target behaviour. The end result of the ER process

is an optimized controller that is validated on a real-world

robot.

A major issue during the ER process is the evaluation

of a large number of controllers for fitness determinations

(Section I). Determining the fitnesses of many controllers on

a real-world robot would be time-consuming and financially

costly. Controller fitness evaluations can therefore be done in

simulation to speed up the process.

B. Evolution in Simulation

Simulators are able to overcome issues inherent in real-

world fitness evaluations. Controller evolution can explore the

search space more rapidly in simulation than it would be

possible in reality [15]. However, as previously mentioned,

the design and construction of traditional physics-based simu-

lators can become time-consuming and complicated [7]. Much

research in ER is concerned with overcoming the difficulties

inherent in utilizing simulators effectively [16]. Challenges in

simulator design can be inaccuracies and/or over-simplification

in the modelling of reality [7].

Over-simplification or inaccuracies in simulations may re-

sult in controllers relying on peculiarities that exist only

in simulation but are non-existent in reality which results

in behaviours evolved in simulation not transferring well to

reality, commonly referred to as the reality gap problem [17].

Over-simplification can be avoided through the use of highly

accurate simulators. However, even highly accurate simulators

cannot perfectly model reality and will inevitably contain

inaccuracies [18]. Additionally, highly accurate simulators are

often computationally expensive [19]. Simulators ideally need

to provide highly accurate representations of reality whilst not

being too computationally expensive to use.

There are currently few alternatives to physics-based simu-

lators in use by ER researchers. The notion of using SNNs as

an alternative to traditional simulators has been investigated by

few researchers [6], [20]. As previously mentioned (Section I),

SNNs are computationally efficient, accurate, relatively simple

to construct and potentially provide an effective alternative

to physics-based approaches. The training of SNNs requires

the evaluation of many randomized behaviours on a real-

world robot and the collection of this behavioural data. This

behavioural data is then used to train SNNs to predict robot

behaviours.

SNNs have been effectively used during the ER process

for tasks such as path following, obstacle avoidance, light

approaching behaviour and inverted pendulum stabilization

[3], [4], [6], [7]. Researchers have also shown that SNNs

can simulate the dynamics of the pendulum swing-up problem

[20].

C. Snake Robots

The ER process for snake-like robots is mostly carried

out in simulation using physics-based approaches to estimate

controller fitness [8]–[11]. A physics-based simulator and GA

approach has been used for shape transformation planning to

achieve stable, smooth transitions between snake locomotion

modes [12]. Additionally, modular robotics research has been

conducted using snake-like configurations and a GA to evolve

controllers in a physics-based simulator [13], [14].

Snake-like robots are constructed by chaining together sev-

eral independent actuators, each actuator commonly having

one degree of freedom [13], [21], [22]. These snake robots

are capable of both biological and non-biologically inspired

locomotion modes.

Biologically inspired snake locomotion modes can be

broadly classified into lateral undulation, slide-pushing, rec-

tilinear motion, concertina, side-winding and various other

forms [23]. Lateral undulation is the most common form

where all parts of the body move in a wave-like pattern

[23]. However, lateral undulation is not suited to smooth, low

friction surfaces [24]. Side-winding locomotion has a sine-like

wave while maintaining only two static points of contact with

the ground at any time. Side-winding is more suited for low

friction surfaces [24]. There are also non-biologically inspired

locomotion modes, namely rolling where the snake rolls side

over side and flapping motions where the robot flaps both of

its ends across the ground [23].

One method of generating the above mentioned locomotion

modes is the use of parametrized equations which generate

the appropriate joint angles on the robot. Melo et al. [21]

have made use of parametrized Equations (1) and (2) which

are based on sinusoidal motion on two axes. These equations

define φ(n, t) as the angle of the nth joint at discrete time

steps t. Snake joints were numbered, starting at zero from

front to back, with evenly numbered joints moving the snake

laterally and odd ones moving the snake vertically. If the snake

rolled on its side, then the evenly numbered joints moved

vertically and oddly numbered joints moved laterally which

similarly switched the angles used by Equation (1). The terms

Olateral and Overtical are the offsets of the lateral and vertical

joints respectively. The offset terms define the central angle

value of their respective waves. Terms Alateral and Avertical

refer to the wave amplitudes of the lateral and vertical joint

angles respectively. The parameters ω and γ are respectively

the spatial and temporal components of the sine wave moving

through the robot. The α term is the phase offset between the

lateral and vertical sine waves.

φ(n, t) =

{
Olateral +Alateral · sin(θ + α), n = even

Overtical +Avertical · sin(θ), n = otherwise
(1)

θ = ωn+ γt (2)

268

Fig. 1. Robot Morphology

III. EXPERIMENTAL ROBOT

A custom designed snake-like robot was developed for the

experimental work. Similarly constructed snake-like robots

have also been used by other researchers [14], [22].

This robot was chosen due to its simple construction and

relatively low cost. The morphology of the robot used for

experimental work is shown in Figure 1. An array of twelve

Dynamixel AX-12 servo motors joined together with links

formed the robot’s body. Evenly numbered joints moved the

robot laterally while the odd joints moved the robot vertically.

The length of the robot was 114cm and its width and height

were 5cm. The servos were controlled by an Arduino Mega

micro-controller which received joint angles from a computer

using serial communication.

The servos were powered using a tethered connection to the

robot. A tethered approach was chosen due to the extra weight

batteries would add and to eliminate the need for monitoring

battery power levels. Near each end of the robot was a yellow

or green tracking marker which was used for camera based

tracking.

No snake-like skins or mechanisms such as wheels were

used to allow for the directional friction required for forward

locomotion seen in many biological snakes. This resulted in

the robot having difficulty with forward locomotion and having

to either side-wind, strafe laterally, perform helix-like rolling

or flapping motions. The robot was not fitted with any sensors.

IV. IMPLEMENTATION DETAILS OF SIMULATOR

AND EXPERIMENTAL SETUP

The design and construction of the developed simulator is

addressed in Section IV-A. Details of the controller used and

method of behavioural tracking are discussed in Sections IV-B

and IV-C respectively.

A. Proposed Approach for using Simulator Neural Networks

A set of twelve joint angles represented a single command.

When a command was sent to the robot, all of the robot’s joints

simultaneously positioned to the assigned angles. A cycle con-

sisted of thirteen sequential commands which when evaluated,

started and ended on the same joint angle set. During the

evaluation of a cycle, commands were sent sequentially to the

robot and upon reaching all the assigned joint angles of the

given command, the robot moved onto the next command.
Equation (1) is used to generate a sequence of commands

that perform cyclical behaviours when evaluated on a robot.

The robot’s change in position after the evaluation of a given

cycle depends on the parameter settings used by Equations

(1) and (2). SNNs take as input those parameter settings and

subsequently predict the change in the robot’s position on the

planar operating surface at the end of the given cycle. The

simulator also predicts whether cycles will fail and cause the

robot to tip over, roll, reach torque limits or collide with itself.
The creation of SNNs and controllers using the ER process

is achieved as follows:

1) Parameter settings for Equations (1) and (2) are ran-

domly generated using a uniform distribution and used

to generate cycles that are performed on the real-world

robot. As a result of these commands, the robot moves

around the environment and data is collected using

motion tracking techniques.

2) When sufficient data has been collected, it is used to

train SNNs to predict the real-world robot’s behaviours.

Data collection is concluded when the trained SNNs are

able to evolve adequately transferable controllers that

complete the goal task.

3) The trained SNNs are used to determine the fitness of

candidate controllers during controller evolution.

4) At the end of the ER process, the fittest controller in

simulation is validated using the real-world robot.

SNNs were trained to predict the change in the position of

the tracked markers on the robot for a given cycle. The robot

had two local coordinate systems with the origins located at

the centre of each tracked marker and y directions taken from

the yellow to green tracked markers. The change in the x and

y-coordinates for the yellow tracked marker for a given cycle

was represented by Δx1 and Δy1 respectively. Similarly, the

changes in the x and y-coordinates for the green marker were

represented by Δx2 and Δy2 respectively. The simulator also

predicted whether or not the robot remained upright and did

not collide with itself or reach any torque limits during a given

cycle.
The simulator developed in this study consisted of five

separate Feed Forward Neural Networks (FFNNs) (Figure

2), one for each of the x and y directions for each tracked

marker and another to predict failed cycles. A previous study

determined that separate FFNNs could produce more accurate

results than a single FFNN [6]. Each FFNN took as input

the values of Alateral, Avertical, α and ω that were used

by Equation 1 to generate the cycle. The offset and γ terms

were kept constant and not used as inputs. Sigmoid activation

functions were used for all FFNN neurons and each FFNN

had a single hidden layer of 100 neurons.
In order to evolve robust controllers that were able to cross

the reality gap (Section II-B), noise was injected into the

ER process during controller evaluations. Controllers were

269

Avertical

Alateral

ω

α

Δx1 or
Δy1 or
Δx2 or
Δy2 or
success

Hidden
layer

Input
layer

Output
layer

Fig. 2. Simulator Neural Networks

evaluated ten times in simulation and the average fitness was

used. The distribution used for noise injection was Gaussian

with a mean of zero and standard deviations of 10cm and 5cm

for the Δx1,2 and Δy1,2 displacements respectively. These

standard deviations were based on the observed training data

errors.

B. Robot Controller

A controller consisted of a sequential list of four different

parameters settings that were used to generate cycles using

Equations (1) and (2). Each cycle in the list was repeated

up to four iterations when evaluated. It was observed through

manual experimentation that the chosen controller morphology

is more than sufficient to accomplish the required behaviours.

A single controller could consist of between four to sixteen

cycles.

The γ term determined the number of commands contained

in a given cycle. The set of joint angles for all cycles had to

begin and end on the same set of angles which is exactly one

period of the sine wave. The time-steps of t for every cycle

went from zero to the number of commands per cycle plus

one. The commands per cycle were fixed at thirteen which

required that the γ term remained constant at 2π/12. The

offsets Olateral and Overtical determined the central angle

value for the wave which was assumed to remain constant

at zero. Non-zero offsets typically help steer the robot in a

particular direction. Amplitudes Alateral and Avertical had a

range of between 0 and π/2. The α and ω parameters were

within the sine function, therefore their values ranged from 0 to

2π. The reason the number of commands per cycle, the offsets

and γ terms were chosen to remain constant was to reduce the

controller search space which in turn reduced the amount of

training data the simulator required to perform adequately.

The vertical amplitude Avertical was chosen so that it was

less than the lateral amplitude Alateral in order to reduce the

number of cycles that failed to remain upright. Even with this

restriction in place, many parameter sets could result in the

robot tipping over or rolling. Ensuring that the robot always

remained upright and stable during evaluations was important

for the simulator predictions. The simulator was trained to

only predict behaviours of upright cycles.

The angular velocity of the robot’s joint movements was

kept constant. The angular velocity was experimentally chosen

to reduce slippage on the smooth operating surface. Depending

on the locomotion mode, the degree of slippage varied greatly.

Due to the flexibility of Equation 1, many different locomotion

modes were possible, even modes that resulted in collisions

with the robot itself or caused joint torque limits to be reached.

C. Motion Tracking

A roof-mounted camera was used to track robot behaviours,

namely the change in position of the tracked markers on the

robot for a given cycle. A camera based tracking approach

was chosen over manual data acquisition methods in order

to speed up the process and eliminate human error. An open

source computer vision library called OpenCV [25] was used

for the camera based tracking software.

Images from the tracking camera were used to locate the

pixel coordinates of the tracked markers. The centre of each

marker was determined and converted into real-world coordi-

nates. Calibration techniques were employed and distortions

were removed from the captured images before use. The

automated tracking process was not used to identify if the

robot tipped over, rolled, collided with itself or if the torque

limits were reached, therefore these behaviours were manually

noted during data acquisition.

V. EXPERIMENTAL PROCEDURE FOR

VALIDATING SIMULATOR

Experimental data from the real-world robot was acquired

and used to train the simulator (Section V-A). Once trained,

the simulator was used to evolve robotic controllers to perform

a navigational task on the real-world robot (Section V-B).

A. Simulator Training

To obtain sufficient data for SNN training, randomly gen-

erated cycles were evaluated on the real-world robot and

behavioural data was collected. The change in position for

each cycle was recorded by the roof-mounted camera. The

robot operated on a working surface of dimensions 2.7m by

1.85m.

Training data was experimentally acquired from 400 ran-

domly generated cycles. This training data was used to train

an initial simulator and the worst twenty training data cycles

that had the largest difference between their expected versus

simulated displacements were subsequently selected for each

of the SNNs. These poor performers were re-evaluated and

each one used to generate four additional cycles with noise,

generating 400 additional training data cycles. The SNNs

were then re-trained utilizing all training data. A bidirectional

approach was taken to assist the simulator predictions to

become more accurate and stable. These SNNs were used

to evolve controllers during the ER process and twenty of

the worst performing cycles from these controllers were taken

and used to generate a further 100 training data patterns. The

270

final SNNs were then trained using all available training data

generated.

The SNNs were implemented using an open source machine

learning library called Encog [26]. SNNs were trained using

Resilient Backpropagation for 12000 iterations or just before

over-fitting occurred. The sizes of the training data set and

verification data of the stable cycles were 720 and 76 respec-

tively. The sizes of the training data set and verification data

set of both the stable and unstable cycles were 820 and 80

respectively. The data for the stable cycles were used to train

the SNNs to predict the changes in the x and y direction of

both tracked markers for a given cycle. The data for the stable

and unstable cycles were used to train another SNN to predict

whether a given cycle would be stable or unstable.

B. Validation Experiment

Due to this investigation being an initial proof-of-concept

prototype, the navigational task was deliberately chosen to be

simple in order to investigate the viability of the approach.

The required navigational behaviour is shown in Figures 7

to 9. Three squares, each 40cm wide were placed in three

quadrants of the operating surface and placed 20cm apart

from each other. The robot was placed with the yellow marker

on the origin and facing eastwards. The task was considered

completed when the robot traversed all the blocks in a specific

order (top right, bottom left, top left).

During the ER process, controllers were evaluated in sim-

ulation, generating a list of points which represented the

simulated path. The fitness values assigned to each controller

were determined using Algorithm 1. This algorithm took as

input, the simulated path and the list of goal regions. The

fitness was calculated based on the number of the goal regions

reached in their specified order. A controller’s fitness was

penalized for containing positions outside the bounds of the

working surface. If a position was reached from an unstable

cycle, the fitness was also penalized. The fitness was further

penalized for each goal region not reached.

Controllers consisted of encoded parameters for the variable

terms in Equations (1) and (2). The controller evolution

settings are given in Table I. An initial population of 400

controllers was generated randomly from a uniform distri-

bution. During uniform cross-over operations, two parents

were selected using tournament selection (using a tournament

size of 20 parents). Child controllers were comprised of

approximately 20% genetic material from one parent and 80%

from the other. The probability that controller parameter values

were mutated by a random amount was 10%. The ER process

proceeded until the fittest controller was sufficiently able to

complete the task in simulation. Upon completion, the final

controller was evaluated on the real-world robot.

VI. RESULTS

Section VI-A discusses the accuracy of the simulator devel-

oped in Section V by analysing the predicted versus expected

change in the robot’s position using the verification data set.

Section VI-B presents the results of the optimized controllers

Algorithm 1: Controller fitness evaluation
Data:
positions ← Simulated path list
goalpoints ← List of goal regions
Result: Fitness of controller
sum ← 0
curGP ← 0 � Current goal point
penalty ← a large constant
for each position in positions do

if position out of bounds then
sum ← sum+ penalty

end
if position reached goalpoints[curGP] then

curGP ← curGP + 1
end
if position reached from failed cycle then

sum ← sum+ penalty
end

end
missedGoalpoints ← length(goalpoints)− curGP − 1
sum ← sum+ penalty ×missedGoalpoints
fitness ← 1/sum
return fitness

TABLE I
PARAMETERS FOR CONTROLLER EVOLUTION

Population Size 400

Initialization Random from a uniform distribution

Selection Tournament (size 20)

Crossover Method Uniform

Mutation Probability 10%

Mutation Method Random Component Perturbation

run on a real-world robot and compares the behaviours to

simulation.

A. Simulator Accuracy

Figures 3 to 6 demonstrate the predicted versus expected

change in position of the tracked markers for the verification

data set. Every dot represents the simulated versus real-world

change in position of the robot for the specific coordinate axis

and for the given verification cycle. The verification data set

was not presented to the simulator during training and was

therefore used to determine the accuracy and generalization

abilities of the trained simulator.

For Figures 3 to 6, linear regression lines were fitted. All

the y-intercepts of the regression lines were close to zero.

The R-squared values for Figures 3 and 5 were 0.84 and 0.75

respectively. This indicted that the simulator could adequately

model movement along the x direction of the robot. The

regression line slopes were 0.85 and 0.9 for Figures 3 and

5 respectively and both y-intercepts close to zero, which

indicated that the simulator modelled the real-world fairly

well. The R-squared values, 0.17 and 0.05 for Figures 4 and

6 respectively indicted that the simulator could not adequately

model movement along the y direction of the robot. The slopes

for Figures 4 and 6 were 0.28 and 0.25 respectively, which

indicated that the simulator and real-world did not closely

relate for those movements.

271

Fig. 3. Yellow tracking point’s predicted versus expected displacement in the
x-direction

Fig. 4. Yellow tracking point’s predicted versus expected displacement in the
y-direction

Fig. 5. Green tracking point’s predicted versus expected displacement in the
x-direction

Fig. 6. Green tracking point’s predicted versus expected displacement in the
y-direction

The simulator was trained to predict the success or failure

of any given cycle. The patterns used to verify the success

or failure of a cycle contained 19 failed cycles and 63

successful cycles. The percentage of verification patterns that

the simulator correctly predicted to succeed or fail was 85%.

The simulator relied greatly on only predicting behaviours of

successful cycles which meant that fitness estimations were

inaccurate for controllers that contained any failed cycles. The

percentage of verification patterns that the simulator correctly

predicted to fail was 58% and the percentage of cycles that

were correctly predicted to succeed was 94%.

Predictions for the robot’s movement in the y direction

were a great deal less accurate than that along the robot’s

x direction. The expected values for the robot’s y directions

tended to be close to zero. This was possibly due to the smooth

operating surface and lack of directional friction properties

seen in biological snakes or snake-like robots using wheels.

These results possibly indicate that much of the movement in

the y direction were close to random and that the main strategy

used by the robot for locomotion was in the x direction.

The results provided a reliable indication as to the accu-

racy of the developed simulator and whether enough training

patterns had been collected. Predicting the robot’s change in

positions is indeed possible which is significant considering

the complexity of the robotic system.

B. Validation Results

The ideal paths obtained by validation controllers in simu-

lation were compared to their real-world paths. These results

are shown in Figures 7 to 9. The dashed lines represent the

simulated path of the validation controller and the solid lines

represent the real-world paths followed by the robot. The

location of the robot was determined to be midway between

the tracked markers. For each validation controller, three real-

world evaluations were performed.

There were twelve independent trial runs, of which only

the best three were presented in this paper. Three trials were

excluded due to the robot moving out of bounds of the

operating surface. Another three trials were excluded due to

the robot rolling during transitions between cycles. One trial

contained a failed cycle and two trials were left out due to

poor transference to the real-world robot.

Evaluated cycles exhibited many types of locomotion

modes, such as lateral strafing, side-winding, helical move-

ments, rolling, flapping and many others. Certain behaviours,

such as flapping were observed to be unable to transfer well to

reality whereas other behaviours such as side-winding showed

better transference to reality. Transitions between different

cycles could also cause stability and accuracy problems.

The controller search space was large and often contained

regions where small changes to a controller could result in

large changes in behaviour. For each trial, the number of cycles

used, percentage of goal regions reached, average displace-

ment between the final positions in simulation and reality

and lastly the number of controller evolution generations of

the validation controllers are given in Table II. Even though

272

−90 −70 −50 −30 −10 10 30 50 70 90

x position (cm)

−90

−70

−50

−30

−10

10

30

50

70

90
y
 p

o
s
it
io

n
 (

c
m

)

simulated

real-world run 1

real-world run 2

real-world run 3

Start

Fig. 7. Experimental run, trial 1

−90 −70 −50 −30 −10 10 30 50 70 90

x position (cm)

−90

−70

−50

−30

−10

10

30

50

70

90

y
 p

o
s
it
io

n
 (

c
m

)

simulated

real-world run 1

real-world run 2

real-world run 3

Start

Fig. 8. Experimental run, trial 2

the navigational task was relatively simple, controllers needed

many cycles to complete the task.

TABLE II
TRIAL RUN DETAILS

Trial number Cycles Goal regions reached Final displacement Controller generations

Trial 1 8 89% 21cm 200

Trial 2 6 78% 16cm 100

Trial 3 8 100% 53cm 100

The simulated and real-world controller behaviours were

similar for the three trials (Figures 7 to 9). Inaccuracies

between the simulator and real-world could be due to many

reasons, such as path divergence over time due to an accu-

mulation of errors. The simulator was simplified and did not

predict changes in position due to transitions between cycles.

The first cycle in trial 1 (Figure 7) moved the robot into

the initial goal region. The second cycle reversed the robot’s

direction towards origin of the working space. The slight shift

eastwards around the origin was the result of the robot’s shift

in position due to switching to the third cycle. The third cycle

was repeated three times and showed poor transference to

reality which was possibly due to the lack of training data

−90 −70 −50 −30 −10 10 30 50 70 90

x position (cm)

−90

−70

−50

−30

−10

10

30

50

70

90

y
 p

o
s
it
io

n
 (

c
m

)

simulated

real-world run 1

real-world run 2

real-world run 3

Start

Fig. 9. Experimental run, trial 3

patterns near that region of the cycle search space. The last

distinct cycle was repeated three times and brought the robot

up towards the last goal region.

The first cycle in trial 2 (Figure 8) moved the robot into

the initial goal region and overshot towards the right when

compared to the predicted path. The next two cycles moved the

robot towards and mostly into the second goal region, only one

of the real-world runs missed this goal region. The fourth cycle

which was supposed to move the robot westward however

resulted in the real-world robot shifting position in place. The

last two cycles formed a curved path towards the third goal

region which closely matched the predicted behaviour.

The first cycle in trial 3 (Figure 9) moved the robot over

the first goal region and overshot it slightly towards the left.

The next three identical cycles brought the robot towards and

just below the second goal region. The fifth cycle moved the

robot slightly closer towards the second goal region and the

last three cycles moved the robot over the second and third

goal regions.

VII. DISCUSSION

The use of SNNs to estimate controller fitness during the

ER process is indeed feasible. It was possible to use SNNs

to evolve robot behaviours for a complex robot performing

a simple navigational task. A direct comparison between

the effectiveness of SNNs and physics-based approaches was

infeasible for this limited investigation.

From the results shown in Section VI-A, it was observed

that changes in position of the yellow marker could be

modelled more accurately than that of the green marker. This

could be due to the increased friction caused by the added

weight of the Arduino and tether. The increased friction could

cause the robot to exhibit less slippage. An environment or

robot with different frictional properties could possibly yield

better results.

The developed simulator was able to predict the general

behaviour of the robot. It was also significant that behaviours

could be evolved for a complex robot to navigate blindly

in its environment with no feedback. This was noteworthy

273

considering the many sources of errors. Possible sources of

errors included inaccuracies in motion tracking, inconsisten-

cies in motor function, slippage on the operating surface and

errors due to the simplifying assumptions of the simulator.

Poor transference could also be due to insufficient training

patterns around certain portions of the cycle search space.

Much work needs to be done devising better training data

sampling strategies.

The complexities in the search space were significant,

where small changes in cycle parameter settings could result

in significant differences in behaviour. Cycles that did not

transfer well to reality were noted and similar training data

was generated which tended to improve transferability overall.

The collection of sufficient behavioural data was a time-

consuming process and it was infeasible to get complete

coverage of the search space. However, the development

and tuning of a physics-based engine could become equally,

if not more, time-consuming and would require specialized

knowledge about the dynamics of the robotic system.

VIII. CONCLUSIONS AND FUTURE WORK

For simple robots, SNNs have been shown to perform well

as an alternative to physics-based approaches during the ER

process. Research into using SNNs during the ER process for

more complex robots is largely unexplored. The difficulty in

developing adequate simulators increases as the complexity

of the robots, environments and tasks increase. The SNN

approach provides a simple way for researchers to construct

models of reality that can be used to evolve behaviours that

would be too costly to develop through real-world evaluations.

This paper demonstrated that SNNs are indeed viable for

evolving behaviours for snake-like robots during the ER

process. It was observed that certain locomotion modes were

more stable and transferable than others. It is significant that

this research was able to develop navigational controllers in

simulation using a GA without the need for developing a

physics-based simulation.

Future work could include, training separate SNNs for each

locomotion mode could provide more accurate results. Future

research could also include investigating the performance of

various ANN morphologies, alternative training data sampling

strategies and exploring a wider variety of tasks and robots.

ACKNOWLEDGMENT

The financial assistance of the National Research Foun-

dation (NRF) towards this research is hereby acknowledged

(UID number: 89526). Opinions expressed and conclusions

arrived at, are those of the authors and are not necessarily to

be attributed to the NRF.

REFERENCES

[1] D. K. Pratihar, “Evolutionary robotics - A review,” Sadhana, vol. 28,
no. 6, pp. 999–1009, 2003.

[2] I. Harvey, P. Husbands, D. Cliff, and Others, Issues in evolutionary
robotics. School of Cognitive and Computing Sciences, University of
Sussex, 1992.

[3] C. J. Pretorius, M. C. du Plessis, and C. B. Cilliers, “Simulating robots
without conventional physics: A neural network approach,” Journal of
Intelligent & Robotic Systems, vol. 71, no. 3-4, pp. 319–348, 2013.

[4] C. J. Pretorius, M. C. du Plessis, and J. W. Gonsalves, “A comparison
of neural networks and physics models as motion simulators for simple
robotic evolution,” in Evolutionary Computation (CEC), 2014 IEEE
Congress on. IEEE, 2014, pp. 2793–2800.

[5] J. C. Zagal and J. Ruiz-Del-Solar, “Combining simulation and reality
in evolutionary robotics,” Journal of Intelligent and Robotic Systems,
vol. 50, no. 1, pp. 19–39, Mar. 2007.

[6] C. J. Pretorius, M. C. du Plessis, and C. B. Cilliers, “Towards an
artificial neural network-based simulator for behavioural evolution in
evolutionary robotics,” in Proceedings of the 2009 Annual Research
Conference of the South African Institute of Computer Scientists and
Information Technologists. ACM, 2009, pp. 170–178.

[7] C. J. Pretorius, “Artificial Neural Networks as simulators for behavioural
evolution in evolutionary robotics,” Masters thesis, Nelson Mandela
Metropolitan University, 2010.

[8] S. Hasanzadeh and A. Akbarzadeh, “Development of a new spinning
gait for a planar snake robot using central pattern generators,” Intelligent
Service Robotics, vol. 6, no. 2, pp. 109–120, 2013.

[9] S. Hasanzadeh and A. A. Tootoonchi, “Ground adaptive and optimized
locomotion of snake robot moving with a novel gait,” Autonomous
Robots, vol. 28, no. 4, pp. 457–470, 2010.

[10] K. Inoue, S. Ma, and C. Jin, “Optimizationof CPG-network for de-
centralized control of a snake-like robot,” in Robotics and Biomimetics
(ROBIO). 2005 IEEE International Conference on. IEEE, 2005, pp.
730–735.

[11] J.-K. Ryu, N. Y. Chong, B. J. You, and H. I. Christensen, “Locomotion
of snake-like robots using adaptive neural oscillators,” Intelligent Service
Robotics, vol. 3, no. 1, pp. 1–10, 2010.

[12] T. Kamegawa, F. Matsuno, and R. Chatterjee, “Proposition of twisting
mode of locomotion and ga based motion planning for transition of
locomotion modes of 3-dimensional snake-like robot,” in Robotics and
Automation, 2002. Proceedings. ICRA’02. IEEE International Confer-
ence on, vol. 2. IEEE, 2002, pp. 1507–1512.

[13] A. Kamimura, H. Kurokawa, E. Yoshida, S. Murata, K. Tomita, and
S. Kokaji, “Automatic locomotion design and experiments for a modular
robotic system,” Mechatronics, IEEE/ASME Transactions on, vol. 10,
no. 3, pp. 314–325, 2005.

[14] S. Murata and H. Kurokawa, “Self-reconfigurable robots,” Robotics &
Automation Magazine, IEEE, vol. 14, no. 1, pp. 71–78, 2007.

[15] H. H. Lund and O. Miglino, “From simulated to real robots,” in Evo-
lutionary Computation, Proceedings of IEEE International Conference.
IEEE, 1996, pp. 362–365.

[16] J. C. Bongard, Evolutionary robotics. ACM, 2013, vol. 56, no. 8.
[17] N. Jakobi, P. Husbands, and I. Harvey, “Noise and the reality gap: The

use of simulation in evolutionary robotics,” in Advances in artificial life.
Springer, 1995, pp. 704–720.

[18] D. Floreano, P. Husbands, and S. Nolfi, “Evolutionary robotics,”
Springer handbook of robotics, pp. 1423–1451, 2008.

[19] O. Miglino, K. Nafasi, and C. Taylor, “Selection for wandering behavior
in a small robot,” Artificial Life, vol. 2, no. 1, pp. 101–116, 1994.

[20] S. Nakamura, R. Saegusa, and S. Hashimoto, “A hybrid learning
strategy for real hardware of swing-up pendulum,” Journal of Advanced
Computational Intelligence & Intelligent Informatics (JACIII), vol. 11,
no. 8, 2007.

[21] K. Melo, M. Hernandez, and D. Gonzalez, “Parameterized space
conditions for the definition of locomotion modes in modular snake
robots,” in Robotics and Biomimetics (ROBIO), 2012 IEEE International
Conference on. IEEE, 2012, pp. 2032–2038.

[22] K. Melo, L. Paez, and C. Parra, “Indoor and outdoor parametrized
gait execution with modular snake robots,” in 2012 IEEE International
Conference on Robotics and Automation.

[23] K. J. Dowling, “Limbless locomotion: learning to crawl with a snake
robot,” Ph.D. dissertation, NASA, 1996.

[24] O. Shmakov, “Snakelike robots locomotions control,” Mechatronics–
Foundations and Applications, 2006.

[25] Itseez, “Official OpenCV Site,” http://opencv.org, accessed: July 2015.
[26] Heaton Research, “Official Encog Site,”

http://www.heatonresearch.com/encog, accessed: July 2015.

274

