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Abstract—This paper presents a new framework for mobile
robot to perform localization and build topological-metric hybrid
map simultaneously. The proposed framework termed as Genetic
Bayesian ARAM consists of two main components: 1) Steady state
genetic algorithm (SSGA) for self-localization and occupancy grid
map building and 2) Bayesian Adaptive Resonance Associative
Memory (ARAM) for topological map building. The proposed
method is validated using a mobile robot. Result show that
Genetic Bayesian ARAM capable of generate hybrid map online
and perform localization simultaneously.

I. INTRODUCTION

In recent intelligent robotics research, autonomous robot
capable of solving complicated tasks in many applications area.
A human-friendly autonomous robot should be able to knows
where it is and constructs its own map for representing the
operating environment. Therefore, building the representation
of map is important to maintain autonomous behavior such as
robot localization, path planning and collision avoidance.

Robot mapping can be grouped into metric maps, topo-
logical maps, and hybrid maps that combine both metric and
topological map information [1]. In the metric approaches, the
environment is represented as a set of objects with coordinates
in a 2D space [2]. The metric maps are build based on feature
representation [3] or free-space representation [4]. Pure metric
maps are vulnerable to inaccuracies in both map building
odometry sytem of the robot [5].

In the topological map approaches, the environment is
represented by a set of distinctive places where these places
are linked to each other by path [6]. Place definition are based
on sensory information received from sensors that operating in
the environment. In its common way, a topological map is a
sparse representation of the environment that only represents
important places for navigation. However, topological map
approaches require intensive exploration of the environment
if higher accuracy for localization is needed. Another crucial
factor that impedes topological map effectiveness is the online
detection and recognition of topological nodes especially when
dealing with unreliable sensors or in a dynamic environment.

More recently, hybrid approaches are developed, which
combine metric and topological methods into hybrid maps.
These methodologies vary in the structure the specific maps

are generated, interconnected, and utilized. For instance, the
topological layer is built on top of grid-based map by handling
Voronoi diagrams of the thresholded grid [7]. A statistical max-
imum likehood approach [8] generates a topological map that
solves global position alignment problem and also being used
for building a fine-grained map. Besides, the map constructed
by the Atlas framework contains a list of multiple local maps
with a limited size. Each node represents a local coordinate
frame of reference and each edge contains the transformation
information between local frames [9].

In this paper, we propose a new framework that combining
our previous work SSGA [10] and Bayesian ARAM [11]
for hybrid map building. The proposed method termed as
Genetic Bayesian ARAM which constructs map that embodies
both a metric and a topological representation. First, SSGA
allows robot to perform self-localization and metric map-
ping simultaneously based on occupancy grid mapping. Then,
Bayesian ARAM utilizes the localization information from
the metric map and sensory information from the explored
environment to construct the topological map. Nodes in the
topological map represent distinct places, while edges connect
nodes and store robot’s bearing information such as orientation
and direction. The metric grid map describes the explored
environment outline for human operators understanding and
further operations. In addition, it also provides global position
of robot for Bayesian ARAM to generate the topological map
and overcome the online detection and recognition problem.
With the topological map, robot could perform localization
and path planning without recalculating the entire metric grid
map.

Contributions of this paper are: (i) it is an incremental and
unsupervised learning framework that enables robot to perform
self-localization and topological metric map building automat-
ically; (ii) it does not require high-level cognitive knowledge,
artificial landmark and feature extraction process to make it
work in a natural environment; (iii) it can process single or
multiple sensory sources for topological map building; does
not require odometry system such as encoder and GPS for
robot position estimation. The rest of the paper is organized
as follows. Section II introduces the theoretical framework of
the proposed online hybrid map building. The experimental
results shown in Section III while results of map building and
localization are discussed in Section IV. Concluding remarks
are finally presented in Section V.
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II. GENETIC BAYESIAN ARAM

In our proposed hybrid mapping method, the notion of map
has both a metric and a topological feature. On the metric side,
the environment is represented by a global occupancy grid
map. SSGA simultaneously perform localization and metric
map building based on occupancy grid mapping.

On the other hand, Bayesian ARAM obtains robot’s posi-
tion from the metric mapping and sensory information to build
the topological map. Bayesian ARAM continuously cluster
sensory sources as nodes and create edges to connect one
another when transistions between nodes are experienced. Each
particular connection contains robot’s orientation or bearing
while nodes are represent distinct places of the explored
environment. The proposed method continuously updates the
hybrid map representations with little or no human interven-
tion. The overall process of our proposed framework as shown
in Figure 1.

Fig. 1: Genetic Bayesian ARAM overall map building process

A. Building the metric map and localization

As mentioned in previous section, we utilize the occupancy
grid mapping [12], [13] for constructing the metric map.
Figure 2 illustrates the concept of the occupancy grid map.

Fig. 2: Concept of the occupancy grid map

The value of each discrete cell is represented as follows:

map0(x, y) =

⎧⎪⎪⎨
⎪⎪⎩
1 if occupied

0.5 if partially occupied

0 if unknown

−1 if empty

(1)

Initially, all cells value are set as 0. The measurement
value is represent as (di, θi),where i = 1, 2, . . . ,M, j =
1, 2, . . . , L,; di is the measurement distance from laser range
finder and θi is the angle of the measurement direction; M is
the number of total measurement directions; Li = [αRes · di]
is the number of resolution for the map generation by the
occupancy grid model.

The map update process as shown in Algorithm 1 where
(xp, yp) is the position of the mobile robot; rp is the posture; di
is the measurement distance from laser range finder in the ith
direction; θi is the angle of the measurement direction; αMAP

is the scale factor mapping from the real world to the grid
map; f(·) in equation 4 is a function according to IF-THEN
rules as shown in Table I.

for i=1 to M do
for j=1 to Li do

ui,j =
j

Li

(
di cos(θi + rp)

)
+ xp

vi,j =
j

Li

(
di sin(θi + rp)

)
+ yp

(2)

xi,j = [αMap · ui,j ]

yi,j = [αMap · vi,j ]
(3)

map0(xi,j , yi,j) = f(map0(xi,j , yi,j), j) (4)

end
end

Algorithm 1: Map update process

TABLE I: State transitions of map-update

Condition Output
j map0(x, y)

j < L 0 -1
j < L 1 0.5
j = L 0 1
j = L -1 0.5

We apply SSGA for the correction of the position and
angle. As one stream of evolutionary computing, genetic
algorithms (GAs) have been effectively used for optimization
problems in robotics [14]. GAs can produce a feasible solution,
not necessarily an optimal one, with less computational cost.
The main role of GAs in robotics is the optimization in
modeling or problem-solving. SSGA simulates the continuous
model of the generation, which eliminates and generates a few
individuals in a generation. A candidate solution is composed
of numerical parameters or revised value to the current position
(gk,x, gk,y) and rotation (gk,r).

In the SSGA, only a few existing solutions are replaced
with the candidate solution generated by the crossover and
mutation. In this experiment, we utilize the elitist cross over
and adaptive mutation. Elitist crossover randomly selects one
individual and generates an individual by incorporating genetic
information from the selected individual and best individual in
order to obtain feasible solutions rapidly.

Next, the following adaptive mutation is applied to the
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generated individual as follows:

gk,h → gk,h +

(
αSSGA · fmax − fk

fmax − fmin

+ βSSGA

)
·N(0, 1) (5)

where fk is the fitness value of the kth individual, fmax and
fmin are the maximum and minimum of fitness values in the
population; N(0, 1) indicates a normal random value; αSSGA

and βSSGA are the coefficient and offset respectively. The
fitness value of the kth candidate solution is calculated using
equation .

fitLoc
k =

M∑
i=1

map0(xi,L, yi,L) (6)

B. Building the topological map

The MBARAM build the topological map beginning with
one node (category) at the first perception. Next, the map is
updating continuously according to robot location generated
from SSGA and sensory information that gathered from robot’s
sensors. The map update as shown in Algorithm 2.

Data: Sensory data and robot position from SSGA
Result: Topological map
if map < one node then

add node to map;
return true

else
search all nodes to determine winner;
if winner > vigilance then

update winner node;
if winner node and previous winner node no
edge then

add edge;
else

update edge;
end

else
reset winner;
add node to map ;
add edge;

end
end

Algorithm 2: Topological map building

Place definitions are directly obtained through Bayesian
ART categorization of sensory information, the category of
a perception corresponding to the place where the robot is

positioned. Each node contains a robot location �V encoded
from SSGA. It is defined as a multidimensional Gaussian
component such as mean vector, covariance matrix, and prior
probability. Such node definition is based solely on the robot’s
perceptual capacities and does not rely on human definition
of what a place is supposed to be. This make places easier to
recognize from sensory information.

The algorithm consists of three main stages, namely, node
competition, node matching (vigilance test), and learning.

1) Node Competition: In this stage, all existing nodes com-
pete to represent an input pattern. The a posteriori probability

of the jth node to represent the M-dimensional pattern x is
calculated as follows:

Mj = P̂ (wj |x) = p̂(x|wj)P̂ (wj)
Ncat∑
l=1

p̂(x|wl)P̂ (wl)

(7)

where Ncat is the number of nodes and P̂ (wj) is the estimated
prior probability of the jth node. The likelihood of wj with
respect to x is estimated using all patterns that have already
been associated with the multivariate Gaussian node wj :

p̂(x|wj) =
1

(2π)M/2|Σ̂j |1/2
× exp{−0.5(x− μ̂j)

T Σ̂−1
j (x− μ̂j)} (8)

where μ̂j and Σ̂j are the estimated mean and covariance matrix
of the jth node.

If training involves K sensory channels, the Mj for each
node is:

Mj =

K∑
k=1

αk[P̂ (w(j,k)|xk)] (9)

=

K∑
k=1

αk

[
p̂(xk|wj,k)P̂ (wj,k)

Ncat∑
l=1

p̂(xk|wl,k)P̂ (wl,k)

]
(10)

where

p̂(xk|wj,k) =
1

(2π)M/2|Σ̂j,k|1/2
× exp{−0.5(xk − μ̂j,k)

T Σ̂−1
j,k(xk − μ̂j,k)} (11)

and αk influence factor for each channel and the sum of αk

is 1.

The winning node J is the one with the maximum a
posteriori probability (MAP):

J = argmax(Mj) (12)

2) Node Matching (Vigilance Test): the node match is to
ensure that the chosen node is able to represent the current
environment that robot is located. The test restricts the Jth
node hypervolume SJ to the maximal hypervolume allowed
for a node SMAX:

SJ,k ≤ SMAX,k (13)

where the hypervolume is defined as the determinant of the
Gaussian covariance matrix. For a diagonal covariance matrix,
this hypervolume is reduced to the product of the variances
each for a dimension:

SJ,k � det(ΣJ,k) =

M∏
d=1

σ2
Jd,k

(14)

If the winning node fulfills the criterion (13), learning is
performed. Else, the node is removed from the competition
for this sensory input and continue searching for another node
until one is comply with (13). If all existing nodes failed the
vigilance test, it means robot is located at a new place. Then,
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a new node is added to the map which stores the input pattern
and an initial covariance matrix Σinit and robot location to
represent this distinct place. New edge is added to connect the
new node with previous winner node.

3) Node Learning: When a chosen node fulfills the maximal
hypervolume criteria(13), the node elements are updated as
follows:

μ̂J,k(new) =
NJ

NJ + 1
μ̂J,k(old) +

1

NJ + 1
xk (15)

Σ̂J,k(new) =
NJ

NJ + 1
Σ̂J,k(old) +

1

NJ + 1
(xk − μ̂J,k(new))

× (xk − μ̂J,k(new))
T ∗ I (16)

P̂ (wJ) =
NJ

Nnode∑
l=1

Nl

(17)

N new
J = N old

J + 1 (18)

where NJ is the number of times that Jth node have been
chosen as winner for learning before receiving the current input
sensory information and I is the identity matrix.

III. EXPERIMENTAL RESULTS

We have conducted the following experiments using an
omni-directional robot with four omni-wheels and DC motors
as shown in Figure 3. The robot can move in different omni-
direction by changing the combination of output levels of
motors. Furthermore, the robot equipped with a Hokuyo laser
range finder (UTM-30LX) and obstacle avoidance ability for
self-localization and map building. Table II shows the hardware
specification of the robot.

Fig. 3: Omni-directional robot

TABLE II: Specifications of omni-directional mobile robot

Diameter 300mm

Height 177mm

Maximal Speed 1.5km/h

Operating Time 1 hour

Communication Wi-Fi (2.4 GHz)

The experimental place is our university laboratory room
and corridor, moderately populated during the day and night.
The environment was by no means static, with moving people,
re-arrangement of furnitures and equipments and changing

door states. Parameters for the robot system and MBARAM al-
gorithms were set as follows: αodo = 0.2, αlaser = 0.8, SMAX =
1, σ2

init = 0.01 and P̂ (wj)init = 1, parent candidates(μ) =
1000 and offspring candidates(λ) = 500.

Next, we commanded the robot to traverse the corridor
3 loops and to our laboratory room during the last loop for
verifying the hybrid map building. During the navigation, robot
perform self-localization and build the grid map by using
laser range finder measurement data. Then, robot’s position
are used by Bayesian ARAM for topological map building.
Figure 4 shows the hybrid map for the first loop traverse over
the corridor. Figure 5 shows the final hybrid map contained
a grid map representing the outline of explored corridors and
the laboratory room and a topological map with 79 nodes for
representing the explored path. Nodes are plotted as red color
circles at the (x,y) coordinates; linked nodes are joined with
edges (black color line). Each node contains robot position
(x,y, θ) generated by SSGA and laser range finder weight that
represents particular explored region as shown in Figure 6.

During the first traverse, robot has no knowledge about
the environment which cause it added 50 nodes to the map
for the first loop. However, only 29 nodes are added to the
map as the robot continue traverse the corridor and laboratory
room for the second and third times. This is because the map
contained previously learned knowledge about the environment
after the first traverse. These knowledge were used by robot
for detecting new place or places that already visited for the
remaining loop.

Fig. 4: Hybrid map for first loop

Fig. 5: Final hybrid map

IV. DISCUSSION

We have shown that the Genetic Bayesian ARAM frame-
work is able to construct a metric-topological hybrid map from
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Fig. 6: Enlarged hybrid map with topological node information

scratch using unprocessed sensory information and does not
require any feature extraction and prior knowledge about the
environment.

In the experiment, SSGA continuously perform localization
and metric mapping without using any odometry system.
Then, Bayesian ARAM use these localization data and laser
scanner data for topological map building. The localization
data are important for distinguish places where the sensory
information is very similar, which overcomes the problem of
online detection and recognition of topological nodes. After
building the map, robot can perform path planning by just
compare it’s current location with topological nodes without
recalculating the grid map. These features help to compensate
the weakness of metric map and topological map.

V. CONCLUSION

The experiments presented show the feasibility of the
proposed approach. Both metric and topological maps were
generated as expected, correctly representing the environment
according to the method. The proposed method does not
requires high-level cognitive knowledge or any artificial land-
mark to construct the hybrid map which make it ready work
in natural environment. In addition, robot can perform self-
localization automatically without any odometry system.

Future work in this subject will include an analysis of
effectiveness of the value of framework parameters. Besides,
we will extend our method for robot path planning and loop
closing to fully utilize the hybrid map. Lastly, we will conduct
more experiments in different kind of indoor and outdoor
environment for further validation.
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