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Abstract—Robot behaviour generation is an attractive option
to automatically produce robot controllers. Most high-level robot
behaviours comprise multiple objectives that may be conflicting
with each other. This research describes experiments using
two Pareto-dominance based algorithms together with a Multi-
objective Genetic Programming (MOGP) framework to evolve
high-level robot behaviours using only primitive commands. The
performance of hand-coded controllers are compared against
controllers evolved using the Non-dominated Sorting Genetic
Algorithm II (NSGA-II) and Strength Pareto Evolutionary Algo-
rithm 2 (SPEA2) algorithms. An additional comparison is also
performed against controllers evolved using the weighted sum
fitness function. The experiment results show that the Pareto-
dominance based MOGP performed better than the hand-coded
and the weighted sum evolved controllers.

I. INTRODUCTION

In this work, Genetic Programming (GP) was used to

evolve a set of goalkeeping behaviours for a goalkeeper

agent. The use of canonical GP coupled with weighted sum

fitness measure allows the generation of control programs

that are acceptable but falls short of the hand-coded ver-

sions. Pareto-dominance based Multi-objective Genetic Pro-

gramming (MOGP) is constructed to improve the performance

of the GP system. Although the use of weighted sum fitness

measure has had some success on some particular problems, it

is widely known that non-dominated solutions located in the

concave regions of the tradeoff surface cannot be obtained.

Messac et al. [1], describes why some objective functions fail

to capture Pareto solutions and further highlighted conditions

to determine the ability of certain objective functions to cap-

ture a Pareto point. Recently, researchers in the Evolutionary

Multi-objective Optimisation Algorithm (EMOO) field have

produced various alternate and complementary techniques that

also attempt to ameliorate this issue.

The Non-dominated Sorting Genetic Algorithm II

(NSGA-II) and the Strength Pareto Evolutionary Algorithm

2 (SPEA2) are chosen as a basis for the MOGP schemes.

Both algorithms are selected because of their efficiency, their

ability to outperform non-elitist approaches [2], often used

in performance comparison using standard metrics [3], [4]

and the removal of the need for weighting parameters in the

weighted sum fitness measure technique. Nevertheless, due

to the output of this class of multi-objective optimisation

approaches, there is a need for the decision maker to select

a preference on the optimal solution based on tradeoffs or

constraints. In this research, a post-evolution competition is

held on members of the Pareto set to help select an optimal

control program.

II. MULTI-OBJECTIVE OPTIMISATION

Multi-objective Optimisation (MOO) has mostly been used

in the engineering and operation research field [5], [6], [7].

This field arises due to a pressing need when researchers at-

tempt to solve real world problems. In the research laboratory,

this algorithm is typically used to solve simpler well-known

problems. There are many encouraging results prompting re-

searchers to use it to tackle much harder problems. Traditional

MOO involves optimising an objective from a set of objectives

one at a time iteratively. This is generally recognised to be time

consuming.

Researchers acknowledge that in using Evolutionary Algo-

rithm (EA), many solutions could be explored in one iteration.

This is because EA typically utilise a set of individuals where

each individual represents a potential solution. At each gener-

ation during the evolutionary process, all the individuals in the

population are evaluated. That is multiple potential solutions

can be explored simultaneously in one run. Therefore, the

combination of MOO and EA is seen as the natural next step

in multi-objective optimisation.

During the last few decades, due in part to the rise in

computing power and the improvements in EA techniques,

Genetic Algorithm (GA) has become a popular and demon-

strably successful EA strategy. This factor has arguably en-

couraged more researchers to use GA as the evolutionary

technique of choice in combination with the MOO approach.

Examples of more widely known EMOO approaches are the

non Pareto-based approaches such as Vector Evaluated Genetic

Algorithm (VEGA) [8], Pareto-based approaches such as

Multiple Objective Genetic Algorithm (MOGA) [9], Non-

dominated Sorting Genetic Algorithm (NSGA) [10], Niched

Pareto Genetic Algorithm (NPGA) [11], Pareto Archive Evo-

lution Strategy (PAES) [12], Strength Pareto Evolutionary

Algorithm (SPEA) [4].

Zitzler et al. [3] did a comprehensive discourse and com-

parison on various multi-objective optimisation approaches.

Similarly, a tutorial on evolutionary multi-objective optimi-
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sation was published by Coello [13]. For a comprehensive

mathematical discussion on multi-objective optimisation, the

reader is guided to an excellent monograph by Miettinen [7].

III. PARETO-DOMINANCE BASED APPROACH

Both the NSGA-II and SPEA2 algorithms are popular

amongst EMOO researchers due to their robustness in solving

fragmented search space problems. In EMOO terminology,

this class of search space is also known as non-convex. In

the case of the weighted sum approaches, the global optimum

of the objective fitness for any set of positive weights is

always a non-dominated solution for a multi-objective problem

[14]. However, in cases where the non-dominated solutions

are located in concave regions of the tradeoff surface or the

Pareto-optimal set, weighted sum approaches cannot obtain

these non-dominated solutions. The reason is because for non-

dominated solutions that are located in the concave regions,

their corresponding global optimum is suboptimal [15].

IV. EXPERIMENT SETTING

The experiments listed below were performed using a hand-

coded attacker with Kick Powers of 100 (KP100) and Kick

Powers of 50 (KP50):

• Static Goalkeeper vs. Hand-coded Attacker

• Random Goalkeeper vs. Hand-coded Attacker

• Hand-coded Reactive Goalkeeper vs. Hand-coded At-

tacker

• Hand-coded Predictive goalkeeper vs. Hand-coded At-

tacker

• Weighted Sum Goalkeeper vs. Hand-coded Attacker

• MOGP (NSGA-II) Goalkeeper vs. Hand-coded Attacker

• MOGP (SPEA2) Goalkeeper vs. Hand-coded Attacker

The placements and facing directions of the attacker includ-

ing the ball are set at the beginning of each experiment. The

ball is placed at a predetermined distance from the attacker

as show in Figure 1. This means that the attacker needs to

approach the ball before it can kick the ball towards the goal.

This is done to give the goalkeeper a minimal time to prepare

for the oncoming attack and also to mimic a more general

attacking scenario.

TABLE I
ATTACKER INITIAL POSITIONS AND FACING DIRECTIONS FOR EACH

ATTACKING SECTOR

Attacker Attacker’s Attacker’s Ball’s
Location (x, y) Facing Direction Location (x, y)

0 (41.00, 14.48) -5.11 (43.00, 12.10)
1 (39.00, 13.24) 17.57 (41.00, 11.07)
2 (37.00, 10.47) -7.59 (39.00, 8.76)
3 (34.00, 5.04) -3.25 (37.00, 4.21)
4 (34.00, 3.10) -15.49 (37.00, 2.59)
5 (34.00, -2.44) -15.41 (37.00, -2.04)
6 (34.00, -3.83) 0.00 (37.00, -3.20)
7 (36.00, -8.54) -10.50 (38.00, -7.14)
8 (39.00, -12.49) -12.64 (41.00, -10.44)
9 (42.00, -15.05) -25.65 (43.00, -12.58)

Attacker
Ball
Goalkeeper

Attack
Trajectory

Fig. 1. A segment of the soccer field showing the goalkeeper, ball and attacker.
The endpoints of the kick directions are varied initially using a predetermined
seed but remains the same during the evolutionary run.

A. Parameters

The population size for the weighted sum experiment is

set to 100 individuals. The NSGA-II algorithm uses elitism

to ensure found solutions are not lost in later generations

during its evolutionary run. To achieve this, it uses a secondary

population that has the same size as the main population.

Therefore, during the evolutionary run, the total population

size is 200 individuals. The SPEA2 experiment also utilises

elitism, which involves the explicit use of an archive that is

the same size as the main population size. Therefore, the

population size used for the SPEA2 experiment is also 200

individuals; 100 individuals for the main population and 100

individuals for the archive.

All of the experiments conducted rely on actual match time

perceptions. The soccer server parameter fullstate is set to off.
Setting this parameter to on indicates to the soccer server that

all perceptions that are given to the agents are complete and

without any uncertainty. This parameter is set to off because

controllers should be able to work despite or with the noise

switched on to emulate closely real match situations1. Nev-

ertheless, the experiments are contrived scenarios but only as

much as the attack distances and directions are predetermined

and repeatable. However, it is more than likely that some of

these positions and scenarios could occur in a real match.

Experiments involving evolution is set to terminate at gen-

eration 50. The size of the population and the length of the

evolutionary run is chosen as a compromise between having

enough individuals to represent potential solutions and the

necessary length of evolutionary time for solutions to be

evolved and the length of time to perform the evolution. Since

each individual has to be evaluated by conducting 10 trials per

generation, and each trial consists of 40 timesteps (400 ms),

the evolutionary period is lengthy.

1A ball’s movement can only be changed by other agents, including players
and trainers. However, the soccer server adds some noise to its direction and
velocity. Additional noise is also included in the visual ball information that
is given to an agent by the soccer server.

281



B. Fitness Functions

There are five objective fitness functions used. The weighted

sum experiment uses equal weights of 0.2 for each of the ob-

jective fitness functions. Both crossover (with a rate of 0.9) and

mutation (with a rate of 0.1) are used as the genetic operators

for all of the evolutionary runs. The selection mechanism for

the weighted sum experiment is the tournament selection with

a size of 7. A binary selection method is used for the NSGA-II

experiment and individuals were compared using the crowded

comparison operator (≺n) in Equation 1.

i ≺n j if (irank < jrank) or ((irank = jrank) and

(idistance > jdistance))
(1)

Selection for mating in SPEA2 is also based on binary

tournaments. Individuals designated as parents for mating are

selected from both the main and archive population. Their

selection are based on a comparison of their fitness values

respectively. The fitness F (i) for each individual i is given as

a strength value S(i) ∈ [0, 1]. S(i) represents the number of

individuals in the population that i is equal to or dominates in

terms of objective values divided by the population size plus

one. The fitness is to be minimised hence the individual with

lower fitness value will be chosen as a parent for mating [16].

f1 =
b

tmax
(2)

The goalkeeper is only rewarded directly for successful

ball-catching and this is reflected by fitness function f1. Any

occurrence of blocking events would be incidental and it

would be interesting to note whether the goalkeeper evolves

a controller that regards ball-catching as paramount or still

includes blocking as part of its defensive repertoire. Fitness

case 1, f1, is given in Equation 2 above, where b is the total

number of balls successfully caught by a goalkeeper during

an evaluation and tmax is the maximum number of trial cases

per evaluation.

Fitness case 2 (f2) is needed to measure the goalkeepers

ability to estimate its own location within the playing field. If

both initial and ending position of the goalkeeper within each

trial is estimated then localisation is deemed as successful and

tness is allocated. The position of the goalkeeper is provided

directly by the localisation routine of the goalkeeper agent.

This value is only computable if the goalkeeper is within the

field of play due to the availability of landmarks within the

field of play that are used by the localisation routine.

Fitness case 3 (f3) measures the goalkeepers ability to locate

the ball. This is done by checking whether the goalkeeper is

able to estimate the distance between itself and the ball at the

start and end of a trial. The goalkeeper is only able to do this

if the ball is in its field of vision. Therefore, this tness can

also be equated with the ability of the goalkeeper in turning

towards the ball.

f4 =

⎧⎨
⎩

0 ps = pe (no movement is detected)

1 ps �= pe ⇐⇒ pe ≤ ps − 2.0,
pe ≥ ps + 2.0 (movement detected)

(3)

Fitness case 4 (f4) is given in Equation 3, where ps is the

position of goalkeeper at the start of an evaluation, and pe is

the position of goalkeeper at the end of an evaluation. The

design of fitness case 4 (f4) are mostly in response to an

anomaly that was discovered while analysing the experiments.

It appears that a turn command displaces the location of the

goalkeeper within a range of ±2.0. The reason is that these

displacements are the result of slight inaccuracies introduced

by the localisation routines.

Whenever a turn is executed, the viewpoint of the agent

is changed and different objects that are used for localisa-

tions come into play. Even though these variations are small

enough for localisations purposes, it resulted in rewarding

a controller for movement event even when only a turn

command was executed. The intention was for the controller

to evolve movements using a dash command. A more accurate

localisation algorithm would reduce these inaccuracies. Boer

et. al. described an implementation of the Particle Filter as

a more accurate localisation technique [17, pp. 88-91]. The

DAInamite team has also adapted this particular localisation

technique [18, pp. 58-66].

f5 =

{
0 (1− ( log de

log ds
)) < 0

1− log de

log ds
(1− ( log de

log ds
)) ≥ 0

(4)

Fitness case 5 (f5) is given in Equation 4 where ds is

the distance between goalkeeper and ball at the start of an

evaluation greater than 1 and de is the distance between

goalkeeper and ball at the end of an evaluation greater than 1.

Fitness case 5 (f5) is used to allocate fitness for goalkeepers

that moves towards the ball within the trial period. This fitness

measure uses a logarithmic scale function of the distance

between the goalkeeper and the ball at the start of an evaluation

and also at the end of an evaluation.

The fitness points to be awarded is distributed along a

logarithmic curve and this has the effect of ensuring that the

relationship between the distance between the goalkeeper and

the ball is logarithmic. This ensures that the fitness decreases

following a logarithmic curve as the distance between the

ball and the goalkeeper becomes larger. In other words, more

fitness points is given the closer the goalkeeper is to the ball

at the end of the trial period.

C. Post-evolution Trials

Post-evolution trials are used to choose one candidate so-

lution from the set of evolved solutions. Each of the evolved

solutions from the final population is tested using the same

experiment scenarios as the online experiment. In these ex-

periments, the agent’s controller trees are no longer being

evolved. The evolved controller trees from the population at

the end of the GP run for each agent is loaded at the start
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of the experiment. The agent then acts using this controller

tree during the course of the run. An agent is assessed by

performing 500 trials per run. An agent’s performance is

calculated based on the number of balls saved; that is the

number of events where the ball is caught or blocked by the

goalkeeper agent. By comparing the agents’ performances, an

optimal controller tree that is preferred can be determined from

the final population.
The best individual from the weighted sum experiment,

evolved during the evolutionary run, is selected to be used

in one of the post-evolution trials. For both NSGA-II and

SPEA2, trials are conducted on all of the individuals from their

respective Pareto fronts. The best performing individual of the

Pareto front is then chosen as the optimal solution. These

post-evolution trials determines the performance level of an

individual by executing the evolved controller. The execution

of the controller allows the agent with that particular controller

to act as a goalkeeper. This is repeated until 500 trials have

elapsed. Note that for the post-evolution experiments, 50

evaluations of 10 trials each are conducted for each of the

candidate solutions in order to judge its performance. The

performance of an individual is directly determined by the

number of goals prevented during its trials.

V. EXPERIMENT RESULTS

This section shows the results of the experiments that

have been conducted. Basically, the results can be divided

into evolutionary result for the weighted sum, NSGA-II and

SPEA2 evolution runs and the post evolution results. The post

evolution results includes an analysis of which action nodes

in the controller tree was activated and also counted. This

analysis gives us a picture of which actions the GP algorithm

has evolved as “important” and also gives us an idea why

certain controllers’ performance are better.
Two hand-coded goalkeepers were included for comparison

purposes. The first hand-coded goalkeeper is a simple reactive

goalkeeper that looks for the ball. If the ball is not located

then the goalkeeper performs the turn action command until

it sees the ball. When it has the ball within its sight, it would

dash towards the ball. When the ball is judged to be within

range, the goalkeeper would attempt to catch it.
The second hand-coded goalkeeper is a simple predictive

goalkeeper. This goalkeeper checks whether the distance be-

tween itself and the ball is within the catchable distance and

whether the ball is recently seen. If both of these conditions

are true then the goalkeeper performs a catch command. If the

goalkeeper is still far from the ball but the ball is recently seen

then the goalkeeper infers the trajectory of the ball according

to the ball’s location and speed about 10 steps into the future.

It would then perform a dash towards the predicted location

with maximum speed. If a catch position is not available and

the ball is far away and the ball probability2 is less than 1,

2The probability of the ball denotes how recent the ball’s information is.
The ball’s probability starts at 1 and is multiplied by 0.5 at every time step
that no sensor information concerning the ball is received. Thus, an agent’s
belief in the relevance of the ball information is decayed from the last time
it saw the ball.

then the goalkeeper calculates a catch location and performs a

dash towards the catch location. However, if a catch location

is available, then the goalkeeper checks whether it is already

at the catch location. If the ball is not seen at this location then

it performs a 45◦ turn. Otherwise the goalkeeper performs a

dash towards the catch location.

A. Baseline Controllers

The baseline controller used to represent the worst controller

apart from a static controller is a controller that uses a

randomiser to generate actions that are sent to the soccer

server. As can be seen from Table II, the static controller is

the worst performing controller.

TABLE II
GOALKEEPER’S COMPARATIVE PERFORMANCE FOR ATTACKER WITH

KP100

Goalkeeper Ball Blocked Blocked Performance
Type Caught In-Field Out-of-Field
Static 0 15 1 16 (3.2%)

Random 6 19 15 40 (8.0%)
Reactive 95 45 1 141 (28.2%)

Predictive 95 9 12 116 (23.2%)
Weighted Sum 0 30 9 39 (7.8%)

NSGA-II 49 19 15 83 (16.6%)
SPEA2 135 6 21 162 (32.4%)

There are two hand-coded controllers that were also eval-

uated in our experiments. These controllers provide further

comparisons for the evolved controllers. The first controller

is a reactive controller and the second controller is a simple

predictive controller. What the latter controller predicts is the

approximate location of the ball a few timesteps in the future.

When KP100 is used, the reactive hand-coded goalkeeper

performed slightly better (28.2%) than the predictive goal-

keeper (23.2%). Lowering the attacker’s kick power by half

to KP50, the predictive hand-coded goalkeeper (55.2%) out-

performed the reactive hand-coded goalkeeper (49.6%). These

performance metrics are based on both the ball-catching and

ball-blocking capabilities of the two hand-coded goalkeepers.

Looking at these metrics in isolation allows us to understand

the reason for the hand-coded goalkeepers’ performances.

Using KP100, even though the reactive goalkeeper outper-

formed the predictive goalkeeper, in terms of ball-catching

performance alone, it can be seen that they are both equal at

95. However, the reactive goalkeeper has more ball-blocked

events (46 events) compared to the predictive goalkeeper (21

events). Additionally, a high proportion of the ball-blocked

events for the reactive goalkeeper resulted in the ball being

deflected within the soccer field. Because of the higher ball

speed, the deflected ball speed is also higher resulting in lower

second attempt scores by the attacker on the deflected balls.

A comparison of their performances also suggest that the

predictive goalkeeper missed the ball more than the reactive

goalkeeper. This means that it is harder to predict the future

location of a ball than to get the current location of the ball

when the ball speed is high. This is wholly dependant on

the accuracy of the localisation routine. Therefore, a high
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performance and a more accurate localisation routine might

improve the predictive capability of a goalkeeper.

When the attacker’s kick power is reduced to KP50, the

predictive goalkeeper showed its true ability. In ball-catching

alone, it was able to catch 276 balls compared to the reactive

goalkeeper’s 193 balls caught. This is a significant increase in

ball-catching performance compared to the KP100 result. The

rate of increase is shown in Table IV where each goalkeeper is

only rated based on their ball-catching ability. The percentages

are calculated based on the number of balls caught against

the number of trials per goalkeeper at 500 trials. It is shown

that the reactive goalkeeper has an increase of 19.6 compared

to 38.8 for the predictive goalkeeper. Looking at the ball-

blocked scores for both of the hand-coded goalkeepers, the

reactive goalkeeper has 55 ball-blocked events and none for

the predictive goalkeeper. This result shows that the predictive

goalkeeper becomes more accurate in predicting the future

location of the ball when the ball speed is lower. The predictive

goalkeeper has no ball-blocked events at all, which tells us that

either the predictive goalkeeper caught the ball or missed it

completely.

In terms of controllers that were evolved by the GP algo-

rithm, the lowest performing controller is the one that was

evolved by the weighted sum based GP. Its performance is

almost similar to the performance of a random goalkeeper. Its

performance is lower than either of the reactive and predic-

tive hand-coded goalkeeper. In constrast, the controllers that

were evolved by both of the Pareto-based MOGP performed

much better. The SPEA2 evolved controller has a higher

performance than any of the hand-coded goalkeepers and in

turn the NSGA-II evolved controller outperforms the SPEA2

controller. This clearly shows that in our specific case, a

Pareto-based GP is able to evolve controllers that are better

than the simple reactive and predictive hand-coded controllers

as well as the weighted sum based GP.

TABLE III
GOALKEEPER’S COMPARATIVE PERFORMANCE FOR ATTACKER WITH

KP50

Goalkeeper Ball Blocked Blocked Performance
Type Caught In-Field Out-of-Field
Static 0 2 1 3 (0.6%)

Random 42 16 5 63 (12.6%)
Reactive 193 55 0 248 (49.6%)

Predictive 276 0 0 276 (55.2%)
Weighted Sum 0 1 1 2 (0.4%)

NSGA-II 208 2 0 210 (42.0%)
SPEA2 201 120 0 321 (64.2%)

The reason that the performance of the static goalkeeper

using KP100 is high in terms of ball-blocking is that due

to the high velocity of the ball, when it collides with the

static goalkeeper, the ball rebounds off the static goalkeeper

at a higher speed. This event requires that the attacker moves

further in order to reach the ball and to attempt scoring for the

second time. Reducing the power of the attacker’s kick by half

to 50 means that the rebound speed of the ball is also reduced.

The ball would then be within a closer distance to the attacker

in order for it to attempt to score at a second try. This effect is

reflected in Table III where the ball-blocking success is only

3 out of 500 resulting in a low overall performance for the

static goalkeeper at 0.6%.

This shows that taking into account the blocking of the ball

as a successful save criterion, a static goalkeeper by virtue of

being at the “right” place can prevent some balls from being

scored but this happens very rarely especially if the ball speed

is low.

B. Weighted Sum

For comparison purposes, the result of the evolutionary run

for the multi-objective weighted sum algorithm is included.

This run uses equal weights of 0.2 for each of the five

objective fitnesses. This algorithm, in contrast to the Pareto-

based algorithms like NSGA-II and SPEA2, produces a single

optimal individual at the end of the run. The best-of-run

individual was evolved at generation 37 and has a standardised

fitness of 0.7058.

The mean standardised fitness of the population is higher

for the evolutionary run involving an attacker with KP50

when compared to the evolutionary run involving KP100. This

indicates that more individuals are fitter when KP50 is used.

This also indicates that the problem of evolving a controller

that is able to cope with KP50 seems to be relatively easier.

In terms of the best-of-run individual’s fitness, in both of the

runs, their fitness are similar and the final climb before the run

is terminated, occurs around the midpoint between generation

30 and generation 40.

When inspecting fitness function f1 for all of the individuals

in the final generation, it can be discovered that no controller

was evolved that was able to catch a ball. Even the best-of-

run individual do not have this capability. The increase in the

overall population fitness is due to fitness f4 and f5, which

means that a proportion of the individuals approaches the ball

and the reverse is true for individuals that are stationary. This

consequence is due to the difficulties of recognising whether

the overall fitness of an individual is attributed to which fitness

measure. This is a common problem with the use of weighted

sum methods. One way to alleviate this problem is to give a

higher weight value to specific fitness measures as a way of

giving more importance to a particular type of controller to be

evolved.

C. NSGA-II

For the NSGA-II runs, the results show that the performance

for all of the individuals in the final generation are about

average where none of the individuals’ performances went be-

yond the 20% mark. The high number of ball-blocking events

depicted in the chart show that the individuals performances

rely as much on blocking as they do on catching the balls.

As a proportion of each individual’s performances, there are

no individuals that have ball-catching as a dominant portion of

their respective ball saves. In fact, some of the individuals have

hardly any ball-catching success and rely entirely on blocking

as a contributing factor to their performances. There are two
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reasons for this outcome. The first reason is that these individ-

uals do not have or do not use any catch action function and

without this particular command, there will be no ball-catching

event. Mostly, these controllers used other action functions

such as the dash, kick and turn action functions. The analysis

of these individuals by recording their nodes activation count

shows that the majority of this type of individuals used the

dash action function. Very rarely do they use both the kick
and turn action functions. The prevalence of the dash action

function is due to fitness functions f4 (movements) and f5
(positioning).

The results show that if the attacker’s kicking power is

reduced by half (KP50), it is noted that the performances

for some of the more successful individuals increased almost

twice that of the best individual’s performance. A marked

difference between individuals that use the catch action (high

performance) and the individuals that use the dash action node

(low performance) is also observed. Since the result shows that

there are less ball-blocking events, these events are no longer

contributing to the overall performance of an individual. Thus,

there are very low performances for individuals that rely on

ball-blocking. Additionally, due to the decrease in speed of

the ball, any deflected ball can more easily be reached by the

attacker to score at a second try.

Furthermore, the high performance seems to be mostly

composed of ball-catching events. It is clear that the ball-

catching events totally dominate the blocking events. This

result suggests that the individuals evolved using KP50 are

more accurate in catching the ball, resulting in far less or

even no ball-blocking. Due to the low speed of the kicked ball,

ball-catching ability becomes more crucial for a goalkeeper.

The reason is that when a goalkeeper fails to catch a ball, the

attacker has a higher chance of success when attacking the

deflected ball. An attacker will not need to travel far to reach

a slow moving deflected ball for a second scoring opportunity.

A failure in catching a ball will almost inevitably result in

a goal whereby the ball moves into the goal in its original

trajectory or be deflected and scored by the attacker in its

second attempt.

Looking at both set of results, the conclusion is that the

ball speed affects the performance of a goalkeeper. Higher ball

speeds results in ball-blocking becoming equally important as

ball-catching in preventing a score. At slower ball speed, the

ability of the individuals in catching the ball becomes more

accurate and crucial as the blocking events do not contribute to

preventing a score. In terms of performance, the best individual

in KP50 (42%) is more than twice the performance of the

best individual in KP100 (16.6%) (see Table III and Table II

respectively).

D. SPEA2

Similar to the previous section, post evolution runs were

performed for the SPEA2 final populations from the evolution-

ary runs involving KP100 and KP50. The run involving KP100

shows that the individuals have a larger difference between the

high performing individuals compared to the low performing

individuals. This is in contrast to the result of the NSGA-II

KP100 experiment. The results also show that although ball-

blocking events exist, the higher performing individuals has a

higher proportion of ball-catching events compared to ball-

blocking events. For these successful individuals, the ball-

catching events contributes the most to their high performance.

The lower performing individuals have no ball-catching

events at all. In addition, in terms of ball-blocking events,

the out-of-field ball-blocking events are higher than the in-

field ball-blocking events.3 This suggest that for the higher

performing individuals, ball-blocking events resulted from

catch failure and subsequent collision and deflection of the

ball. It also suggest that the deflected ball is more likely to

be deflected out of the soccer field. From Table II, the highest

performing individual from this run is also the best performing

goalkeeper when compared to all of the goalkeepers involved

in the KP100 offline experiments.

The results of the SPEA2 offline KP50 experiment is

interesting for the fact that the individuals’ ball-catching

performance did not improve as much when KP50 is used.

From the NSGA-II results, it is shown that slower ball speed

encouraged evolution of controllers that are able to catch

the ball more accurately. However, the SPEA2 results show

that, the performance increase in ball-catching ability does not

show much improvements. What has grown in importance is

the ball-blocking occurrences. Furthermore, most of the ball-

blocking events resulted in the ball being deflected within

rather than out of the soccer field. Significantly, this makes

the ball-blocking events equally important to the ball-catching

events for the performances of the individuals. Some of the

individuals’ performances are due completely to ball-blocking

events. For some of the individuals with low ball-catching

performances, the remainder of its performance proportions

are made up of ball-blocking events.

The result shows that the performance improvements of

the individuals in terms of ball-catching are slight but the

improvements in ball-blocking has improved much more than

expected. This is due to the type of controller that was evolved

to position itself during the trial in such a way that the angle

of deflection does not take the ball out of the field of play.

Furthermore, the angle of deflection is such that the distance

that the attacker has to move to reach the ball is far enough

for the play time to expire. Therefore, the attacker does not

have enough time for a second attempt at scoring even though

the ball speed has been reduced by half. It is also apparent

that the performance level of all the individuals are almost

equally comparable due to the population being populated by

very similar type of controllers.

VI. DISCUSSION

The best evolved goalkeeper from the NSGA-II evolution is

a controller that attempts to capture the ball more accurately. In

3An out-of-field ball-blocking event denotes balls that ended up outside
the field of play after being deflected in a collision. Whereas an in-field ball-
blocking event denotes balls that remained in the field of play after being
deflected and failed to be scored by the attacker before the trial period expires.
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contrast, the best evolved goalkeeper from the SPEA2 evolu-

tion makes use of the fact that there is a time limit involved in

the trials and the controller placed equal importance to both

catching and blocking of the ball. The time limit imposed

places a limit on the duration for the attacker to attempt a

second scoring. The optimal goalkeeper is a goalkeeper that

can deny scoring for all of the attacker’s attempt. This does

not preclude blocking of the ball, however a caught ball is

better than a loose ball out in the soccer field that allows the

attacker a second attempt.

TABLE IV
GOALKEEPER’S COMPARATIVE PERFORMANCE FOR BALL-CATCHING

USING ATTACKER WITH KP100 AND KP50

Goalkeeper Type KP100 KP50 Difference
Static 0% 0% 0.0

Random 1.2% 8.4% 7.2
Reactive 19% 38.6% 19.6

Predictive 16.4% 55.2% 38.8
Weighted Sum 0% 0% 0.0

NSGA-II 9.8% 41% 31.2
SPEA2 27% 40.2% 13.2

The result shown in Table IV is calculated based on narrow-

ing down the requirement of a successful ball-saving to ball-

catching only (ball-blocking is excluded). The data shows that

using KP100, the best performing goalkeeper is the SPEA2

evolved goalkeeper achieving a 27% success rate. However,

when the ball speed is slowed down by using KP50, the

best performing goalkeeper is the predictive goalkeeper. The

reason is because at a slower speed the predictive goalkeeper is

able to more accurately predict the location of the ball. This

is important because a reactive goalkeeper has to adjust its

internal information about objects in its vicinity continuously

in order to keep track of the location of the ball.

The difference column in Table IV shows the improvement

rate of the goalkeeper for its ball-catching ability. The highest

increase belongs to the predictive goalkeeper followed by the

NSGA-II evolved goalkeeper. The NSGA-II evolved goal-

keeper’s higher increase rate shows that the evolved goalkeeper

places more importance on the accuracy of ball-catching.

The SPEA2 evolved goalkeeper has lower rate of increment

because the controller favours both ball-catching and ball-

blocking. The random goalkeeper’s difference is mostly due

to the slower moving ball having higher chances of colliding

with the goalkeeper thereby being deflected away from the

goal. The static and the weighted sum best goalkeeper shows

no improvements at all. The weighted sum best goalkeeper did

not perform any catch therefore in this respect it is no better

than the static goalkeeper. It’s performance was mostly due

to ball-blocking. Failure in evolving a ball-catching capable

controller and depending solely on ball-blocking results in low

performance for the weighted sum controller.

Although fitness function f4 is responsible for rewarding the

movements of a goalkeeper, the results show that some of the

evolved controllers still forgo movements. This is interesting

when compared to the hand-coded goalkeeper design where

the goalkeeper approaches and catches the ball. The majority

of the successful evolved controllers are either static or with

only small movements when executed. This is in contrast to

both of the hand-coded goalkeepers where they actively seek

out the ball, moving towards it and attempting to catch it. The

evolved goalkeepers prefer to stay put or around their original

location and wait for the ball to approach whilst attempting to

catch it.

Catch

DirectionToBall

Fig. 2. A tree representation of the best individual in SPEA2 (KP100)

In the case of the SPEA2 offline runs with KP100, 26% of

the individuals in the final population has the type of controller

shown in Figure 2. Even though this controller looks simple,

it is not at all obvious that it is a forgone conclusion that

this type of controller should be evolved. For example, the

weighted sum evolution did not produce this type of controller.

The best NSGA-II controller in this category evolved the tree

in Figure 3. In addition, there are many more terminals apart

than this particular DirectionToBall terminal that might serve

as the input to the catch function node. Furthermore, if the

goalkeeper is not able to localise, the DirectionToBall terminal

will not yield any useful value.
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Fig. 3. A tree representation of the best individual in NSGA-II (KP100)

The best controller in this category is the SPEA2 evolved

controller and it is this type of controller. It managed to achieve

a performance level of 32.4%. This controller outperformed

the reactive and predictive hand-coded controllers and also

the best NSGA-II controller in terms of both ball-catching

and ball-blocking abilities (see Table II).

There are 4 types of action functions included in the

function set for the GP runs. These are the catch, dash, kick
and turn functions. Summarising the number of times that this

function set is used by the individuals in the final generations

for both the NSGA-II and SPEA2 runs, gives the results in

Table V. The results show that on average, the individuals from

both the NSGA-II and SPEA2 evolved controllers favours
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the execution of the catch and dash over the kick and turn
action functions. With the exception of the SPEA2 (KP50)

final population, the rest of the final populations executed the

dash more than the catch action function. This establishes that

the overall strategy used seems to be either a dash or catch on

its own or a combination of dash and catch together. It can be

inferred that the dash and catch action functions are deemed

important by the GP algorithm for evolving good goalkeeping

behaviours.

TABLE V
TOTAL NUMBER OF ACTION NODES USED BY CONTROLLERS IN THE

PARETO FRONTS OF NSGA-II AND SPEA2

Algorithm Catch Dash Kick Turn Total
NSGA-II (KP100) 30 67 1 1 99
NSGA-II (KP50) 39 59 0 0 98
SPEA2 (KP100) 37 63 0 0 100
SPEA2 (KP50) 53 46 1 0 100

Total 159 235 2 0

Since the way the trial was designed was for an attacker

from various positions along a circular diameter from the

goalkeeper to kick the ball. The ball’s trajectories will mostly

crisscross in front of the goalkeeper before arriving in the

goal.4 The GP algorithm has exploited this situation and

thus the evolved controllers that stays near to the location

where the crisscrossing happens the most whilst executing

catch(ball.direction) means that if the passing ball is within

the catch area, the goalkeeper can catch the ball without even

turning around to have the ball directly in its view. The high

number of ball-blocking resulting in a ball-save event has also

ensured that this type of controllers is kept in the population.

VII. CONCLUSION

This work has extended the canonical GP implementation

to accommodate Pareto-based multi-objective optimisation

and implemented two relatively recent algorithms namely

NSGA-II and SPEA2 respectively. Both of these algorithms

outperformed the weighted sum GP implementation. In the

case of the best controller evolved using SPEA2, the results

from the post evolution runs show that it outperformed both

the simple reactive and predictive hand-coded controller. The

analysis shows that the SPEA2 evolved controllers exploited

the ability to block the ball in addition to catching the ball.

Therefore, the results show that the GP algorithm has exploited

some features of the experiment setting to evolve alternative

controller designs in comparison to the fixed hand-coded

controllers. If only ball-catching events are used to denote

successful saves, i.e. ball-blocking events are excluded, the

best performance for the evolved goalkeepers belongs to the

NSGA-II evolved controller.

The results described are encouraging as they show that

the approach of using Pareto-based MOGP is successful in

evolving better performing goalkeeping behaviours. The best

controller performed better than the simple hand-coded and

weighted sum evolved controllers in preventing goals from

4This is only true for some cases of the attacker’s positions (see Figure 1)

being scored. Furthermore, different types of controllers were

evolved exhibiting different goalkeeping behaviours.
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