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Abstract—One of the problems in neural oscillator based
humanoid locomotion is the interconnection structure and its
weights. They influence the locomotion performance. This paper
proposes an evolutionary algorithm for determining the intercon-
nection structure in humanoid robot locomotion based on neural
oscillator. The aim of this paper is to form the interconnection
structure of motor neurons in order to produce the locomotion
pattern in humanoid biped robot. The evolutionary system forms
the connection and determines the synapse weight values of
the 12 motor neurons distributed to 6 joint angles (two hip-x
joints, two hip-y joints, two knee joints). One chromosome has 53
genes, where 50 genes represent the weight values between motor
neurons and 3 genes represent the gain parameters in hip-y, hip-x,
and knee joint. Center of gravity and speed walking analysis are
required for fitness evaluation. In order to prove the effectiveness
of the system model, we realized it in a computer simulation.
The experimental result shows the comparison result with our
previous model. The stabilization level and speed resulted by
using this system are increased.

I. INTRODUCTION

The technology of humanoid robot has increased and been

implemented in many fields of life. In humanoid robot loco-

motion there are more difficulties than in other types of loco-

motion. Many problems can be found in bipedal locomotion

development, such as instability, walking controller, and so on.

In trajectory based locomotion, many researchers have solved

those problems by using mathematical approach, zero moment

point (ZMP), center of gravity (CoG), inverted pendulum etc.

The developer of Darpa Robotics Challenge–Hubo (DRC–

Hubo) robot has solved a ladder-climbing locomotion [1]

and also walking on rough terrain [2] by using trajectory

based locomotion. Zhu et al used ZMP and inverted pendulum

model for dynamic walking [3]. In our previous research

we dealt with trajectory based locomotion that used inverted

pendulum and zero moment point approaches [4] [5] and

applied evolutionary algorithm for its energy efficiency [6].

Most of the problems in trajectory based locomotion have

been solved by some researchers. There are many methods for

realizing the locomotion in humanoid robot. In this paper, we

propose a biological approach based bipedal robot locomotion.

We use neural oscillator for generating the joint locomotion.

In biological approach, some researchers implemented neural

oscillator that is a type of neural network for generating the

rhythmic signal. Started from Taga et al who implemented

neural oscillator for generating the joint signal pattern in

humanoid [7] then followed by some researchers to implement

this approach. Taga et al used fix interconnection structure of

the neural oscillator [7]. Ishiguro et al implemented neural

oscillator in their humanoid robot locomotion. They used

feedback signal to control the walking pattern [8]. The problem

in neural oscillator based locomotion is the walking controller.

The walking pattern is controlled by the interconnection

structure and its weight. Some researchers used evolutionary

algorithm for optimizing the weight values. In 2010, Park et

al designed a joint trajectory generator proposed for robot

locomotion by using an evolutionary optimized central pattern

generator (CPG). Sensory feedback is applied for supporting

the walking model [9]. Baydin also implemented neural oscil-

lator to generate the locomotion in bipedal robot locomotion.

Evolutionary algorithm is used for determining the weight

values in the neural oscillator structure. However, Baydin

did not consider the stability and interconnection structure

in the fitness evaluation [10]. In 2014, Hong et al also

used evolutionary algorithm to optimize the central pattern

generation based bipedal robot locomotion [11], [12]. Other

researchers used the evolutionary algorithm for gait learning

in 4-legged robot [13].

In our previous research we optimized the weight synapses

between motor neurons without interconnection changing. Be-

fore optimizing, we built the suitable structure based on Mat-

suoka’s interconnection structure analysis [14]. We developed

the dynamic locomotion in four-legged animal robot based on

neural oscillator. We investigated the coupled muscle in four-

legged animal to get the mutual inhibitory and excitatory net-

work in the neuron’s structure. To optimize the synapse weight

we used a multi-objective evolutionary algorithm and used fix

interconnection structure of the neural oscillator [15] [16].

The contribution in this research is, that we develop the

locomotion system based on biological approach. We design

the learning system for finding the best interconnection struc-

ture of motor neurons and their synapse value and optimize
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its stabilization. This system is capable to form the inter-

connection structure between motor neurons. This proposed

method optimizes 6 joints implemented in 12 degrees of

freedom (DoF) of the humanoid robot. In order to prove the

effectiveness of the proposed locomotion, we realized it in a

computer simulation. The advantage of this proposed method

is the interconnection between the neurons, that can be formed

and optimized in order to realize the locomotion pattern of the

humanoid robot.

This paper is organized as follows. Section II explains

the design of locomotion generator. Section III discusses the

interconnection optimization. Section IV presents the stability

support system. Section V shows experimental results and

Section VI concludes the paper.

II. LOCOMOTION MODEL

The proposed paper is implemented in biped robot that has

6 DoF in each leg as illustrated in Fig. 1. The robot in this

proposed method is equipped with inertial sensor. This robot

is designed in the Open Dynamic Engine (ODE) [17].

Fig. 1. Mechanical structure of the robot

We used neural oscillator as the signal generator in joint

angle level. Neural oscillator is generated by mutual inhibition

between n neurons. The neural network model depicted in

Fig. 2 was also implemented in our previous research for

locomotion generation of a 4-legged robot [15]. The general

mathematical model of the neural oscillator based on [14] is

presented in Eqs. (1), (2), and (3). In our model as depicted in

Fig. 2, we constructed the nonlinear oscillator equipped with

external feedback Si.

τl ẋi = xi−
n

∑
j=1

wi jy j +Si−bvi (1)

τrv̇i + vi = yi (2)

yi = max(xi,0) (3)

θn = (y2n− y2n+1)μn (4)

where xi, yi, and vi are the inner state, the output, and a

variable representing self-inhibition effect of the ith neuron;

Fig. 2. Coupled neuron

b is a coefficient of self-inhibition effect; μ is a constant

parameter representing the gain value in each joint angle; τl
and τr are time constants of the inner state and the adaptation

effect, respectively.

In Eq. (1), wi j represents the strength of the inhibitory

connection between the neurons, ∑n
j=1 wi jy j represents the

total signal input from the neurons inside the interconnection

structure, and Si is a constant value representing the input from

outside the neuron structure.

Equation (4) explains 2 neurons (flexor and extensor) rep-

resenting the union of the joint system. The joint angle in the

neuron locomotion system has 6 DoF, 2 legs, and each leg has

3 joints: knee joint, hip-x joint which is rotational about the

x axis, and hip-y joint which is rotational about the y axis.

The joint limitations are implemented as: −π/2 < θ i
1 < π/2,

−π/2 < θ i
2 < 0, −π/4 < θ i

3 < π/4. The interconnection

structure of the neural oscillator has 12 neurons illustrated

in Fig. 3 representing 6 joints. This interconnection structure

is optimized by using evolutionary algorithm.

In our previous research, in order to form the interconnec-

tion structure, we investigated the muscular structure, and the

relationship between the neurons is separated as server neurons

and client neurons [15].

Fig. 3. Diagram of the neuron structure

Since the neural locomotion handles only 3 joint angles

in each leg (hip-y, hip-x, and knee), the other joints are

289



represented by parameter θ1 for ankle-x joint and θ2 for ankle-

y joint computed in Eq. (5) and Eq. (6). We set the θ6 as 0.

θ4 = θ2−θ1 (5)

θ5 =−θ3 (6)

III. INTERCONNECTION OPTIMIZATION

In this section, the strategy for interconnection structure

optimization is explained. In our approach, we represent the

multi-objective problem by weight factors for calculating the

fitness function. We expect to form the walking pattern with

stable speed, good stabilization, and length of step appropriate

to the desired length of step. In order to optimize these prob-

lems, we apply steady state genetic algorithm (SSGA) [18].

A. Individual structure

One chromosome has 53 genes (x1−53) converted to walking

pattern (G1−53), where 50 genes (G1,G2,G3, . . . ,G50) repre-

sent the weight value and the neuron structure, and 3 genes

(G51,G52,G53) represent the gain value of angle joint in hip-

x, hip-z, and knee joint. The genes have minimum value xmin
and maximum value xmax, which can be different for the

genes that represent the synapse weight and for the genes that

represent the gain value. The minimum and maximum values

are decided depending on preliminary test. The interconnection

weights map from source neuron to destination neuron as

shown in Table I. For example, weight G41 represents the

weight connection from neuron 1 to neuron 12 (W12,1) and

from neuron 5 to neuron 10 (W10,5).

G j =

⎧⎪⎨
⎪⎩

x j if 1 < j < 50 & x j > 0

x j if 51 < j < 53

0 otherwise

(7)

The conversion from the genes of the individual to the

locomotion parameter is shown in Eq. (7). If the gene’s number

is between 1 and 50, then that gene represents the weight value

of the neuron connection. If the gene’s value is lower than 0,

then the weight value is 0 implying that there is no connection

between those neurons. If the gene’s number is between 51–

53, then that gene represents the gain of joint angle in each

joint.

B. Fitness Calculation

The fitness function is defined by the minimization of the

error of walking speed (E(v)), the error of desired step length

(E(l)), the height of step (h), the Center of Mass (CoM) error

in x-axis (E(CoM)
x ) and z-axis (E(CoM)

z ). The weight factors

(w( f )
i ) represent the value of effect of each component in the

evaluation.

E(v) =
T

∑
j=1

‖dv− v(t)‖ (8)

E(l) = ‖dl− l‖ (9)

TABLE I
INTERCONNECTION MAPS REPRESENTED BY GENES

(a) (b)

Fig. 4. a) Center of Mass representation for calculating one component of
the fitness value b) 2-D pose walking robot

h =

{
y(t) if h < y(t) & xp(t)< xa(t)
h otherwise

(10)

E(CoM)
z =

T

∑
t=1

‖CoMz(t)‖ (11)

E(CoM)
x =

T

∑
t=1

‖CoMx(t)‖ (12)

f = w( f )
1 E(v) +w( f )

2 E(l)−w( f )
3 h+w( f )

4 E(CoM)
z +w( f )

5 E(CoM)
x

(13)

In Eq. (8), dv and v(t) are the desired speed and the current

speed. In Eq. (9), dl and l are the desired length of step and the

current length of step. In Eq. (10), y(t) is the current height of

step illustrated in Fig. 4b, xp(t) is the current pelvis position

in x-axis, and xa(t) is the current ankle position in x-axis. In

Eqs. (11) and (12), CoMz(t) and CoMx(t) are the length of

CoM from supported area in z-axis and x-axis, respectively.

The CoM point in this model is illustrated in Fig. 4a. T is the

maximum time and t is the current time cycle.
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C. Crossover and Mutation

In SSGA, the crossover and mutation process take the best

individual and the worst individual in each generation. We use

elitist crossover and adaptive mutation in order to replace the

worst individual’s genes. The genes of the worst individual is

replaced by the genes of the best individual and the random

individual. The calculation to acquire the jth gene of the worst

individual can be seen in Eq. (14). When the uniform random

number r j is lower than r then the worst individual’s gene will

be replaced by the gene of the random individual. Otherwise,

when r j is higher than r then the worst individual’s gene will

be replaced by the gene of the best individual.

xworst, j =

⎧⎨
⎩

xrand, j +α ·N(0,1) ·
(

Ngen−t
Ngen

)
if r j < r

xbest, j +β ·N(0,1) ·
(

Ngen−t
Ngen

)
otherwise

(14)

In Eq. (14), xworst, j, xbest, j, and xrand, j are the jth gene of the

worst, the best, and the random individual, respectively; Ngen
is the number of generations, t is the current generation; r j is

a uniform random number between 0 and 1, r is a uniform

random number between 0 and 0.5; N(0,1) is a normal random

number with 0 mean and 1 variance. The constant parameters

α and β are parameters of the mutation operation.

IV. STABILITY SUPPORT SYSTEM

We propose a stability system which improves the stability

level of the neural oscillator based locomotion. The stability

system uses the robot’s hand as response actuator to minimize

the oscillation of the robot’s tilt angle. We use neural network

with back propagation algorithm as depicted in Fig. 5.

Fig. 5. Neural network back propagation model

In Eqs. (15) and (16), Xi(t) is the input value of the tilt

sensor from the ith input neuron; S′y(t) and Sy are the input

and output value of the yth hidden neuron; and Ok(t) is the

output value representing the value of joint angle of hands.

The output data Ok(t) is converted from −π/2 to π/2. The

number of neurons in the input layer, hidden layer, and output

layer are denoted by m, p, and q, respectively.

In Equations (17) and (18), δk and δ j are the error prop-

agation in output neuron and hidden neuron, where dk is the

desired output, and the output function gk(x) is the output of

the tilt sensor (g0(O0) for pitch and g1(O1) for roll direction).

We normalize the data from 0 to 1, therefore we set dk as 0.5.

Sy(t) = f (S′y(t)) = f

(
m

∑
i

xi(t)Ai j +b j

)
(15)

Ok(t) = g(O′k(t)) = g

(
p

∑
j

s j(t)Cjk +bk

)
(16)

δk = (dk−gk(Ok)) f ′(O′k) (17)

δ j =
q

∑
k

δkCjk f ′(S′j) (18)

C(t +1) = C(t)+ηs(t)δ T
k (19)

A(t +1) = A(t)+ηs(t−1)δ T
j (20)

In Eq. (15), the activation function in the hidden layer f (x)
is a sigmoid function. The weight parameters of neurons, A
and C are computed by Eqs. (19) and (20), where η is the

learning rate of the weight.

V. EXPERIMENTAL RESULT

This section presents the experimental result of the proposed

locomotion model. These experiments are conducted in 2-D

simulation for optimizing the interconnection structure, and

3-D simulation for analyzing the stability of the optimized

interconnection structure. In 3-D simulation, we used ODE for

constructing the robot simulation based on real robot proper-

ties. The neural oscillator parameters used for the experiments

are depicted in Table II.

TABLE II
PARAMETER VALUES OF NEURAL OSCILLATOR

Parameter Time cycle τ τ ′ τ f b η
Value 0.01 second 12.0 1.2 1.0 2.5 0.01

A. Interconnection optimization

In this experiment, we optimize the interconnection struc-

ture of neural oscillator for acquiring stable speed, good

stabilization, and length of step appropriate to the desired

length of step. We used 2-D robot simulation to optimize the

structure. The parameter setting of SSGA is shown in Table III,

where Nind is the number of individuals.

In this experiment, we take the result in 10000-th, 20000-

th, and 30000-th generation. The locomotion pattern resulted

by the evolutionary algorithm process can be seen in Fig. 6

and its neural interconnection structures can be seen in Fig. 7.

The pelvis speed of locomotion pattern resulted in 10000-th

and 20000-th generation are still not stable, but in 30000-

th generation, the pelvis speed is stable enough. The fitness

evolution depicted in Fig. 8 is decreasing implying that the

interconnection structure results in better locomotion pattern.
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TABLE III
SSGA PARAMETERS

Parameter Value

Nind 5000
Ngen 20000
α 0.01
β 0.01
xmin,(1−50); xmin,(51−53) -3.5; 0.8

xmax,(1−50); xmax,(51−53) 3.5; 3.0

w( f )
1 −w( f )

5 {0.2, 0.3, 0.2, 0.2, 0.1}

(a)

(b)

(c)

Fig. 6. Locomotion pattern resulted by the evolutionary process in generation
a) 10000 b) 20000 c) 30000

B. Simulation experiment

After the evolutionary process has completed at 30000-th

generation, we take the best solution of weight parameters

shown in Table IV and the gain parameters μ0 = 1.069,

μ1 = 1.389, and μ2 = 2.830. These parameters are used for

the robot simulation in Open Dynamic Engine. However,

the evolutionary process considers the locomotion pattern

without stability analysis. We improve the stability level of the

locomotion by using neural network with back propagation for

TABLE IV
WEIGHT SYNAPSE SOLUTIONS RESULTED BY THE EVOLUTIONARY

PROCESS

(a)

(b)

(c)

Fig. 7. Interconnection structures of neural oscillator in generation a) 10000
b) 20000 c) 30000
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Fig. 8. Fitness evolution

learning system. This system uses hand-x and hand-y joints as

the response actuator depending on the robot’s tilt condition.

The experimental process in simulation is shown in Fig. 9.

Fig. 9. Robot walking in ODE simulation

The signal oscillation representing the learning process can

be seen in Fig. 10. Figures 10a and 10b represent the signal

from angular velocity sensor and tilt angle sensor, respectively.

The robot can walk stably after learning the environmental

condition in 21 seconds. Before that, the robot fell down

several times.

In order to analyze the stability, we transferred the tilt angle

data resulted by the robot simulation experiment into Poincare

diagram and Cobweb diagram depicted in Figs. 11a and 11b.

(a)

(b)

Fig. 10. Signal oscillation representing the stability learning process. a)
Angular velocity signal in pitch and roll direction b) Tilt angle of robot body
in pitch and roll condition

(a)

(b)

Fig. 11. a) Phase diagram of robot’s tilt angle and stability analysis based
on Poincare map b) Cobweb diagram representation of Poincare map for
analyzing the stability

The initial condition of robot’s tilt when the robot stands up

was 0 rad, when the robot was walking, the robot’s tilt changed

to stable tilt angle (0.138 rad).

VI. CONCLUSION

This paper proposed the optimization model to form the

interconnection structure of neural oscillator by using evolu-

tionary algorithm. Walking speed, CoM estimation, height of

step, and length of step as the fitness minimization success-

fully form the interconnection structure of neural oscillator,

therefore it resulted in well locomotion pattern. However,

the locomotion resulted by this optimization method has

low stability level, therefore the robot in this implemented

simulation fell down. This proposed method considers only
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the walking pattern. In order to improve the stability level,

we implemented hand response learning system. By using

neural network with back propagation algorithm for stability

learning system, the robot in the simulation can walk stably

after learning the environmental condition in 21 seconds. The

effectiveness of this method has been analyzed by Poincare

and Cobweb analysis diagram.
In the future research, we aim to classify the important con-

nections and non-important connections in the neural oscillator

structure. Therefore, we expect that we can control the walking

speed or walking direction by adjusting the weight values of

the important connections.
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