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Abstract—The amount of studies on classification of human
characteristics based on measured individual signals has in-
creased rapidly. In wearable sensors based activity recognition
a common policy is to report human independent recognition
results using leave-one-person-out cross-validation scheme. This
can be a suitable solution when feature or model parameter
selection is not needed or it is done outside the validation scheme.
Unfortunately, this is not always the reality. Thus in this article
it is studied how the train-validate-test approach changes the
recognition rates compared to basic leave-one-out cross-validation
approach. Results of three different ways to perform the train-
validate-test is presented: 1) single division to training and testing
data, 2) 10-fold division to training and testing data, and 3)
double leave-one-person-out cross-validation. In this article, it is
shown that the best classifier or feature set selected based on the
training and validation data using basic leave-one-out approach
does not always perform best within independent testing data.
Nevertheless, a larger bias to results can be achieved using single
division or even 10-fold division into separate training and testing
data. Thus it is stated that the double leave-one-person-out is the
most robust version for reporting classification rates in future
studies of activity recognition as well as other areas where human
signals are used.

I. INTRODUCTION

Wearable sensors based activity recognition is a research
area where inertial measurement units based information is
used to recognize human activities. The overall activity recog-
nition process includes a data set collected from the activities
wanted to be recognized, preprocessing, segmentation, feature
extraction and selection, and classification [1]. Activity recog-
nition is used in recognizing, for example, daily activities [2],
[3], in sport sector [4], [5], [6] and in monitoring of assembly
tasks [7], [8], [9]. To instruct and standardize the future studies
an overall tutorial for activity recognition is published [1]
and metrics to be deployed are presented [10]. Nevertheless,
the usage of train-validate-test method is not instructed nor
commonly used for reporting the recognition rates.

Although the use the separate test data is not a novel
approach in machine learning [11] it is easy to ignore if
there are no concrete studies about its impact in the area
in question. Thus is this article, it is pointed out that the
recommend and mainly used evaluation scheme based on
leave-one-person-out cross-validation has some weaknesses. In
theoretical perspective the question is; if in feature selection
the same data is used for selecting the features and validating
the features, as well as if in classifier training the model
parameters are tuned based on the same data to be modeled,

are the reported recognition rates biased. In this article, it
is indeed shown that they are. For example, the leave-one-
person-out cross-validation can be misleading when selecting
the best features as well as the best classifier which is a
major drawback, for example, when trying to introduce novel
/ improved classification processes. Nevertheless, the basic
70/30 division into separate training and testing data bias the
results even more.

Moreover, in this article it is shown that one of the
most common approach for feature selection using sequential
forward selection (SFS) in person-wise cross validation, in
practice, skews the activity recognition results even more. The
initial assumption was that the skewness would be due the
over-fitting and better classification accuracy for testing data
would be achieved by selecting less features than the feature
selection process implies. Nevertheless, it is the opposite.
The highest classification accuracies with linear (LDA) and
quadratic (QDA) discriminant analysis classifiers in testing
data are achieved by selecting substantially more features than
the SFS feature selection process implies.

II. DATA SETS

In this study three different activity recognition data sets are
used; assembly data set, swimming data set and daily activities
data set. With all the cases only 3D acceleration data collected
from the right wrist was used to make the data sets comparable.

In assembling task data were collected from 10 persons
assembling a wooden drawer containing 6 different activities:
hammer use, screwdriver use, wrench use, tapping, leg adjust-
ing with the right hand and attachment of small tips. Naturally
the sequence also contained so-called null data, where none of
the above-mentioned activities were performed. One assembly
sequence lasted approximately 8 minutes, and these sequences
were collected twice from each person. More information
about the data set can be found in [12]. The swimming data
consisted data from 19 swimmers of which 9 were professional
and 10 were amateurs. The data were collected from three
different swimming styles (free stroke, back stroke and breast
stroke) as well as basic and flip turns based on skills of the
swimmer. Thus, for example, the flip turn data was achieved
only from professional swimmers. The data was collected at
50Hz but because of the higher recognition rate presented with
lower frequency in [13] the data was sampled into 10Hz.
The daily activity data set included data from 18 somewhat
overlapping activities from 21 persons. The activities included
walking, pushing lawnmower, biking, jogging, playing football
(soccer), running, washing dishes, dusting, mopping, ironing,
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TABLE I: Data set descriptions

Data set Amount of Amount of Length of Slide Amount of
persons activities window windows

Assembly 10 6 + null 2s 0.5s 19 000
Swimming 19 4 6.4s 1.6s 13 500

Daily activities 21 18 4s 1s 90 000

vacuuming, ascending and descending stairs, sitting, working
with computer, teaching at blackboard, reading book, reading
magazines and packing/unpacking boxes. From every activity
and from every person 4 minutes of data were collected.

III. METHODS

To be able to classify the continuously measures accel-
eration signals all the data sets were divided into segments
using the sliding window method. The window length and the
overlapping were decided based on previous studies (see Table
I).

Within each window specific features were calculated,
although, to be able to test the feature selection step for
activity recognition the amount of features was intentionally
exploded in this study. Thus the features included previously
used features for activity recognition (e.g. in [14]) as well as
novel features called in this article phase based features. In
practice, these features were calculated for every signal one
signal at a time by searching crossings of the signal with a
predefined limit L. Between these crossings the biggest and
smallest area below and above of the limit as well as the
biggest and smallest amplitude were calculated for the signal
in question. In addition, area information at the corresponding
sequence of the other two signals were selected as features
as well as the corresponding amplitude of the signals (see
Figure 1). In this article three limits were used (0, 1 and
mean). These features were then divided into three sets where
the first set basically consisted of statistical features (standard
deviation, mean, minimum, maximum, percentiles, sequence
periods, zero-crossings and mean-crossings for every channels
and correlation information between the channels), second set
added wavelet and FFT features and the third set the phase
based features.

In this article, the best features were chosen using sequen-
tial forward selection (SFS) and minimum Redundancy Maxi-
mum Relevance Feature Selection (mRMR). In the SFS the the
best features were selected one at a time using the classification
accuracy of the model(s) in question as a selection criteria [15]
. However, the selection was not stopped at local minimum
but it was allowed to choose until “the best features” included
all the features. On the other hand, with mRMR the feature
selection was done model independently by selecting features
having the highest correlation to the classification variable but
locating far from each other [16]. Nevertheless, also when
using mRMR the amount of features was selected using the
model independent feature ranking with the model depen-
dent maximum classification accuracy in leave-one-person-out
cross-validation for each model separately.

The classifiers used in this study were the parametric linear
discriminant analysis (LDA), quadratic discriminant analysis
(QDA), C4.5 tree classifier, 𝑘-nearest neighbor classifier (kNN)
and support vector machines (SVM). The LDA and QDA

Fig. 1: The biggest area and maximum amplitude for accelera-
tion signal x as well as the corresponding areas and amplitudes
for acceleration signals y and z.

model the class-conditional densities parametrically as multi-
variate normals [17]. In practice, QDA separates classes using
nonlinear decision boundaries while LDA uses linear decision
boundaries. Both of the methods are fast to train, easy to
implement and the memory requirements are small thus mak-
ing them well-liked in practical applications and devices. The
decision tree models are also computationally light models that
partition the space banned by the input variables to maximize
the score of class purity. Purity is achieved by ensuring that
the majority of points in each cell of the partition belong to
one class [11]. In C4.5 the partition is based in the difference
in entropy [17]. On the other hand, kNN relies heavily on
the training data requiring in most cases more memory and
calculation capacity in the actual classification phase compared
to the parametric methods. In practical applications targeted
to small embedded devices the memory requirement makes it
impossible to use but as an reference method it is appropriate
due its capability to create multiform class boundaries. The
basic idea of kNN classification is quite simple: a data point
is classified into the class where most of its 𝑘 nearest neighbors
belong [18]. In this work, the features were standardized
between [0, 1] before calculating the distances. The SVM, on
the other hand, relies on nonlinear mapping and transforms the
original features to typically higher dimensional feature space.
In this higher dimension a suitable hyperplane is sought to
separate the classes [17]. In a sense of calculation the SVM
is the most time consuming.

IV. STUDY

In this study three different ways to perform the train-
validate-test approach were tested (see Figure 2). Results of
these approaches are presented in their own subsections while
the overall discussion is left to Section V. In every subsection
the results of the basic leave-one-person-out cross-validation
for the training data are also presented as a comparison because
the selected approach also reflected to the cross-validation
results. Thus when it is stated that the results are presented
for training/validation data it means that the results are shown
as an average of person-wise validation data within the training
data in question.
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Fig. 2: Principles of basic leave-one-person-out cross-validation and three ways for train-validate-test approach: single division,
10-fold division and double leave-one-person-out cross-validation. The bias in basic leave-one-person-out cross-validation is due
the back propagation marked with slashed red arrow. If there are no back propagation the basic scheme is adequate.

A. Single division into training and testing data (70/30)

At this subsection, the data sets were randomly divided
into separate training (70 % of data) and testing sets (30 %
of data) before the models were trained or suitable features
were selected based on leave-one-person-out cross-validation
procedure within the training data. However, the separation
for training and testing data was done person-wise in a sense
that 30 percent of the persons were selected into testing. This
means that the test data consisted of data from more than a
single person.

While the mRMR is a classifier dependent, at least when
considering the order of features selected, it was fast to adapt
with 5 different classifiers. On the other hand, while the SFS is
computationally more challenging than mRMR the SFS feature
selection was only studied with LDA and QDA classifiers.The
results for this study can be seen from Table II. In the table it is
shown the recognition rates themselves for training/validation
and testing data but also the number of features providing the
highest recognition rate within training/validation data. With
SFS also the best overall accuracy is presented in the table.

With the assembly data set the difference between train-
ing/validation and testing data is shown very drastically. When
considering the classification accuracies in testing data the
difference can be almost 20 percentage units less than with
training/validation data. At this point, it has to be remembered
that this is not due an anomaly caused by a single person but
the testing data included in this case data from three different
persons. With swimming, however, a rise in accuracy can be
seen. Nevertheless, the table also shows how the classifier and
feature set giving the best accuracy within training data do not
necessarily produce the best classification within separate test-
ing data. For example, with daily activities the best recognition
rate 74.0 % is achieved using all the features with LDA while
in testing the highest accuracy is produced by using QDA with
feature sets 1 and 2. On the other hand, the table also shows
that the generalization problem is not highly depended on the
classifier used.

Within the two different feature selection methods the

SFS seems to outperform the mRMR if only the validation
accuracy is studied. In swimming, however, the testing data
accuracy is higher with mRMR. This is at least the case when
comparing just the features selected by using the maximum
recognition rate of the training/validation data. An another
interesting aspect seen in Table II is the amount of the features
chosen with different data sets and models. It was mentioned
that mRMR selects the features model independently, but as it
can be seen, the amount of features corresponding to highest
recognition rate changes remarkably based on the classifier.
For example, with swimming data and using all the features
the amount of chosen features with LDA is 224 while with
SVM only 4 features are used. Also, interesting is to see
that the most simplest classifiers LDA and QDA produces the
best recognition rates with every data set. On the other hand,
when shifting the interest towards the best possible recognition
rates within testing data by selecting more and more features
using the order decided by SFS, an another interesting aspect
is noticed. The initial assumption was that the SFS would
suffer from overfitting and better classification accuracy for
testing data would be achieved by selecting less features than
the feature selection process implies. Nevertheless, it is the
opposite. The highest classification accuracies for testing data
are achieved by selecting substantially more features than the
feature selection process implies. In fact with LDA results, this
is true for almost all the activities and within all the feature
sets. Only exception to this is found when using the assembly
data and using the so called basic features.

B. 10-fold division into training and testing data (70/30)

While the results seemed quite drastic with a single sep-
aration into training and testing data the results presented
in this subsection were averaged using 10 different runs of
70/30 division. While the calculation burden made it trou-
blesome to run comprehensive tests with separate classifiers
and feature selection methods within the 10-fold train-validate-
test selection approach (e.g. in SVM the calculation with one
selection took weeks in calculation) at this point the most of
the comparison was left out. Thus, the classification accura-
cies are calculated only by using LDA and kNN classifiers,
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TABLE II: Recognition rates for 5 different classifiers, 3 feature sets and mRMR or SFS feature selection algorithm.

Dataset Classifier Feature set mRMR feature selection SFS feature selection

Validation accuracy Testing accuracy Validation accuracy Testing accuracy Best validation
(number of selected based on (number of selected based on accuracy

features) training data features) training data (number of features)

Assembly

LDA
1 80.1 (25) 61.5 83.3 (16) 60.7 66.0 (11)

1 & 2 83.0 (84) 66.3 85.8 (19) 65.4 68.0 (73)
1 & 2 & 3 82.9 (126) 66.6 86.4 (71) 66.1 68.9 (181)

QDA
1 81.9 (19) 64.3 85.1 (22) 70.6 72.8 (43)

1 & 2 83.5 (23) 68.2 86.3 (32) 70.0 72.0 (15)
1 & 2 & 3 83.3 (20) 66.2 87.4 (40) 72.0 72.8 (68)

C4.5
1 59.9 (19) 50.2

1 & 2 63.7 (45) 56.6
1 & 2 & 3 65.5 (91) 55.2

kNN
1 77.0 (45) 63.9

1 & 2 76.6 (86) 62.3
1 & 2 & 3 75.8 (129) 61.9

SVM
1 62.4 (7) 51.3

1 & 2 65.5 (6) 49.0
1 & 2 & 3 64.8 (8) 48.9

Swimming

LDA
1 86.1 (51) 88.9 87.3 (15) 88.0 89.0 (48)

1 & 2 89.8 (86) 91.0 92.0 (46) 90.4 91.2 (67)
1 & 2 & 3 88.6 (224) 91.5 92.5 (41) 90.0 91.9 (231)

QDA
1 80.4 (21) 85.7 86.1 (16) 85.6 86.6 (5)

1 & 2 81.9 (5) 87.1 89.3 (19) 87.9 88.3
1 & 2 & 3 87.4 (22) 87.2 92.7 (28) 89.4 89.5 (49)

C4.5
1 79.6 (20) 84.5

1 & 2 79.5 (35) 80.9
1 & 2 & 3 80.7 (15) 82.8

kNN
1 85.4 (49) 89.5

1 & 2 86.3 (14) 87.1
1 & 2 & 3 87.0 (34) 87.9

SVM
1 80.3 (7) 76.5

1 & 2 81.5 (5) 86.2
1 & 2 & 3 85.5 (4) 85.0

Daily

LDA
1 66.9 (50) 64.0 67.5 (41) 63.7 64.2 (48)

1 & 2 71.9 (88) 68.2 72.6 (54) 67.8 68.3 (83)
1 & 2 & 3 74 (253) 69.5 75.1 (119) 67.9 69.5 (241)

QDA
1 64.6 (51) 62.5 70.9 (16) 66.8 66.8 (16)

1 & 2 71.4 (88) 70.2 75.7 (24) 72.4 72.4 (27)
1 & 2 & 3 73.4 (252) 69.0 75.9 (29) 72 72.3 (26)

C4.5
1 64.7 (33) 62.6

1 & 2 67.7 (81) 65.9
1 & 2 & 3 67.7 (197) 67.2

kNN
1 72.0 (42) 68.4

1 & 2 72.0 (59) 69.0
1 & 2 & 3 72.6 (78) 68.8

SVM
1 70.1 (15) 66.1

1 & 2 70.6 (11) 68.9
1 & 2 & 3 70.6 (18) 67.2

mRMR feature selection and the feature set 1 while the results
are shown as an average of 10 different runs for both to
training/validation data as well as to testing data for three of
the data sets (Table III). To get comparable results the same
selections were used with both classifiers.

TABLE III: Average recognition rates with 10-fold train-
validate-test selection with LDA and kNN classifiers

Validation Testing Validation Testing
Data set accuracy accuracy accuracy accuracy

with LDA with LDA with kNN with kNN
Assembly 77.5 ±1.8 72.1 ± 6.5 74.7 ± 1.9 69.0 ± 3.6
Swimming 86.0 ± 1.0 88.9 ± 2.9 84.6 ± 1.5 89.0 ± 3.0

Daily activities 65.8 ± 0.8 65.8 ± 1.8 70.1 ± 1.1 70.3 ± 1.4

Nevertheless, also these simple results show that the best
classification accuracy in training/validation data is not the one
leading to the highest accuracy within the separate testing data.
From the Table III all the possible behaviors of testing data can
be seen. With daily activities the recognition rates correspond
well and with swimming data set the recognition rates are even

higher within the separate testing data but with assembly there
is a drop of five percentage units in accuracy. Moreover, with
the assembly data the variation between separate runs of train-
validate-test selection is remarkably high.

While the results implied that the classification accuracies
of testing data do not necessarily correlate with the results
achieved using the leave-one-person-out cross-validation an
interest raised about the features selected in these different
runs. To test the variation in feature selection a test was
done using the assembly data and selecting the best features
within two different cases: using mRMR, LDA and feature
set 1, and using mRMR, QDA and all the features (although
the positive definiteness ruled some of the features out). The
features selected are shown in Figure 3. With the LDA case
the variation does seem quite rational; in the 10 different runs
the amount of features selected was between 25 and 39 and it
can be seen that 24 same features were selected in every run.
Thus, it can be assumed that there are 24 person-independent
and highly informative features. Nevertheless, with QDA the
amount of features selected between 10 separate runs changed
between 10 and 44 and none of the features was selected in
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(a) Using LDA and feature set 1
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(b) Using QDA and all the features

Fig. 3: Histograms for features selected during 10 different runs using the assembly data.

every run. Moreover, there is only one feature selected even
in 9 runs. Thus, in this case the features selected cannot be
assumed to be person independent.

C. Double leave-one-person-out cross-validation

In double (or nested) leave-one-person-out cross-validation
the bias is avoided by adding an outer loop into cross-
validation. Data from one person at a time is chosen as
separate testing data while the rest N-1 persons data is left for
basic leave-one-person-out cross-validation. This approach is
computationally the most challenging especially when amount
of persons in data set increases but when reporting the results it
is model, model parameter and feature selection independent.

The results for this train-validate-test is presented in Table
IV. With this time the features chosen were the basic statistical
features added with fourier and wavelet features (feature sets 1
& 2) while the best features were selected using mRMR feature
selection. The classifiers used were LDA and knn. From the
results it can be seen that the difference of training/validation
data and separate testing data is this time smaller or even non-
existing. Nevertheless, a drop in recognition rate is noticed
within the assembly data with both methods and within swim-
ming results achieved by knn.

TABLE IV: Average recognition rates with double leave-one-
out cross-validation train-validate-test selection with LDA and
kNN classifiers (k=5)

Validation Testing Validation Testing
Data set accuracy accuracy accuracy accuracy

with LDA with LDA with kNN with kNN
Assembly 80.6 80.2 75.2 74.5
Swimming 89.9 89.9 85.5 84.4

Daily activities 71.5 71.4 70.9 70.7

Although, the differences in classification accuracies be-
tween double and basic leave-one-person-out cross-validation
were not large, an interest raised if it would have in the model
parameter selection. For this purpose, the value of k for knn
was tested using the same scenario as above. This test was
done with assembly and swimming data sets. With this test
and by using assembly data the effect is shown (Table V).

The value of k selected using back propagation in leave-one-
out cross-validation is not the one leading to best results in
double version.

TABLE V: Recognition rates of knn classifier with k = 5 and
k = 9.

Validation Testing Validation Testing
Data set accuracy accuracy accuracy accuracy

k=5 k=5 k=9 k=9
Assembly 75.2 74.5 74.9 74.8
Swimming 85.5 84.4 86.0 84.9

V. DISCUSSION

As the results showed the classification accuracy of the
training/validation data does not always correlate with the
accuracy in the testing data in activity recognition studies.
It was shown that the selection of best classifier or the best
features based on training data can be quite misleading. This
can be a major drawback when developing new methods or
introducing new features into activity recognition. One reason
for the variation in results is the fact that every person is
individual.

Based on the results of this article, it is also obvious that
the selection of only a single, random testing data can be
misleading. The results show in someway the best and the
worst cases with separate testing data. To be able to have more
weight on the results of the separate testing data also the train-
validate-test procedure should be repeated several times, for
example, applying at least the 10-fold testing data selection or
by using the double leave-one-person-out cross-validation. It
seems that from these the later would be more recommendable
while it does not need any randomization.

Beside the remarks of train-validate-test procedure usage
this article also contributed to feature extraction and selection
parts of activity recognition. The novel features presented
gave a way to study how the amount of features used effect
the recognition rates. It was shown that in the most of the
cases with LDA classifier the more the features the better.
For example, with mRMR and all the features the amount
of features selected moved between 126 and 253 which is
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shockingly large amount. Moreover, it is not reasonable to
select the best features using mRMR given impact values
while the impact of features to the recognition rates is highly
dependent of the classifier. On the other hand, it was noted
that the SFS does not select too much features but in practice
too few.

While the classification accuracy was not the main criterion
in this article, it is not assumed that better results could not
be achieved for the individual problems. For example, the
optimization of the methods was not taken into true consid-
eration. Nevertheless, it does not undermine the outcomes of
this study - the missing of separate testing data can bias the
activity recognition results or results in any area where signals
measured from humans are classified.

VI. CONCLUSION

In this article the bias of classification accuracy caused
by the back propagation step in leave-one-person-out cross-
validation was studied. It was shown that the bias do not just
effect to the classification accuracy itself but the selection of
the optimal features as well as classifier and its parameters can
be effected. This similar effect can be anticipated also other
areas where signals measured from humans are used. Thus
extra consideration should be put when reporting new results.

How to pick the best unbiased model and features based
on the presented results will be the next step of the study.
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[5] H. Koskimäki and P. Siirtola, “Recognizing gym exercises using accel-
eration data from wearable sensors,” in Computational Intelligence and
Data Mining (CIDM), 2014 IEEE Symposium on. IEEE, 2014, pp.
321–328.
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