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Abstract—Affect recognition is an inherently multimodal task
that makes it appealing to investigate classifier combination
approaches in real world scenarios. Thus a variety of different
independent classifiers can be constructed from independent
input modalities without having to rely on artificial feature views.
In this paper we study a variety of fusion approaches based on a
multitude of features that were extracted from audio, video and
physiological signals for continuous recognition of spontaneous
affect. For this purpose the RECOLA data collection is analysed.
In uni- and multimodal experiments we show how an ensemble
can outperform the best individual classifiers.

I. INTRODUCTION

A. Ensemble learning and classifier fusion

Multiple classifier systems are an elegant and effective
means to improve the classification accuracies of individual
classifiers. The combination of an ensemble of classifiers suc-
ceeds if the individual classifiers show a distinct independence,
which is commonly called diversity in this context [1].

In [2] three main approaches to create diverse base classi-
fiers are outlined. The first approach is to use a different subset
of training samples to create different classifiers. This approach
is implemented by the popular ensemble techniques bagging
[3] and boosting [4]. Second, using different feature repre-
sentations for the same data points or subsets of the feature
vectors for different models. A well established application of
this principle is the random subspace method [5]. And finally
using different learning techniques or initializations for the
individual classifiers to achieve independent models.

An important issue in the course of classifier combination is
the question whether to use an adaptive fusion layer or a fixed
combination scheme [6]. Convenient fixed rule combiners are
using decision voting for classifiers with crisp outputs [7] or
summing or multiplying when fuzzy or probabilistic classifica-
tion algorithms are used [8]. Using a trainable classifier fusion
layer treats the task of combination of classifier outputs as a
new classification problem that is stacked onto the initial one
[9]. However, there is a need for further validation data for the
training of the mapping. This reduces the amount of available
data points for the training of the base classifiers [10].

B. Classifier fusion for emotion recognition

The classification of human affective states is an applica-
tion that is particularly feasible to study multimodal fusion
architectures. The conveyance of emotional signals relies on
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a multitude of independent channels, e.g., facial expression,
non-verbal communication but also physiological signals that
can be exploited to improve classification.

In [11] a fixed averaging rule combiner was used to
classify individual feature views that were extracted from
facial expressions. Further, in [12] a neural network based
fusion architecture was proposed for the classification of three
discrete affective dimensions in continuous time.

Sometimes blocked stimuli are used to induce affective
states in test subjects. In [13] an automatic information fu-
sion architecture was proposed to combine three independent
modalities: audio, video and physiology (namely respiration,
blood volume pulse and electromyography). This was con-
ducted by assessing uncertainty values by means of a reject
option for uncertain samples and subsequent multimodal and
temporal integration.

Taking into account the temporal characteristics of the
affective states a Markov chain based approach for the combi-
nation of multimodal and temporal classifier decisions, called
“Markov fusion network”, has been presented in [14]. In [15]
the authors borrow the Kalman filtering concept, which has
a long history in different areas of engineering, to model
the uncertainty of the classification and also to combine
multimodal decisions over time.

Finally, in [16] a proto-label based approach is proposed
that incorporates multimodal properties for the construction of
individual user groups. Despite it’s simplicity, this approach
achieved the best performance in the affect sub-challenge of
the 2014 edition of the Audio/Video Emotion Challenge.

For an extensive overview over recent developments in
multimodal classification of emotions the reader is referred
to the comprehensive review papers of Zeng et al. [17] and
Wu et al. [18].

The remainder of this work is structured as follows. In the
next section, the data set and feature extraction pipeline are
introduced. The utilized base classifiers are briefly introduced
in Section III, followed by the fusion mappings, grouped into
fixed and trainable in Section IV. Experimental validation is
presented in Section V. The findings are discussed in Section
VI followed by the conclusion.

II. DATA SET AND FEATURE EXTRACTION

The data collection that is used in this work is the RECOLA
database that was recorded at the University of Fribourg,
Switzerland [19]. It comprises 18 sessions of length 5 minutes
each, which consist of 4 different channels: audio, video,
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Fig. 2. Averaged traces for the provided labels “arousal” and “valence” over
the 18 sessions. Their variances are also given as error corridors.

electrocardiogram and electrodermal activity. The two affective
dimensions “arousal” and “valence” were manually annotated
using a slider-based label tool (compare Figure 2). Each
recording was annotated by 6 native French speakers. The
average of these individual ratings is used as ground truth.
A sample screen shot of the data is shown in Figure 1.

Ringeval et al. [20] suggest to use Lin’s concordance
correlation coefficient (CCC) [21] for the evaluation of the
classification performance on this dataset as it serves as
combination of correlation and error based measures:

ρC =
2ρσxσy

σ2
x + σ2

y + (x̄− ȳ)2
(1)

with x, y being a prediction and a true label, ρ is the correlation
coefficient, σ2 denotes the variances of the signals and x̄, ȳ
are the means of x and y, respectively. The CCC can also take
negative values and ranges from −1 to 1. It is a combination
of Pearson’s correlation coefficient and the RMSE of the two
signals, where not only the linear relationship between the
signals is measured as in other data sets [16] but also their
respective shifts. Because a high correlation coefficient and a
small deviation are necessary to achieve a high performance
value, the measure overcomes some of the limitations of the
individual terms that are outlined in [22].

In the following the features that were extracted from the
data are briefly described.

A. Audio Features

Linear predictive coding coefficients (LPC) are extracted
using an auto-regressive model. Predictions for a new sample
are hereby created from the p preceding samples [23]. They
are still widely used in fields such as speech recognition
and speech synthesis because of their simplicity and ease
of computation. Here, 8 coefficients were computed for time
windows of 32 ms length with an offset of 16 ms.

Mel frequency cepstral coefficients (MFCC) [24] are
one of the most popular feature descriptors for speech.
They are obtained from the power spectrum of a short time
Fourier transform, followed by conversion to the mel scale by
M(f) = 2595 log (1 + f/100) (for a frequency f in Hz) and
triangular bandpass filtering. The discrete cosine transform is

then applied to quantise the signal to the desired number of
coefficients.

We used 20 MFCC coefficients per time window of length
32 ms with an offset of 16 ms for the experiments here.

Similarly to MFCC, the log frequency power coefficients
[25] are computed from the power spectrum of windowed
speech segments. A log filterbank is applied that is inspired by
the frequency resolution of the human ear ranging from 100
Hz to the Nyquist limit [25].

Furthermore we used the openSMILE toolkit [26] to extract
additional features. 42 additional low level descriptors from
energy, spectral and voicing related feature groups are com-
puted on short time scales and then integrated using statistical
moments.

B. Video Features

Before computing the video features, the facial region was
detected and aligned using stable landmarks obtained by the
Supervised Descent Method [27]. Alignment is necessary to
compute meaningful features that span more than one frame
and to consistently capture the same subregions. On the aligned
faces, the following features have been computed.

Local binary patterns in three orthogonal planes (LBP-
TOP) [28] are computed on image sequences and thus encode
information about the temporal order of the input signals.
In comparison to volumetric local binary patterns, the LBP-
TOP descriptor samples the space-time volume only on three
predetermined slices, arranged orthogonally along the x − y,
x− t and y − t planes.

The LBP-TOP coefficients are computed using a window
length of a second. To encode additional spatial information,
the facial region is subdivived into 2 × 2 blocks that are
overlapping by 25%. The final descriptor is assembled by con-
catenation of the blockwise computed LBP-TOP descriptors.

Local Gabor binary patterns from three orthogonal
planes (LGBP-TOP) [29] are similar to LBP-TOP. The main
difference is that before computing the LBP descriptors on the
orthogonal planes, the images are filtered using a Gabor filter
bank with different scales and orientations. Gabor filters are
inspired by the human visual system and are commonly used to
capture oriented structure. Since the resulting feature is quite
high dimensional, principal component analysis is applied for
dimensionality reduction.

Pyramids of histograms of oriented gradients in three
orthogonal planes (PHOG-TOP) is another instance of an
orthogonal plane descriptor. Instead of LBP however, PHOG
[30] is computed for the different planes. PHOG combines
spatial information with the distribution of image gradient
orientations using a pyramidal scheme by introducing a multi-
resolution scheme using an image pyramid. On every pyramid
level l each dimension is divided into 2l cells. Then, for every
cell, a HOG descriptor is computed. The final PHOG descriptor
emerges as a concatenation of all HOG descriptors over every
pyramid level.

Another descriptor for localized structures in images are
the histograms of oriented gradients (HOG) [31]. First,
gradients of salient edges in the image are computed which
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Fig. 1. Exemplary recording situation of the RECOLA data set. The figure shows a screenshot of the video, a sample audio signal represented as MFCC
coefficients, an electrodermal activity sample curve and the traces for the two label dimensions “valence” and “arousal”.

serve as input for a histogram of gradient directions with n
orientation bins.

In this work the aligned facial image is partitioned into
32×32 pixel windows and the number of bins in the histograms
was set to 9 which renders a descriptor dimensionality of 324.

As an additional feature, landmark distances as computed
in [20] are used as well (termed geometric in Section V).

C. Bio-Physiology

Emotional reactions can be inferred from bio-physiological
measurements such as the electrodermal activity (EDA), elec-
trocardiogram (ECG) or electromyography (EMG) since they
are directly controlled by the autonomic nervous system [32].

For the recorded ECG channel, the following features have
been computed. Heart rate variability, zero-crossing rate, non-
stationarity index, spectral entropy, based on a power spectrum
density: low and high frequency powers as well as their ratio.
Additionally statistical moments and derivatives have been
computed on the signal.

In the EDA channel, responses to external stimuli are
reflected in a change of skin conductivity, which forms activity
peaks over time and is called the phasic component. The other
part of the signal is the tonic component which can be regarded
as a baseline that slowly drifts over time. For the two com-
ponents, the spectral entropy, mean frequency, non-stationary
index are computed. Additionally, the first coefficient of a
regression model and statistical moments are computed as well
as the first derivative.

III. BASE CLASSIFIERS

As base classifiers we decided to use Random Forests [33]
and gradient boosting [34]. Note that a multitude of different
choices is possible here. We decided for those classifiers
because they are robust and work relatively well without
excessive need of meta parameter tuning.

The Random Forest [33] is an ensemble of bagged decision
or regression trees. Each tree is computed on a bootstrapped
feature subset to maintain diversity. For regression, the result

is a subdivision of the input space into axis aligned cells that
each represent a continuous value.

Gradient boosting [34] is a variant of boosting that in-
crementally adds new weak learners based on the negative
gradient of the selected loss function in each optimization step.

IV. MULTIPLE CLASSIFIER FUSION

In this section, the different combination schemes are pre-
sented. They are grouped into fixed and trainable combiners.
Fixed combiners take the base classifier predictions as input
and apply a fixed mapping to it. They have the advantage that
no additional training phase occurs and therefore all the data
can be used for optimizing the base learners.

Trainable mappings on the other hand are trained on the
predictions of the base learners. Using a trainable mapping,
systematic confusions can more easily be resolved than with
a fixed mapping. The downside is that additional data is
necessary to train the combiner. This can be especially critical
in scenarios where hardly enough data exists to properly train
the base learners. The trainable mappings additionally bring
the complication of how to optimally split the data into training
sets for the base learners and the fusion mapping. For solutions
regarding this problem, the reader is referred to [10].

In the following, Ci will denote the output of classifier i
and y will denote the ground-truth labels. Furthermore

C =

⎡
⎣ C1 . . . Ci . . . Cn

⎤
⎦

is the concatenation of the individual classifier predictions in
matrix form.

A. Fixed Rule Combiner

The simplest approach to combine individual classifier
decisions is to apply a fixed combination rule to the outputs
of the classifier [7]. One intuitive choice for such a fixed rule
combiner that is applicable for the classification of continuous
dimensions is to take the average of the individual models
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[8]. Thus, the individual errors that are committed by the
base models are averaged out if the models are independently
created. Further, we evaluate the median rule as a small
variation of this concept, which is more robust against outliers.

B. Trainable Fusion

1) Model free approaches: Model free combiners are cre-
ated by assessing the performance of the individual models
and then combining their outputs accordingly. We evaluate
two different techniques of this category namely computing a
weighted average of the outputs and choosing the single best
model. In order to obtain suitable weights for the weighted
average, each classifier is tested on the validation set

• Weighted average: The individual models are eval-
uated on the validation set and the weights of the
combination are set with respect to this performance.

• Single best: The modality is picked that achieved the
highest performance given the predictions on the hold-
out set.

2) (Regularized) linear Optimization:

• Pseudo-Inverse: A least-squares optimal linear map-
ping is obtained by computing the pseudo-inverse of
the classifier outputs C and multiplying it with the
desired values y.

M = lim
α→0+

CT (CCT + αI)−1y (2)

The mapping is then applied to the predicted outputs
to obtain the final class memberships. For details, the
reader is referred to [35].

• Robust regression: It has been proposed as a more
robust alternative of ordinary least squares which
can be very sensitive against outliers in the data.
The solution is obtained by iteratively reweighted
least squares. This is an iterative process in which a
weighted least squares solution is computed, followed
by weight updating of points based on their distance
to the new model. Here, the Huber weighting function
is used:

h(x) =

{
1
2x

2 |x| < t,

t(|x| − 1
2 t) otherwise

(3)

with a threshold value t.

• Elastic net: A regression formula with a convex
weighting of �1 and �2 regularization. For α = 1, the
LASSO [36] is obtained while the formula simplifies
to ridge regression for α = 0 [37].

min
β
‖y −Cβ‖2 + λ

(
α‖β‖22 + (1− α)‖β‖1

)
(4)

Values in between trade off properties of both al-
gorithms. The �1 loss favours sparse models, but
has problems with correlated variables, which can be
handled more efficiently by the �2 loss.

3) Classifiers:

• Random Forest: See Section III.

• ε-SVR: A regression variant of the well known Sup-
port Vector Machine. The optimization criteria is the
ε-insensitive loss. That means that predictions are
desired that are closer than ε from the data points;
larger deviations are penalised. As it is the case for
the SVM, the kernel trick can be used to extend the
capabilities of the SVR to nonlinear problems. Here
we use SVR with linear and RBF kernel.

• CCC-Net: A feedforward multilayer perceptron op-
timized directly on the concordance correlation co-
efficient. Stochastic gradient descent is used along
with the derivative of Eq. 1 for the optimization task.
A network with two hidden sigmoid layers and 49
neurons per layer is used as combination mechanism.

V. NUMERICAL EVALUATIONS

This section is divided into uni- and multimodal results.
The unimodal results lay the foundation on which the multi-
modal fusion builds. The experiments are designed to give an
estimate on the person independent generalization ability of
the classifiers using a leave-one-subject-out cross validation
procedure. In case a trainable classifier fusion approach is
stacked on the individual models a validation set is separated
from the training set by randomly choosing 9 subjects for the
training of the base classifier with the remaining 8 subjects
being used to construct the combiner.

Preliminary experiments showed that it is mandatory to
conduct distinct pre-processing and post-processing steps in
order to obtain a good performance. The complete work-flow
of the experiments comprising classification and fusion but
also pre- and post-processing is shown in Figure 3. Before
the classification is conducted, the data is sub-sampled by
a factor of 20 in order to make the training of the base
classifiers computationally feasible. Further the training labels
are smoothed using a median filter with a window size of
200 frames. The low frequency of the label traces together
with the long time windows with large overlap on which the
features have been extracted ensure that the mentioned steps do
not deteriorate the prediction quality. Also, since the extracted
features span a longer time window it seems implausible to
assign single label values that span only 40 ms to them.

After the base classifiers and the fusion step were applied
to a sample two main post-processing steps are carried out: The
output is scaled such that the minimum and maximum value
equal the minimum and maximum values as they are found
in the training set. This corrects the attenuation that a signal
implicitly undergoes when applying an ensemble method such
as the Random Forest but also some of the trainable combiners
we applied for multimodal fusion. As a second step the signal
is shifted by 60 frames. This procedure increases the CCC
considerably. It might be caused by the delay in the labeling
procedure as described in [19]. Another possible reason is the
extraction of features based on larger time windows that makes
it in a sense unclear what the real value for a feature vector is
compared to those in a vicinity.

310



Preprocessing Prediction Decision Fusion Post-Processing

- Smoothing
- Subsampling

- Grad. boosting
- Random Forest

- Fixed rule fusion
- Trainable fusion

- Shifting
- Scaling

Example:

Fig. 3. The information processing comprises pre-processing, classification, fusion and post-processing.

Feature Gradient boosting Random Forest
arousal valence arousal valence

LGBP-TOP 0.293 0.308 0.313 0.313
Geometric 0.236 0.337 0.172 0.401
HOG 0.236 0.282 0.200 0.250
PHOG-TOP 0.318 0.279 0.366 0.268
LBP-TOP 0.382 0.197 0.436 0.295

openSMILE 0.383 0.135 0.599 0.199
LPC 0.532 0.100 0.549 0.130
MFCC 0.565 0.172 0.546 0.046
LFPC 0.572 0.134 0.549 0.087

ECG 0.344 0.256 0.276 0.188
EDA 0.125 0.236 0.110 0.148

TABLE I. CCC VALUES FOR THE INDIVIDUAL MODALITIES WITH THE

BASE CLASSIFIERS GRADIENT BOOSTING AND RANDOM FOREST FOR THE

AFFECTIVE DIMENSIONS AROUSAL AND VALENCE.

A. Unimodal results

The unimodal results were computed by training and
testing on a single modality. The results for Random Forest
and gradient boosting can be seen in Table I.

For arousal, audio features like MFCC, LPC and LFPC
show high performances for both classifiers. While the open-
SMILE features exhibit only a moderate performance with the
Random Forest, they achieved they highest unimodal result
of 0.599 using gradient boosting. For valence video features
like the landmark distances and LGBP-TOP are the most
discriminative ones, followed by bio-potentials classified with
the Random Forest (ECG: 0.256 and EDA: 0.236).

The fact that the employed classifiers often result in differ-
ent predictions and thus different performances for the same
features can be seen as a foundation for multimodal exper-
iments. It suggests that by the different training algorithms
(i.e. decision tree building vs. boosting using the gradient of
the loss function) other optima are achieved that behave unlike
each other given unseen examples.

B. Combined Results

For the multimodal results, the combination techniques pre-
sented in Section IV are applied to the unimodal predictions.
For the fixed mappings, the base classifiers are trained on the
whole dataset, while for the trainable mappings, the mentioned
split into a training (9 subjects) and a validation set (8 subjects)
is conducted. The results are summarized in Table II.

The table shows that fixed rule combiners are comparably
robust with the averaging combiner achieving the highest
accuracy for both affective dimensions. One reason for that
is that they have the whole training set at their disposal and
hence can build on more accurate base classifiers. This effect
can be observed in the row for the single best model selection
which tends to be the worst performing combination method.
The negative effects of the reduced training data can, however,

Fusion mapping Random Forest Gradient boosting
arousal valence arousal valence

Mean 0.630 0.381 0.539 0.345
Median 0.557 0.325 0.503 0.350

Single best 0.423 0.380 0.296 0.196
Weighted average 0.627 0.350 0.534 0.336
Pseudo inverse 0.571 0.369 0.505 0.320
Robust regression 0.574 0.349 0.503 0.307
LASSO 0.579 0.374 0.503 0.319
Elastic net 0.580 0.369 0.505 0.318
ε-SVR (linear) 0.570 0.363 0.506 0.315
ε-SVR (RBF) 0.541 0.226 0.455 0.231
Random Forest 0.521 0.363 0.424 0.316
CCC-NN 0.554 0.361 0.579 0.330

TABLE II. CCC VALUES FOR THE COMBINED MODALITIES USING

FIXED AND TRAINABLE MAPPINGS.

be alleviated by combining all available models with respect
to their performance on the validation set. Applying different
types of linear optimization techniques from plain pseudo
inverse to linear ε-SVR yield almost identical CCC values
for all types of experiments. By conducting non-linear fusion,
the additional degrees of freedom cannot be exploited to get
better results and are prone to over-fitting in this case. One
exception to this is the CCC-NN that renders a promising result
especially for the dimension arousal and gradient boosting as
base learner.

To summarize, the fixed combiners (especially the mean)
show excellent performance with 0.630 for arousal and 0.381
for valence when classified with Random Forest. For gradient
boosting, the median combination exhibits the best perfor-
mance for valence while the CCC-NN performs best for
arousal.

VI. DISCUSSION

A. Delay and scaling

During the experimentation process we noticed, that the
predicted traces that resulted from the combination process
are condensed in the middle of the value range (around 0).
That means that while the trajectory might be similar, the
amplitude of the original signal is never quite reached (see
Fig. 4 (a) for an illustration of this). Therefore, we decided to
apply a fixed scaling to get back to the range of the original
training labels. Note, that no information of the test labels is
used. Furthermore, we noticed that the predictions have a small
time delay of about one to two seconds. We believe that this
is caused by the annotation delay of the individual raters. In
Figure 5, this issue is illustrated. The per-annotator averaged
absolute label traces of the beginning of the recordings are
shown. It can be seen that there is an initial phase where the
raters reach their “operational level” which lasts approximately
60 frames. To compensate this effect, a fixed shifting of the
predictions by -60 frames is conducted. Note that those values
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(a) Unprocessed classifier output compared to the true label trace with CCC=0.481.
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(b) Scaled classifier output compared to the true label trace with CCC=0.587.
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(c) Shifted and scaled output compared to the true label trace with CCC=0.763.

Fig. 4. Exemplary display of the effects of the post-processing steps for an arousal trace (blue) and the respective estimation (red).
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Fig. 5. Averaged absolute label traces for the 6 individual raters. An initial
transient phase is clearly visible for each trace.

are set globally and they do not depend on the testing set.
Furthermore cross validation based investigations on an extra
hold out set support this procedure.

To see the effect of the scaling and shifting procedures, the
reader is referred to Figure 4 in which the impact of each step
is visualized.

Figure 4 (a) shows the raw classifier output and it can
be clearly seen that the range of the estimate is too small
compared to the true labels. In Figure 4 (b) the minimum and
maximum labels are set according to those in the training set.
The performance thereby increases by 0.1 even though there is
some degree of “overshooting” observable. When the estimated
label is shifted by 60 frames to the right the CCC increases
again by almost 0.2, resulting in a CCC of 0.763 as it can be
seen in Figure 4 (c).

VII. SUMMARY AND CONCLUSION

In this paper we proposed and evaluated different classifier
fusion strategies for the classification of multimodal data into
continuous affective dimensions. A variety of trainable and
fixed rule combiners are used to combine outputs of models
that were constructed on 11 independently created features.
As trainable combiners we used both, linear and non-linear
learning approaches.

The main finding of the conducted experiments is that,
here, the averaging combiner is the most accurate and stable
approach. As mentioned before one reason for this is that no
data is omitted from the training process for the base classi-
fiers, which allows more accurate individual models. However,
the CCC-NN is an interesting and promising approach in one
of the cases we considered, especially when the accuracy of
the individual classifiers is comparably low.

One further approach that may be apt to improve trainable
fusion mappings is to conduct a modality selection step before
the actual fusion is applied. Further, in order to construct a
higher amount of diverse individual classifiers more heteroge-
neous base classifier approaches could be incorporated into the
architecture.
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