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Abstract—DDMiner, a new method for mining disease-disease 
associations in MEDLINE, is presented together with its first 
results. DDMiner searches for co-occurrences of gene names and 
disease terms, and finds relationships between diseases by word 
vector-similarity calculations. All records in PubMed were 
labeled with around 40,000 gene and protein names, and around 
4,000 disease terms. Each disease term was described by a word 
vector from which the length equals the number of gene names. 
Each field in the vector represented a gene or a protein. The 
value in the field was derived from the number of publications in 
which this gene occurred together with the disease term. Disease-
disease associations were calculated by vector-similarity 
calculation. Five diseases were examined together with their 
closest neighbor diseases to show the validity of our approach. 
All five examples showed only disease-disease associations that 
could be validated by medical literature. These results show that 
mining for disease-disease associations by second order co-
occurrence is a powerful tool for medical science. 

I. INTRODUCTION 
Many diseases, if not most, are associated with other diseases. 
These disease–disease associations are often considered by 
physicians while examining their patients. Elderly or very sick 
patients rarely suffer from a single disease alone, and ignoring 
the relationships between diseases might impair the treatment 
of patients. Studying disease–disease associations is also of 
paramount importance for drug discovery. Patients may be 
receiving multiple drugs for various diseases, which could 
result in undesired drug–drug interactions. Thus, searching for 
disease–disease associations is crucial, however not a new 
topic in medical science. Physicians have observed for 
decades that some diseases were often accompanied by others 
[1, 2]. The observations made were sometimes collected in 
reviews [3]. Due to the high interest in disease–disease 
associations, several data mining techniques were already 
applied to support the research on this topic. The initiatives 
were triggered in particular by new databases such as the 
Online Mendelian Inheritance in Man (OMIM) database, 
which relates genetic disorders to diseases [4]. OMIM was 
used by several research groups to derive disease–disease 
associations; for example, a network of human diseases was 
created by Goh et al. [5]. They used the gene sets from OMIM 
to build their disease network. In addition, disease similarities 

for 54 diseases were calculated by Suthram et al. [6], and an 
enrichment of disease candidate genes via text mining of 
OMIM descriptions was implemented by van Driel et al. [7]. 
MeSH annotations of MEDLINE articles were analyzed by 
Liu et al. to derive genetic and environmental factors for 
diseases [8]. Regardless of all the approaches already 
developed for detecting disease–disease associations, there is 
still room to include more information than what was 
previously done.  
 
Our presented approach, DDMiner, differs from the previous 
methods by annotating all records in MEDLINE with gene 
names and MeSH terms. Disease–disease associations were 
derived by comparing stochastic gene patterns. These gene 
patterns were extracted from the records in MEDLINE by 
mining for co-occurrences of gene names and disease terms. 
This technique is known as second order co-occurrence and 
was already applied by Schütze for word sense discrimination 
[9]. He discovered that similar words often appear with groups 
of identical words. Second-order co-occurrence is able to 
calculate the similarity between two words that do not co-
occur frequently, because they co-occur with the same 
neighboring words. Consequently, second order co-occurrence 
can be regarded as a small world phenomenon [10].  
 
In DDMiner, we have limited the considered co-occurring 
expressions to gene-name synonyms. Many diseases are 
related to some change in the expression of proteins, and 
usually, a protein expression change is caused by a change in 
gene expression. In cancer related diseases, the changes seem 
to be tremendous, when compared to healthy control groups. 
Inflammation-related diseases also tend to cause large changes 
in the protein expression pattern. A prominent example is 
rheumatoid arthritis, which affects millions of people 
worldwide. Neurodegenerative diseases such as Alzheimer, 
Parkinson and Huntington also show different protein 
expression patterns when compared to controls. Searching 
disease–disease associations by gene patterns decouples the 
results from the necessity that the co-occurrence of two 
diseases was already published. The DDMiner approach 
searches for gene–disease associations and compares the gene 
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patterns to detect associated diseases. Gene–disease 
associations are an important field of research in medicine and 
drug discovery [11]. A query on PubMed [12] with the 
expression “gene–disease associations” resulted in about 
278,000 hits. Additionally, the vast majority of publications 
on gene–disease associations do not mention these key words. 
Unfortunately, most medical information is not published in 
open-access journals and is therefore not freely available. 
However, almost all relevant biomedical literature is indexed 
in MEDLINE [13]. With more than 22 million bibliographic 
records, MEDLINE is the largest repository for biomedical 
literature. Interfaces such as PubMed enable interactive and 
programmatic access. Many software tools that exploit gene–
disease associations already exist. A comprehensive overview 
has been recently published by Piro et al. [14]. They described 
36 tools for disease–gene extraction, and additional tools were 
recently described by: Rappaport et al. [15], Peng et al. [16], 
and Pletscher-Frankild et al. [17]. The most recent one 
provides also a webpage with the results for numerous genes 
[18]. Nevertheless, no standard algorithm exists for searching 
gene-name synonyms in PubMed records. 
Section II describes the DDMiner algorithms while section III 
summarizes the mining of the PubMed database and discusses 
the disease-disease associations that were found for five 
diseases. The results are summarized and some conclusions 
are given in Section IV. 

II. METHODS 

A. Gene names and synonyms 
A gene name is the starting point for any gene–disease 
association. DDMiner takes a gene name and derives a list of 
synonyms from two sources. A table with Human Genome 
Organization (HUGO) identifiers, gene names, approved 
symbols and synonyms is automatically compiled from 
HGNC (HUGO Gene Nomenclature Committee) [19]. The 
HUGO Gene Nomenclature Committee is part of the 
European Bioinformatics Institute and works under the 
supervision of the Human Genome Organization. The second 
source is the MEDLINE database EntrezGene, which also 
provides HUGO ids, gene names, and synonyms [20, 21]. 
Both these databases are used because they do not completely 
overlap. Not all gene-name synonyms are useful for searching 
PubMed. Three-letter synonyms often have more than one 
meaning. Using a three-letter word as a query would retrieve 
all records containing this three-letter word either in the title 
or in the abstract. Therefore, these synonyms are excluded 
from the database queries. Synonyms containing two letters 
and at least one digit are allowed in database queries. 

B. Programmatic access to PubMed 
The MEDLINE databases can be accessed programmatically 
via the Entrez tools [22]. A query, containing a search term, 
submitted to MEDLINE via the PubMed interface returns a 
list of identifiers (PMID) used to obtain the publication 
records (R). These records contain bibliographic information, 
often an abstract and the MeSH term headings, which are used 
to index these articles. These MeSH term headings are not 

used by DDMiner. DDMiner relies on its own indexing of the 
retrieved PubMed records. 

C. Querying PubMed Central with gene name synonyms 
With the synonyms retrieved from HGNC and EntrezGene, 
the queries are generated to search the PubMed Central 
database. One PubMed query is created for every single 
synonym. Without any further specification, all fields in the 
PubMed database are searched. Depending on the synonym, 
no records at all, or up to several tens of thousands, are 
retrieved. The result is a dataset (RGene) for each gene, 
containing the retrieved records. PubMed queries with the 
Entrez tool do not distinguish between lower-case and upper-
case letters. Unfortunately, many letter combinations exist, 
which differ in capitalization and are shared by different terms. 
Consequently, up to ten thousands of false-positive records 
can be retrieved for a single gene. 

D. Text normalization 
The sentences are extracted from the text with the Apache 
library OpenNLP 1.5.3 [23]. All words that contain only one 
capital letter are de-capitalized. Greek letters are out-written 
as full text. A further complication for the Greek letter beta is 
caused by the misuse of the German letter 'sharp s' as beta. 
German sharp s without surrounding letters is changed into 
'beta'. The Greek letter 'μ' is also available in the enhanced 
ASCII code. This needs an extra detection and 'μ' is retyped as 
'mu'. Text that contains text and numbers like '12hydroxy' is 
split up into '12 hydroxy'. Gene name synonyms containing 
numbers like BACE1 remain untouched. Finally, all 
punctuation is removed. 

E. Filtering of PubMed records 
Two post-processing steps can be added to get rid of the false-
positive records: 

1) White list filtering of PubMed records 
If a synonym consists of less than six characters and does not 
contain a space, the retrieved PubMed records are filtered for 
the exact upper- and lower-case pattern of the synonym. 
However, after this filtering process, many false-positive 
records still remain. These records contain terms with an 
identical synonym to the gene under consideration. False-
positive records that contain the exact synonym can be 
detected by analyzing the context of the synonym. It has to be 
related to the concept of a 'gene'. For the record filter in 
DDMiner, a gene context list of 25 terms has been defined: 
activation, activator, allosteric, chromatin, chromosome, 
codon, exon, expression, gene, genome, genotype, histone, 
homolog, inhibitor, inhibition, intron, modulator, mutant, 
nucleosome, peptide, phenotype, phenotypic, polymerase, 
protein, target, transcript, and transposon. If a PubMed record 
does not contain any of these words, it is very unlikely that the 
record is related to a gene. Consequently, a PubMed record is 
only accepted if it contains at least one of the words from the 
context list.  

2) Filtering for disease MeSH terms 
All records are skipped that do not contain a disease MeSH 
term. 
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3) Filtering for gene name synonyms 
After normalizing the PubMed records and the gene-name 
synonyms, the records are searched with the synonyms. For 
matching gene-name synonyms the following algorithm has 
been developed: for a PubMed record to be considered as a 
match for a given gene under consideration it has to fulfill the 
following criteria:  Each word of a gene-name synonym has to 
match with at least two–third of its words, the words in a text 
string that were delivered by a sliding window algorithm. For 
a gene-name synonym with n words all n word n-grams were 
word wise compared. Two words are considered as a match if 
their similarity is equal or higher than 0.45. Word–word 
similarities are calculated using the Damerau–Levenshtein 
algorithm as implemented by Kevin Stern [24]. The sliding 
window algorithm provides strings with a length of two more 
words than the gene-name synonym term. This made the 
search equivalent to Lucene Fuzzy Query with a sloppiness 
value of 2 [25]. 

F. Stoplists 
Stoplists are lists of node names that are used to activate or 
inactivate branches in the MeSH tree [26]. Only active MeSH 
terms are used for searching corresponding expressions in the 
data. Branch ‘C’ in the MeSH tree is already dedicated to 
diseases. For the disease stoplist used in this examination, the 
sub-branch C22, which contains MeSH terms related to 
animal diseases, has been excluded. Also, the disease-relevant 
sub-branches from branch F containing terms for psychiatry 
and psychology has been included. In total, the stoplist disease 
is described by 11,177 nodes with 4606 unique MeSH 
descriptors.  

G. Indexing with Lucene 
The Apache library Lucene is a powerful text indexing and 
search tool written in Java [27]. It is an open-source tool and 
is well documented. Lucene is widespread and powers the 
indexing and the search of many websites. Lucene provides a 
lot of powerful features such as in-memory indexing, ranked 
searching, sorting by field, combined fields search, and 
different types of text analyzer for different languages. In this 
study, a distinct in-memory index has been created for every 
set of PubMed records (RGene) Lucene is configured to use the 
standard analyzer from version 4.6. Title, MeSH descriptors, 
and summary of the PubMed records are indexed by Lucene. 
In this way, an index (IGene, R) is generated for every (RGene). 

H. Searching Lucene indices with disease MeSH terms 
The indices (IR) is searched for matching disease MeSH terms 
by using the standard analyzer from Lucene. A multi-field 
query analyzer is initialized to query all fields in the indices. A 
list of query terms has been compiled from the disease stoplist. 
For example, an entry in this list can contain a descriptor like 
‘Alzheimer Disease’. A list of entry points is connected to this 
descriptor. Each entry point is a synonym or a closely related 
term used in literature (e.g. a list of 32 entry points is given for 
‘Alzheimer Disease’, containing the terms ‘Disease, 
Alzheimer’, ‘Alzheimer Syndrome’, ‘Senile Dementia’ or 
‘Presenile Dementia’). To query an index for a disease, a 

dedicated Lucene query is created for the descriptor and for 
every entry point. If either the descriptor or at least one of the 
entry points is found by the Lucene index searcher and the 
similarity score is �0.5, the disease is added to a result list. It 
is also recorded how often a disease term is found by the index 
searcher. For a single record, an occurring disease MeSH term 
is only counted once. The algorithm produces for every gene a 
list of diseases together with their frequency (LDGene). This list 
is sorted according to the frequency of occurrence with the 
most frequent disease at the top. 

I. Disease by gene descriptor-vector 
A number of 39,410 approved gene and protein symbols has 
been retrieved from the HUGO table. This number defines the 
size of the descriptor-vector that is used to describe a disease 
from its genes. Each field in the vector corresponds to an 
approved gene or protein symbol from the HUGO table. To 
create a descriptor-vector (DDDisease) for a disease from its 
genes, all tables (LDGene) are searched for the disease and the 
frequencies of occurrence of the genes are kept in the 
corresponding fields of the descriptor-vector. One field in the 
disease descriptor-vector represents the number of 
publications in which the corresponding gene was mentioned 
together with the disease. Some genes are of higher interest in 
the medical literature than others. They are mentioned much 
more often than genes of lower interest. For this reason each 
field in the descriptor-vector is scaled between 0 and 100. The 
scaled descriptor-vectors (DDDisease scaled) are used for the 
similarity calculations. A similarity between two vectors 
(DDDisease scaled) is calculated by the normalized Manhattan 
Block distance. 
 

III. RESULTS 
The synonyms for the 39,410 approved symbols from the 

HUGO table, proteins and gene names, were extracted from 
PubMed and HUGO. One to twenty synonyms were retrieved, 
including the approved symbol itself. These synonyms were 
used to search the PubMed database for publication records. A 
total number of about 10 million unique PubMed records were 
retrieved. Every retrieved record went through the text 
normalization procedure. The gene name synonyms were 
searched in the normalized text. The indexing with the disease 
MeSH terms was done on the original text. All PubMed 
records containing a gene name synonym and a MeSH disease 
term were used to create the disease descriptor-vectors 
(DDDisease). For 14,256 genes at least one disease term was 
found. A disease descriptor-vector could be calculated for 
1,790 diseases. Five diseases were chosen to exemplify the 
results of the similarity calculations: Alzheimer's Disease, 
Dermatitis, Glioblastoma, Hepatitis C, and Hypertension. The 
similarity values between the five examples and all other 
diseases were calculated. Similarities below a threshold of 0.85 
were not considered. Tables 1-5 show the disease similarity 
and the number of shared genes. A shared gene is a gene that 
was mentioned together with both diseases, but not necessarily 
in the same publication. In Figures 1-5 the similarity relations 
were sketched as a graph. Every node represents a disease. An 
edge between two nodes represents a similarity above or equal 
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to the threshold. The graph was calculated up 
nodes. 

Alzheimer’s Disease is a neurodegenerative d
MeSH terms with a similarity above the thresh
Neurodegenerative Diseases, Dementia, Nerv
Brain Ischemia and Neuroblastoma 
Neurodegenerative Diseases and Alzheimer
1260 genes. This means that 1260 differ
mentioned together with Alzheimer's Disease
Neurodegenerative Diseases in at least one 
Neurodegenerative Diseases node is an ance
branch of the MeSH tree, where the Alzheime
is located. Dementia is located in anoth
Neurodegenerative Diseases, however Alzhei
also a leaf in this branch. Brain Ischemia, a 
restricted blood flow leads to low oxygen lev
influences the development of Alzheimer’
Figure 1 shows the association of Alzheime
other diseases. On the graph, it can be seen 
Disease and Stroke share a common node: 
This indirect link has been validated by literat
examined the relation between these two disea

TABLE I.  ALZHEIMER AND SIMILAR D

Disease Similarity 

Neurodegenerative Diseases 0.897 

Dementia 0.890 

Nerve Degeneration 0.872 

Brain Ischemia 0.860 

Neuroblastoma 0.859 

 

Fig. 1. Disease similarity graph for Alzheimer disease. 

Dermatitis is a generic term and means an
disease of the skin. A number of ten simila
nodes were found (Table II). These nodes 
into three groups: 1) the generic terms Hyper
Diseases and Lung Diseases; 2) sub-types of d
similar diseases. Dermatitis sub-types in
Dermatitis and Atopic Dermatitis. Similar di
Psoriasis, Asthma, Colitis, Pneumonia, 

to a depth of two 

disease [28]. Five 
hold were found: 
ve Degeneration, 
 (Table I). 
's Disease share 
rent genes were 
e or together with 

publication. The 
estor node in the 
er's Disease node 
her branch than 
imer's Disease is 
condition where 

vels in the brain, 
’s Disease [29]. 
er's Disease with 
that Alzheimer's 
Brain Ischemia. 

ture; Honig et al. 
ases [30]. 

DISEASES 

Shared 
gene set 

1260 

970 

991 

940 

1180 

 

ny inflammatory 
ar disease MeSH 
was sub-divided 
rsensitivity, Skin 
dermatitis, and 3) 
cluded: Contact 
iseases included: 

and Bacterial 

Infections. Psoriasis, Asthma and 
diseases of the skin and are relat
inflammatory nature [31]. Pneum
disease and co-occurs with dermat
Figure 2 shows relationships betwe
via two nodes: Hypersensitivity and
have an inflammatory compon
biochemical pathways differ for Der

TABLE II.  DERMATITIS AN

Disease 

Dermatitis, Atopic 

Psoriasis 

Skin Diseases 

Hypersensitivity 

Asthma 

Colitis 

Dermatitis, Contact 

Pneumonia 

Bacterial Infections 

Lung Diseases 
 

Fig. 2. Disease similarity graph for Dermati

Glioblastoma is a malignant brai
disease MeSH terms were tumor re
most similar diseases, Brain N
Astrocytoma, are also tumors o
Neovascularization is the formatio
which are needed by the tumor for
disease graph in Figure 3, it can be
related to other cancer types above
similar disease MeSH nodes. 

TABLE III.  GLIOBLASTOMA 

Disease 

Colitis are auto immune 
ted to Dermatitis by their 

monia is an inflammatory 
titis. The disease graph in 

een Dermatitis and Arthritis 
d Asthma. All four diseases 
nent, but the involved 
rmatitis and Arthritis [32]. 

ND SIMILAR DISEASES 

Similarity Shared 
gene set 

0.970 722 

0.907 746 

0.903 737 

0.870 889 

0.867 784 

0.865 734 

0.862 508 

0.859 771 

0.855 676 

0.852 687 

 
itis. 

in tumor. All ten similar 
elated (Table III). The three 
Neoplasms, Glioma and 
of the brain. Pathologic 

on of blood micro vessels, 
r further growth. From the 
e seen that Glioblastoma is 

e and over the first layer of 

AND SIMILAR DISEASES 

Similarity Shared 
gene set 
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Disease Similarity 

Brain Neoplasms 0.958 

Glioma 0.949 

Astrocytoma 0.886 

Neovascularization, Pathologic 0.861 

Neoplasm Invasiveness 0.860 

Cell Transformation, Neoplastic 0.855 

Pancreatic Neoplasms 0.854 

Colonic Neoplasms 0.854 

Carcinoma, Squamous Cell 0.853 
Carcinoma, Non-Small-Cell 
Lung 

0.851 
 

Fig. 3. Disease similarity graph for Glioblastoma. 

Hepatitis C is an infectious disease caused by 
similar disease MeSH terms were all Hepatit
IV). In Figure 4, indirect connections from He
Cirrhosis, Fibrosis and Liver Neoplasms are 
and Liver Cirrhosis are associated diseases, 
Bruix et al. [33] and Fibrosis is often observe
patients [34]. Moreover, Hepatitis C is regarde
for Liver Neoplasms [35]. 

TABLE IV.  HEPATITIS C AND SIMILAR D

Disease Similarity 

Hepatitis 0.956 

Hepatitis C, Chronic 0.911 

Hepatitis, Chronic 0.910 

Hepatitis B 0.874 

Shared 
gene set 

1468 

1582 

1014 

985 

1268 

1312 

1038 

1136 

1176 

943 

 

a virus. The four 
tis related (Table 

epatitis C to Liver 
shown. Hepatitis 
as described by 

ed in Hepatitis C 
ed as a risk factor 

DISEASES 

Shared 
gene set 

1384 

706 

746 

799 

Fig. 4. Disease similarity graph for Hepatiti

Hypertension is a disease of the v
blood pressure persists in arteries. H
to be associated with multiple di
network included a node with many
Stroke, Cardiomyopathies, Hypertr
Body Weight are only some of them
similar disease MeSH term to 
Hypertrophy of the heart means an 
ventricle volume and is a f
hypertension. Fibrosis is also a
hypertension [36]. Interestingly, 
weight and hypertension was alread
[37]. Preventing stroke and infarctio
is common practice in medicine [38
MeSH disease node is Smoking, 
Smoking is not a disease in itself,
factor for developing hypertension. T
5 shows many known influence fact
cancer types can be found in 
Hypertension.  It is known that some
blood pressure. Additionally, an inc
possible side effect of cancer treatm

TABLE V.  HYPERTENSION A

Disease 

Hypertrophy 

Ischemia 

Diabetes Mellitus 

Infarction 

Cardiovascular Diseases 

Fibrosis 

Body Weight 

Atherosclerosis 

Myocardial Infarction 

Stroke 

Anoxia 

Chronic Disease 

 
is C. 

ascular system where high 
Hypertension is also known 
iseases. Consequently, our 

y connections: Hypertrophy, 
rophy, Infarction, Fibrosis, 
m. Hypertrophy is the most 

hypertension (Table V). 
increase of the left or right 

frequent consequence of 
a known complication in 

a relation between body 
dy published fifty years ago 
on by treating hypertension 
8] [39]. Another interesting 
with a similarity of 0.86. 

, but it is known as a risk 
The disease graph in Figure 
tors for hypertension. Some 
the second level around 
e cancer types influence the 

crease in blood pressure is a 
ent. 

AND SIMILAR DISEASES 

Similarity Shared 
gene set 

0.910 1462 

0.906 1499 

0.905 1667 

0.905 1315 

0.903 1242 

0.900 1688 

0.897 1383 

0.896 1346 

0.895 1201 

0.893 1325 

0.890 1574 

0.881 1244 

318



Disease Similarity 

Pain 0.871 

Obesity 0.871 

Diabetes Mellitus, Experimental 0.864 

Depression 0.864 

Hemorrhage 0.862 

Necrosis 0.862 

Disease Progression 0.861 

Hyperplasia 0.861 

Smoking 0.858 

Diabetes Mellitus, Type 2 0.858 

Insulin Resistance 0.857 

Edema 0.852 

Shock 0.851 

Fig. 5. Disease similarity graph for Hypertension. 

Results summary: Five diseases and their mos
MeSH terms were analyzed. The smallest set
was found for Dermatitis and Contact Derm
shared genes. Hypertension and Necrosis shar
of genes; with 1720 genes it is more than three
the smallest set. Similar disease MeSH terms c
disease terms like Neurodegenerative Disease
Disease or Hepatitis for Hepatitis C. DDM
relations with similarity comparisons of the s
These similarity relations were verified with th
the MeSH tree the more generic terms N
Diseases and Hepatitis are ancestor nodes for t
Alzheimer's Disease and Hepatitis C. Many
disease MeSH nodes are already obviously r
are the different types of Hepatitis to Hep
different types of brain tumors to Glioblastom
all similarity connections were validated b
medical literature. For most of the similarit
literature example was given. The disease grap
5 visualize the similarity relations beyond the 
nodes. Some of these neighbour relations w

Shared 
gene set 

1249 

1513 

1083 

1262 

1119 

1720 

1662 

1316 

1200 

1231 

1285 

1075 

1533 

 

st similar disease 
t of shared genes 
matitis with 508 
red the largest set 
e times the size of 
contained generic 
s for Alzheimer's 
iner found these 
shared gene sets. 
he MeSH tree. In 

Neurodegenerative 
the specific terms 
y of the similar 
elated. Examples 

patitis C and the 
ma. Nevertheless, 
by searching the 
ty connections a 

aphs in Figures 1-
direct neighbour 

were checked for 

plausibility. For example, Hyperten
cancer types. And Hepatitis C ha
Fibrosis. 

IV. SUMMARY AND CO

A total number of around 10 mill
annotated with almost 40,000 gene
terms. At least one gene-name s
MeSH term were found in 2.5 milli
labeled records were used to create 
One vector for each disease and
corresponded to a gene. A similar
from the 4000 vectors. From t
similarity tables for five diseases
These five diseases related to 56 dir
were validated by medical literatu
disease associations were found in 
the neighbor relations were visua
visualization extends the similari
above the first layer of similar disea
connections evidence was found i
The results demonstrated that dise
occurrences of genes. Second–
disease–disease associations is a po
can be used in drug discovery and m
analysis will show the validity of
connected at lower thresholds. The
two connected diseases are also of h
subject of further studies. 
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