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Abstract—A significant increase in the accuracy of hyperspec-
tral image classification has been achieved by using ensembles
of radial basis function networks trained with different number
of neurons and different distance metrics. Best results have
been obtained with γ-divergence distance metrics. In this paper,
previous work is extended by evaluation of different approaches
for the fusion of the multiple real-valued classifier outputs into a
crisp ensemble classification result. The evaluation is done by 10-
fold cross-validation. The obtained results show that an additional
gain in classification accuracy can be achieved by selecting the
appropriate fusion algorithm. Second, the SCANN algorithm and
Fuzzy Templates are identified as the best performing fusion
methods with respect to the complete ensemble of base classifiers.
For several subsets of classifiers Majority Voting yields similar
results while other simple combiners perform worse. Trainable
combiners based on Adaptive Boosting and Random Forest are
ranked among the top methods.

I. INTRODUCTION

Hyperspectral imaging is considered a key technology for
monitoring the environment, smart farming, quality control in
food production, and many others. However, the analysis of
hyperspectral data at a high spatial and spectral resolution is a
challenging task especially for the design and the application
of machine learning algorithms.

Ensembles of artificial neural networks based on non-
standard metrics have been found an effective solution to
improve classification performance over single classifiers for
the classification of hyperspectral data. Especially, the com-
bination of radial basis function networks using the γ metric
as similarity measure has shown superior results. This report
investigates a number of different combination algorithms
to get a better picture of the dependence between datasets,
individual base classifiers, and the chosen combination scheme.

In Sec. II we briefly introduce the applied base classifiers,
the selected combination algorithms, and the validation proce-
dure. In Sec. III we list the used datasets. The experimental
results are presented and discussed in Sec. IV.

II. METHODS

A. Base classifiers

The set of base classifiers was not extended compared
to previous studies reported in [1], [2]. Classification models
were implemented as published in [3], [4], [5]. In the methods
GLVQ and SNG no non-linearity in the energy function was

used. The distance function between a data vector v and a
prototype vector w (respectively the hidden neurons in the
RBF) was either the squared Euclidean distance defined as

d (v,w) =
∑
i

(vi − wi)
2
, (1)

or the γ-divergence defined as
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The γ-divergence with γ = 2 is widely known as the
Cauchy-Schwarz distance. All three classifier methods (RBF,
SNG, GLVQ) are formulated as energy minimization problem
solved usually by stochastic gradient descent. In order to
avoid a manually chosen step-size, we used the non-linear
conjugate gradient approach with automatic step size from the
optimization toolbox ’minFunc’ available for Matlab.

The parameter γ was set varying from 1 to 10 in steps of
one. Additionally, the generalized Kullback-Leiber divergence
[6] was used to investigate the behavior for convergence of γ
to zero. Prototype vectors and network weights were initialized
randomly. The RBF used a 1-of-N coding scheme at its output
to represent discrete class information. In the RBF, SNG, and
GLVQ the prototypes were pre-trained using a Neural Gas with
the Euclidean distance or γ-divergence as similarity function
with an identical setup compared to the later classification
model. In the GLVQ and SNG model, separate pre-learning
runs for prototypes from identical classes were performed. The
dataset was divided into training and test data according to a
cross-validation scheme with stratified random sampling.

After training, the predicted labels for the test data with
the respective model were collected as well as scalar model
outputs. In case of the RBF, the scalar output was the output
of the linear output layer. For the GLVQ and SNG we used
the distances to the closest prototype of the same class as
well as the smallest distance to a prototype of any other class
as scalar output. We set 20, 30, or 40 as total number of
prototypes/hidden neurons in all three models. In the GLVQ
and SNG an identical number of prototypes per class was used.
In addition to the Euclidean distance we also used weighted
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Euclidean distance as an alternate distance metric where the
weights are automatically adapted in the training phase.

B. Combining algorithms

The selection of combining algorithms is motivated by
previous work on the combination of object detection methods
presented in [7]. The same framework for fusion and evaluation
of classifier outputs was used to investigate fusion of classifier
results based on non-standard metrics.

For all selected fusion methods we assume, that measure-
ment level output [8] is available. This implies that each classi-
fier provides a measure of its confidence into the classification
result. If a classifier assigns more than a single class, then
for each feature vector confidence outputs for all classes are
provided or must be calculated.

Often, a set of simple combiners is used. [9] provides a
theoretical foundation of sum rule, median rule, maximum
rule, and minimum rule which is based on Bayes’ theorem.
Given the outputs of R classifiers x1, . . . , xR, the sumrule
assigns those class ωk for which

(1−R)P (ωk) +

R∑
i=1

P (ωk|xi) (3)

is maximized. P (ωk) and P (ωk|xi) denote the apriori and the
aposteriori probability of detection.

The Dempster Shafer theory of evidence as well as different
Fuzzy approaches aim to generalize the calculation of prob-
abilites by introducing concepts such as uncertainty, doubt,
belief, fuzziness and plausibility. Fuzzy Templates are obtained
by averaging the decision profiles of classifiers for all classes
separately. A decision profile D is the M × R matrix whose
elements are the R measurement level outputs of the classifiers
for the M different classes.

D(x) =

⎡
⎢⎣

d1,1(x) · · · d1,R(x)
...

. . .
...

dM,1(x) · · · dM,R(x)

⎤
⎥⎦ (4)

Therefore, two M × R matrices (decision templates) are
used for a typical binary classification problem. The decision
templates and the decision profiles are treated as fuzzy sets
A and B. According to [10] the fuzzy measure S between
two vectors of sympathy μA and μB (representing decision
template and profile) is defined as

S(A,B) =
‖A ∩B‖
‖A ∪B‖ =

∑
x∈X min (μA(x), μB(x))∑
x∈X max (μA(x), μB(x))

. (5)

It is used to calculate the similarity between the so-called
decision template and decision profile.

Another common fusion method is voting. We selected
weighted majority voting because of its importance. Given a
binary decision hi which assigns 1, if a pattern x is detected
and else assigns −1, the combined decision H(x) is

H(x) = sign

(
R∑
i=1

αihi(x)

)
(6)

The different weights αi are calculated by the following
equation.

αi =
1

2
ln

1− εi
εi

with εi < 0.5 (7)

AdaBoost and Random Forests have been selected as
representatives for the learning of fusion rules. They are used
to learn a combining rule from the correlated or diverse
decisions of the classifiers here. In previous studies both
methods provided good results with no need to adapt many
of their parameters prior to classifier training. For instance, it
is much more time demanding to find the right kernel and its
best parameter setting when using support vector machines.

Another interesting approach to classifier fusion is
SCANN, which consists of the processing steps stacking, cor-
respondence analysis, and nearest neighbor search [11]. It can
be used if only abstract level outputs (class assignments) are
available. If measurement level output is available (confidence
values) then it must be transformed into an unique class
assignment, e.g. by thresholding.

Cascaded reduction and growing of result sets
(CRAGORS) changes the operating points of the classification
methods and uses set operations for stepwise construction
of an improved set class assignments [12]. CRAGORS-ROC
is a variant which operates on ROC curves instead of
precision/recall curves. CRAGORS is very similar to Boolean
combination. Iterative Boolean Combination (IBC) uses all
Boolean functions to iteratively include additional classifiers
into an existing ensemble and to optimize the ROC curve of
the resulting classifier [13].

C. Validation approach

According to the 10-fold cross-validation scheme each
dataset is divided into ten disjunct subsets. Nine of them are
used for training a combiner or to parametrize a combining
rule. The remaining subset is used for testing its performance.
This is repeated for all ten subsets to obtain average classifi-
cation accuracy and the corresponding standard deviation.

The datasets consists of different representations. Typically,
the real-valued outputs of all neurons of the output-layer as
well as the crisp class labels are contained. The fusion algo-
rithms are tested with all applicable inputs (e.g. crisp labels for
SCANN and majority voting and real-valued features for Fuzzy
templates). The results of those input features which yield
the best performance are compared to the other combining
algorithms.

So far, the validation approach is similar to whose pre-
sented in [1], [2]. Additionally, we applied a holdout validation
to test for the influence of the sampling strategy onto the
obtained results. The datasets are divided into three partitions
of equal size. The first partition is used to train a set of base
classifiers. For faster training and as an additional baseline
testing for our divergence-based approach, Random Forest
classifiers are used. Diversity is induced by randomly choosing
a subset of training data from the first partition and by setting
different numbers of trees for the individual Random Forest
classifiers. The second partition is used to obtain realistic class
predictions from the base classifiers for unseen data and to
train a combining rule based on these predictions. Finally, the
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third partition is used for testing the complete processing chain
(apply base detectors, then apply combining method).

In addition to the cross-validation scheme the general-
ization performance within the combining step is evaluated
with holdout testing. We systematically varied the fraction of
randomly chosen samples (from base classifier predictions)
for the training set and tested the accuracy of the combined
predictions with the remaining samples.

III. DATASETS

The hyperspectral datasets have been selected from several
industrial applications where hyperspectral imaging can be
used for the detection of a desired target material or defective
objects for a subsequent material sorting. We deliberately
chose classification tasks that showed mediocre classification
accuracy on single prototype based models.

For the hyperspectral image acquisition, material samples
were positioned each with a standard optical PTFE (polyte-
trafluoroethylene) calibration pad on a translation table. Hyper-
spectral images were recorded using a HySpex SWIR-320m-
e line camera (Norsk Elektro Optikk A/S). Spectra are from
the short-wave infra-red range (SWIR) of 970 nm to 2,500
nm at 6 nm resolution yielding a 256 dimensional spectral
vector per pixel. The camera line has a spatial resolution
of 320px. Radiometric calibration was performed using the
vendors software package.

Five binary classification problems were considered for this
publication:

1) D1 - Detection of aluminum within waste material
(D1): The dataset contained samples of bulk materi-
als from demolition sides or river excavation, where
aluminum is search for recycling purposes among
heavy metal and scrap materials.

2) Classification of mature vs. immature coffee beans
(D2): For the purpose of coffee quality control, one
possible defect in raw coffee are green coffee beans
that have to be detected among suitable beans.

3) Detection of putrid hazelnuts (D3) or fungi infested
(D4) among healthy hazelnuts: The challenge in
detection defects in hazelnuts is the fact, that defects
appear in the inside of a nut. With hyperspectral
imaging the change in chemical composition of the
outer hull can be measurement as a secondary effect
to detect inner defects.

4) Anomaly detection on the surface of fluffed pulp (D5):
Here the industrial application is the detection of
defects on paper products for an online-inline quality
control mechanism.

Each dataset contained a balanced number of 10,000 spec-
tra per material category.

IV. RESULTS AND DISCUSSION

Tab. I-III summarize cross-validation ensemble results.
Again, as presented in [1] the RBF networks have shown
the best performance. The new findings are the improvements
in classification accuracy by changing the used combining
method. Especially SCANN, Fuzzy Templates, and Voting

are capable to further improve results of RBF network based
ensembles. For the LVQ and SNG classifier ensembles only
SCANN provides a significant increase in classification accu-
racy compared to the trained combiners AdaBoost, Random
Forest, and CRAGORS which were used in previous studies.

Simple combiners such as Voting do not work for LVQ and
SNG classifiers as they do for the RBF ensembles.

Tab. IV shows the ranking of each combining algorithm
over all datasets and ensemble members. While the so far
used combining methods AdaBoost and RandomForest are still
among the top ranked, SCANN and Fuzzy Template based
fusion outperform them. Among the simple combiners, only
Voting performs well. However, its performance depends on
the dataset as well as the choice of the base classifiers.

The diagrams of Fig. 1 visualize the accuracy gains of
the different combination methods (red dots compared to
the green cross) as well as the additional gains by adding
the γ-divergence based classifiers into the ensembles (left
compared to right column). The different starting points for
the combination procedure (base classifier performance) are
visible by comparing the positions of the green crosses. While
classification performance of RBF -networks for dataset D4

reaches high precision and recall values, for dataset D3 a large
gap to optimal classification exists. The clouds of red dots
indicate the performances of all tested combination algorithms.
It becomes obvious that the best performing methods optimize
both - precision and recall while the less successful methods
(especially the simple combining rules) tend to optimize only
one of the two measures.

Tab. V-VII summarize the gains in terms of the average
accuracy using ensemble decisions by the SCANN algorithm.
By using SCANN and γ-divergence based ensembles, LVQ
results match RBF results for most of the tested datasets. In
all cases, the results highlight the importance of including γ-
divergence based classifiers into the ensembles.

The high quality of ensemble decisions requires further
investigation. The mean correlation coefficients between the
base classifier decisions for datasets D1-D5 are 0.35, 0.36,
0.07, 0.66, and 0.18, respectively. Hence both, uncorrelated
as well as correlated ensembles contribute to the observed
improvements.

We systematically varied the size of the training dataset.
Using Random Forests as combination method, we found
that training a classifier with approximately 10% (randomly
sampled) of the dataset provides a competetive result to 10-fold
cross-validation (where 90% of the data are used for training).
This indicates a very good generalization performance. Hence,
we could expect similar results for unknown data from the
same distribution.

324



Datasets

RBF
Fusion Method D1 D2 D3 D4 D5

SCANN 1.00±0.00 1.00±0.00 0.95±0.01 1.00±0.00 1.00±0.00
CRAGORS 0.94±0.01 0.95±0.02 0.77±0.01 0.99±0.01 0.89±0.02
CRAGORS ROC 0.92±0.01 0.93±0.02 0.77±0.02 0.98±0.01 0.88±0.02
Fuzzy Templates 1.00±0.00 1.00±0.00 0.95±0.01 1.00±0.00 1.00±0.00
IBC 0.97±0.01 0.98±0.01 0.85±0.01 0.99±0.01 0.97±0.01
AdaBoost 1.00±0.00 0.99±0.00 0.92±0.02 1.00±0.00 0.98±0.01
Random Forest 1.00±0.00 0.99±0.01 0.90±0.02 1.00±0.00 0.98±0.01
Maxrule 0.96±0.01 0.96±0.01 0.76±0.03 1.00±0.00 0.74±0.02
Medianrule 1.00±0.00 1.00±0.00 0.70±0.03 1.00±0.00 0.55±0.03
Minrule 0.96±0.01 0.96±0.01 0.76±0.02 1.00±0.00 0.74±0.03
Prodrule 1.00±0.00 1.00±0.00 0.71±0.02 1.00±0.00 0.69±0.02
Sumrule 1.00±0.00 1.00±0.00 0.69±0.03 1.00±0.00 0.56±0.02
Voting 1.00±0.00 1.00±0.00 0.95±0.01 1.00±0.00 1.00±0.00

TABLE I. FUSION OF THE OUTPUT LAYER OF RBF-NETWORK ENSEMBLES FOR DATASETS D1-D5

Datasets

LVQ
Fusion Method D1 D2 D3 D4 D5

SCANN 1.00±0.00 0.99±0.01 0.82±0.02 1.00±0.00 0.98±0.01
CRAGORS 0.87±0.01 0.81±0.02 0.66±0.03 0.90±0.03 0.77±0.01
CRAGORS ROC 0.85±0.01 0.80±0.02 0.64±0.01 0.89±0.03 0.78±0.02
Fuzzy Templates 0.99±0.01 0.97±0.01 0.64±0.02 1.00±0.01 0.98±0.01
IBC 0.93±0.02 0.94±0.01 0.71±0.03 0.96±0.03 0.89±0.01
AdaBoost 0.97±0.01 0.96±0.01 0.75±0.02 1.00±0.01 0.94±0.01
Random Forest 0.97±0.01 0.96±0.01 0.75±0.03 1.00±0.00 0.94±0.01
Maxrule 0.81±0.01 0.84±0.02 0.59±0.02 0.79±0.05 0.59±0.03
Medianrule 0.75±0.02 0.89±0.01 0.50±0.02 0.90±0.02 0.50±0.02
Minrule 0.81±0.02 0.84±0.02 0.58±0.03 0.79±0.04 0.59±0.03
Prodrule 0.99±0.00 0.99±0.00 0.51±0.02 0.95±0.02 0.52±0.03
Sumrule 0.97±0.01 0.98±0.01 0.50±0.03 0.98±0.01 0.50±0.02
Voting 0.99±0.00 0.97±0.01 0.64±0.02 0.99±0.01 0.98±0.01

TABLE II. FUSION OF THE OUTPUT LAYER OF LVQ-NETWORK ENSEMBLES FOR DATASETS D1-D5

Datasets

SNG
Fusion Method D1 D2 D3 D4 D5

SCANN 0.99±0.01 0.96±0.01 0.67±0.02 1.00±0.00 0.94±0.01
CRAGORS 0.78±0.03 0.76±0.02 0.58±0.03 0.90±0.04 0.74±0.02
CRAGORS ROC 0.78±0.02 0.73±0.02 0.56±0.02 0.85±0.05 0.72±0.01
Fuzzy Templates 0.98±0.01 0.94±0.01 0.67±0.02 1.00±0.00 0.69±0.03
IBC 0.79±0.02 0.87±0.01 0.58±0.02 0.92±0.03 0.90±0.02
AdaBoost 0.95±0.01 0.90±0.01 0.60±0.02 0.99±0.01 0.90±0.01
Random Forest 0.95±0.01 0.90±0.02 0.58±0.02 1.00±0.01 0.88±0.02
Maxrule 0.53±0.02 0.61±0.03 0.51±0.03 0.60±0.04 0.51±0.04
Medianrule 0.50±0.01 0.50±0.03 0.50±0.03 0.50±0.05 0.50±0.02
Minrule 0.53±0.02 0.61±0.02 0.51±0.02 0.60±0.04 0.51±0.02
Prodrule 0.52±0.03 0.52±0.03 0.50±0.03 0.57±0.04 0.51±0.02
Sumrule 0.50±0.02 0.50±0.02 0.50±0.02 0.50±0.03 0.50±0.02
Voting 0.99±0.01 0.94±0.02 0.67±0.01 1.00±0.00 0.69±0.03

TABLE III. FUSION OF THE OUTPUT LAYER OF SNG ENSEMBLES FOR DATASETS D1-D5

As described in Sec. II the datasets have been collected
from the outputs of cross-validation. Hence, the output of a
single base classifier is sampled from 5 different classifiers
(according to 5-fold cross-validation) with the same parameters
but from different training folds. As a rapid test, we imple-
mented a similar classification and fusion framework only
based on Random Forest classifiers (which are fast to train)
and using both, holdout testing as well as cross-validation for
the data generation step prior to learning the combining rules.
We can not report any significant difference in the classifica-
tion accuracy given these two sampling strategies. However,
ensembles based on Random Forest base classifiers show only
minor improvements in classification accuracy compared to the
reported results of RBF, LVQ, and SNG classifiers. The results
of the different Random Forests are much more correlated and
hence do not lead to improved decisions.

V. CONCLUSION

The good results of previous tests with the selected hyper-
spectral datasets have been generally replicated. While it was
not possible to achieve significant gains in classification accu-
racy by changing the used metric or adapting the model size,
these two actions seem to induce a sufficient level of diversity
into an ensemble of multiple neural network classifiers.

In principle 10-fold cross-validation should avoid overfit-
ting and provide a realistic measure for the generalization
performance of the classifiers. However, the obtained perfect
classification results for nearly all datasets raise questions.
These questions could be answered by using independent sets
of spectral data for training of base classifiers, training of a
combiner based on classifier outputs for an independent test
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Fusion Method Rank

SCANN 1
CRAGORS 7
CRAGORS ROC 9
Fuzzy Templates 2
IBC 6
AdaBoost 3
Random Forest 4
Maxrule 10
Medianrule 13
Minrule 12
Prodrule 8
Sumrule 11
Voting 5

TABLE IV. RANKING OF FUSION ALGORITHMS BASED ON AVERAGE RANK OVER ALL DATASETS AND FEATURE SUBSETS

Feature Set

RBF
Dataset L2 γ L2 + γ
D1 0.95±0.01 1.00±0.00 1.00±0.00
D2 0.96±0.01 1.00±0.00 1.00±0.00
D3 0.76±0.02 0.92±0.02 0.94±0.01
D4 1.00±0.00 1.00±0.00 1.00±0.00
D5 0.87±0.01 0.99±0.00 1.00±0.00

TABLE V. FUSION OF RBF CLASSIFIERS WITH SCANN FOR DATASETS D1-D5

Feature Set

LVQ
Dataset L2 γ L2 + γ
D1 0.82±0.01 0.99±0.01 0.99±0.00
D2 0.79±0.02 0.98±0.01 0.99±0.00
D3 0.61±0.03 0.78±0.02 0.80±0.02
D4 0.92±0.03 1.00±0.00 1.00±0.00
D5 0.72±0.02 0.98±0.01 0.98±0.00

TABLE VI. FUSION OF LVQ CLASSIFIERS WITH SCANN FOR DATASETS D1-D5

Feature Set

SNG
Dataset L2 γ L2 + γ
D1 0.77±0.02 0.98±0.01 0.99±0.01
D2 0.79±0.02 0.91±0.01 0.95±0.01
D3 0.55±0.02 0.64±0.02 0.66±0.02
D4 0.88±0.02 1.00±0.00 1.00±0.00
D5 0.69±0.03 0.91±0.01 0.93±0.01

TABLE VII. FUSION OF SNG CLASSIFIERS WITH SCANN FOR DATASETS D1-D5

set, and testing its performance with another independent set
of spectral data. Here, we presented first results of valida-
tion experiments which show the validity of the approach,
while preparing new independent datasets and implementing
an ensemble based classification module into our existing
classification frameworks for further validation.

Among the evaluated algorithms for multiple classifier
fusion, SCANN performs best. Consistently, it provides the
best results for all datasets and all variants of ensembles.
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