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Abstract—The success of machine learning algorithms often
depends on the combination of model size, computational cost
and interpretability. One way to optimize these properties is
feature selection. Computational cost and model size can be
reduced by discarding features with low relevance. Further-
more, feature selection can provide a deeper understanding of
the feature’s importance. This work focuses on the minimal-
redundancy-maximal-relevance algorithm (mRMR) which is a
filter-method for feature selection that uses pairwise mutual
information as a measure to decide which feature is relevant.
The algorithm is initialized with the feature with the highest
relevance according to the measure and an iterative algorithm
selects the next feature which optimizes for a high relevance
while maintaining a low redundancy to the previously selected
features. This work extensively studies distinct feature sets which
can be generated when running the mRMR algorithm multiple
times using features of descending relevance as initialization. By
exploiting information about the order in which the iterative
algorithm chooses the features in the various runs, a strategy
is proposed to generate a new combined feature set from all
initializations. Applying the proposed strategy to four datasets
of different sizes and two classification algorithms shows that
the resulting feature sets are significantly better compared to the
original mRMR algorithm for the given classification task. The
proposed method is well-suited for cases where it is not feasible
to use wrapper-methods to increase classification accuracy.

I. INTRODUCTION

Feature selection is one of the most challenging research
topics in machine learning. In the context of classification,
the task is to find a subset of features from a dataset which
delivers similar or sometimes even better classification results
compared to using the whole feature set. An optimal solution
to find the feature set which gives the best classification results
for a specific classifier is a wrapper-method [1] [2]. Using an
exhaustive search, the classifier is evaluated on all elements of
the power set of all input features. Choosing the element of the
power set for which the classifier performed best will always
result in the highest achievable classification accuracy. In
practice, such an exhaustive search is usually only feasible for
a very small set of features combined with a classifier of low
training and testing complexity. As a consequence, learning
algorithms were developed which embed the feature selection
[3] [4]. Such algorithms are faster compared to the wrapper-

method, however the resulting features highly depend on the
learning algorithm. An alternative approach are filter-methods
which do not rely on a learning algorithm, but on a measure
which is cheap to compute, while still being able to determine
how relevant a feature set is or how much redundancy a feature
set has [5] [6] [7]. Measures are for example the correla-
tion or pairwise mutual information. Filter-methods are often
characterized by a low computational complexity compared to
the previous proposed methods. However, they are generally
not able to achieve a competing classification accuracy when
compared to wrapper-methods. Filter-methods are often able to
generate feature sets which are more general and, therefore, are
well-suited for various classifiers. In practice, wrapper as well
as filter-methods are often used in combination with search
strategies such that the space of feature set candidates shrinks
considerably compared to an exhaustive search. Examples
for such strategies are the greedy forward selection [8] [9],
the greedy backward elimination [10] or combinations of
both [11] [12]. In the greedy forward selection strategy, the
feature selection algorithm is initialized with one or more
features and iteratively the next feature is added according
to a measure. The greedy backward elimination is a search
strategy to iteratively remove features from a complete feature
set. To do so, the feature to be removed has to have the lowest
score according to a measure. Due to the large variety of
search strategies and feature selection algorithms, the reader
is referred to the comprehensive literature [13] [14].

The focus of this work is the minimal-redundancy-
maximal-relevance algorithm [15] (mRMR) which can be cat-
egorized as a filter-method. The measure used in this algorithm
is the pairwise mutual information. The mRMR algorithm
is still of high interest to the research community. In [16],
mRMR is used in combination with support vector machines
in order to do a recursive feature elimination strategy for the
task of gene selection. By doing bootstrapping on datasets, [17]
created various feature sets using mRMR and showed that an
ensemble of classifiers can achieve better classification scores
than a feature set which was generated by running mRMR on
the complete dataset. In the same paper, a way for creating
feature sets by initializing mRMR at different positions was
proposed which is picked up and formalized in this work. In
[17], the distinct features of all initializations were used for an
exhaustive search with a wrapper-method which also generated
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better classification scores. All of the previous examples use
wrapper-methods to increase classification accuracies. The
main contribution of this paper is a wrapper-free approach of
creating a feature set superior to the feature set found by the
traditional mRMR algorithm, for the task of classification, by
applying a merge strategy on the feature sets which result from
different mRMR initializations.

This paper is organized as follows. In Section II the basics
of the mRMR algorithm are introduced, comprising of the
optimization objective and the way the traditional algorithm
is initialized. The mathematical formulation is then extended
in Section III by presenting multiple initializations. In Section
IV a strategy to merge the feature sets generated with the
help of different initializations is proposed. In Section V,
the initialization properties are analyzed in detail and an
empirical evaluation of the merging strategy is given. Finally,
a conclusion is given in Section VI.

II. BASICS

Given a set of N features X = {xi; i = 1...N}, where xi

is a random variable describing the distribution of the feature i,
the task is to select S ⊂ X where l = |S| denotes the desired
number of features to be selected by the feature selection
algorithm. To keep the text uncluttered, in the following the
random variables will be referred to as features.

The mRMR algorithm [15] uses the mutual information
between two features x and y which is defined by:

I(x; y) =

∫∫
p(x, y) log

p(x, y)

p(x)p(y)
dxdy, (1)

where p(x), p(y) and p(x, y) denote probabilistic density
functions. The goal of mRMR is to retrieve a feature set
S which optimizes a combined objective consisting of the
relevance D to the target class variable c of all chosen features

D(S) =
1

|S|
∑
xi∈S

I(xi; c), (2)

as well as the redundancy R of all chosen features within
S as defined in:

R(S) =
1

|S|
∑

xi,xj∈S
I(xi;xj). (3)

The relevance D and redundancy R are used to define the
Mutual Information Quotient (MIQ)

max
S⊂X

(
D(S)

R(S)

)
, (4)

which is the combined objective according to which fea-
tures will be selected. This work focuses on MIQ. However,
there are multiple possibilities for defining combined objec-
tives. In [15], the optimization in Equation 4 was realized with
the following incremental algorithm:

The set Sm−1 ⊂ X contains m − 1 features which were
already chosen. The incremental algorithm then chooses the
m-th feature by evaluating:

xj = argmax
xj∈X\Sm−1

[
I(xj ; c)

1
m−1

∑
xi∈Sm−1

I(xi;xj)

]
;m > 1. (5)

The chosen feature xj is added to the set Sm−1. The
selection of feature xj is optimized such that is has a high
relevance to the class variable c while maintaining a low
redundancy to all features already selected in Sm−1. The
algorithm is initialized with S1 which consists of only one
feature:

xinit = argmax
xj∈X

I(xj ; c) (6)

S1 = {xinit}. (7)

Taking a closer look at Equation 5 and Equation 7 it
becomes clear that S1 ⊂ S2 ⊂ ... ⊂ Sm−2 ⊂ Sm−1. Note
that the subscript of S always equals the number of features
within S. The computational complexity of the incremental
search is O(l2 ·N ·V ) where V is the number of samples and
l the desired number of features. The complexity measures how
many computations are needed to achieve the feature selection.

III. EXTENSION TO MULTIPLE INITIALIZATIONS

By design mRMR is a greedy algorithm. The algorithm
runs deterministic to the same local optimum in recurrent
executions of the algorithm when initialized from the feature
specified in Equation 5. With given domain knowledge, S1 can
be initialized with a predefined set of features which are known
to work well for classification. Features which are then added
to this predefined set would have a high relevance and would
not be redundant to the existing features. The initializations,
originally proposed in [17] and mathematically formalized
in this work, do not rely on domain knowledge, but extend
Equation 6 and Equation 7 in a straight forward manner. They
are given by:

Ri =
{
xinit1 , xinit2 , ..., xiniti−1} ; i > 1, R1 = ∅ (8)

with xinitk defined as:

xinitk = argmax
xj∈X\Rk

I(xj ; c) ; k > 0 (9)

Sinitk
1 = {xinitk}. (10)

According to these definitions, Sinit1
1 is composed of the

feature with the highest relevance, Sinit2
1 is composed of the

feature with the second highest relevance and so on. It has to
be noted that in case of k = 1 the resulting initialization Sinit1

1
reduces to the initialization used in mRMR (see Equation 6).
In the following, feature sets which resulted from running the
incremental algorithm initialized by Equation 9 are referred to
as initializations.
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IV. MERGING INITIALIZATION FEATURE SETS

The first features added to S by the iterative algorithm from
Equation 5 have a very high relevance, a very low redundancy
or both. The more features added, the less relevant or more
redundant to the already chosen features they become. The
first selected features can be very different when initializing
with the strategy from Section III. However, it seems natural
that if a feature is selected by the iterative algorithm by
many initializations in an early stage, that this feature has a
higher importance than features seen only in e.g. one of the
initializations. The idea is to create a new feature set which
consists of the first j features that were selected by the iterative
algorithm across all initializations. Therefore, the feature sets
of the initializations are merged as follows:

Ij = Sinit1
j ∩ ... ∩ Sinitk

j (11)

K = [I1, I2 \ I1, ..., Iu \ Iu−1] (12)

Z = delete empty sets(K) = [z1, ..., zn] (13)

Ij contains all features that appear in all Sinitk
j . K is an

ordered list of sets without duplicates where u denotes the size
of the list. The first element of K contains all features which
appeared in all Sinit1

j . The second element of K contains all

features which appeared in all Sinit2
j , which are not in the

first element of K and so on. With these definitions, the j-th
element of K contains the features that appeared in all Sinitk

j ,
which did not appear in all initializations at the same time
before. The function delete empty sets has an ordered list
of sets as input and returns an ordered list of features. The
function creates an empty list and iterates over the elements
of K starting at the first element I1. If an element of K is
an empty set, its skipped. If its not empty, all features of the
set are added to the list. The first feature within the list is the
first one that occurred in all initializations at the same time.
The second feature in the list is the one which occurred in
all initializations after the first one and so on. The result of
this operation is the ordered list Z given by Equation 13. To

complete the notation, the resulting Smerged
j is defined as:

Smerged
j = {z1, ..., zj} ; j > 0. (14)

Hence, the set Smerged
j contains the j features which first

occurred at the same time in all initializations.

V. EMPIRICAL EVALUATION

A. Datasets

The following datasets, which consist of discrete features,
have been selected to study the initialization properties and the
classification performance:

Dataset #Samples #Features #Class
NCI [18] [19] 60 9703 9
Lymphoma [20] 96 4026 9
Dexter [21] 600 11035 2
FarmAds [22] 4143 54877 2

0

20

40

60

80

100
a) NCI

Top 50 features

NCI e)

Top 1000 features

0

20

40

60

80

100
b) Lymphoma

Lymphoma f)

0

20

40

60

80

100
c) Dexter

Dexter g)

0 10 20 30 40 50
0

20

40

60

80

100
d) FarmAds

# features

0 500 1000

FarmAds h)

# features

o
v
er

la
p

[%
]

Fig. 1. Visualizes the overlap of feature-sets generated by various S
initk
j

when using 20 initializations: a) - d) shows the overlap within the top 50
features, e) - h) the overlap within the top 1000 features.

NCI and Lymphoma are multi-label microarray gene
expression datasets. The classes in both datasets are different
kinds of cancer. Every feature variable in these datasets has
been discretized using the mean μ and the standard deviation
σ in the following way: all feature values smaller than μ−σ/2
were set to -1, all values in the range of μ− σ/2 to μ+ σ/2
were set to 0 and all values bigger than μ + σ/2 were set to
+1.

The Dexter dataset was used in the NIPS 2003 feature
selection challenge, which was formulated as a classification
problem in a bag-of-word representation. The feature values
were set to 1 if the word occurs in the text else to 0. There
are three datasets available for Dexter: (1) the train set with
300 samples, (2) the validation set with 300 samples and (3)
the test set with 1400 samples. In the experiments only (1)
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Fig. 2. Comparison of the mean cross-validation error rates, for Sinit1

j (mRMR) for RF and LDA. The error bars indicate the min/max mean cross-validation

error rate of all initializations. The plots show that in a), b), e) and f) the cross-validation error rate of the initializations vary only little compared to mRMR,
while in c), d) e) and h) the variance is larger.

and (2) were used due to the lack of labels for the test set. All
features which never occur in (1) and (2) were removed such
that the number of features reduced from 20000 to 11035.

Each sample in the FarmAds dataset consists of words
from a farm animal related website and words from text-
advertisement found on that website. The label is 1 if the
content owner approves of the advertisement else it is -1.
The features correspond to the occurrence of words. If a word
occurs in the advertisement or on the page it is set to 1 else
it is 0.

B. Determining Properties of the Initializations

Sinitk
j describes a feature selection to the size |S| = j

which was initialized using the feature with the k-th highest

relevance. While initializing with different features, the com-
bined objective which is described in Equation 4 remains the
same. Because of this fact it is clear that for large j all Sinitk

j
will converge to the same solution even though they were
initialized with different features. To determine the overlap of
features between the initializations an experiment with k = 20
was conducted on the datasets from Section V-A. The overlap
was defined as:

|Sinit1
j ∩ ... ∩ Sinitk

j | · 100
j

; j = 1, ..., 1000.

Figure 1 shows the similarity of feature sets originating
from different initializations and is performed on all datasets
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Fig. 3. Comparison of the mean cross-validation error rates, for Sinit1
j (mRMR) and Smerged

j (merged) for RF and LDA. In plots a), b), d) and h) the

merging strategy is able to achieve a visible lower error rate. In f) and h) the merging strategy achieves a marginal lower error rate compared to mRMR. In
plot e) the merging strategy is better for j ≤ 25 and worse afterwards. In plot c) it is unclear which features work better. Results denoted with * are statistical
significant according to the Wilcoxon signed-rank test with p− value ≤ 5%.
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presented in Section V-A. The number of features j from the
Sinitk
j is visualized on the x-axis. The y-axis displays the

overlap in percent of the feature sets. The plots on the left-hand
side show the overlap for the feature sets with j ≤ 50. The
plots on the right-hand side show the overlap of the feature
sets with j ≤ 1000.

As suspected, all initializations converge for a high j to the
same feature sets in the experiment which is visible in Figure
1 e) - h). For j = 1000 the feature sets overlap to more than
99% independent of the dataset. However the motivation for
this work is visualized in Figure 1 a) - d). The plots show
that for a small j all feature sets overlap only to a small
percentage. Especially for the FarmAds and Lymphoma
datasets the initializations possess on average more than 70%
unique features when choosing less than 50 features. The NCI
dataset more than 60% unique features for j ≤ 50 while the
Dexter dataset has more than 50% unique features.

C. Classification Performance of the Initializations

With the substantial differences between the initializations
the question remains how suitable their resulting feature sets
are compared to Sinit1

j (mRMR) for the task of classification.
random forest [23] (RF) and linear discriminant analysis [24]
(LDA) were chosen to investigate this question.

Leave-one-out cross-validation was used for the small
datasets NCI and Lymphoma. A 10-fold cross-validation
was used to assess classification error rates of the bigger
datasets Dexter and FarmAds.

The results of the experiment are shown in Figure 2. The
x-axis displays the number of features in the feature sets. The
y-axis is assigned to the mean cross validation error rate. Please
note that the plots showing the datasets have different scales
on the y-axis. Error bars are used to display the min/max
mean cross validation error rate for the 20 initializations. The
lower bound of the error bar corresponds to the minimum
mean(CV (Sinitk

j )) and the upper bound corresponds to the

maximum mean(CV (Sinitk
j ) with k = 1, ..., 20. The blue line

corresponds to mean(CV (Sinit1
j )) (mRMR), where CV is a

function that generates an array with each element being the
cross validation error of a different fold of the samples for the
given feature set. The plots on the left-hand side display the
results for RF while the plots on the right-hand side display
the results for LDA.

Analyzing the results for the small datasets Figure 2 a),
b), e) and f) reveals that the variance of the error rate of the
initializations is small around Sinit1

j (mRMR). For LDA the
general trend seems to be that mRMR has a lower error rate
compared to the initializations, while for RF the initializations
often seem to have a lower error rate.

In case of the bigger datasets Dexter and FarmAds (Fig.
2 c), d), g) and h)) a higher variance of the initializations
compared to mRMR can be observed. For both datasets mRMR
has the lowest error rate with less than 30 features almost all
the time.

D. Classification Performance of Merged Feature Sets

The experiment from Section V-C was repeated in order to

compare Sinit1
j (mRMR) and Smerged

j . The results are visual-

ized in Figure 3. The x-axis again shows the number of features
while the y-axis shows the mean cross-validation error rate.
The blue line corresponds to mean(CV (Sinit1

j )) (mRMR)

while the green line corresponds to mean(CV (Smerged
j ))

(merged). The plots on the left-hand side show the results for
RF while the plots on the right-hand side show the results for
LDA.

In plots a), b), d), h) the merging strategy visibly outper-
forms mRMR almost all the time. Interesting regarding the
FarmAds dataset is a comparison of the current plots d) and
h) and the lower end of the error bars visualized in Figure 2 d)
& h). It seems that the merging strategy moved the error rate
in the direction of the minimum error rate of the initializations.
Also in plot g) and f) the merging strategy has a marginal lower
error rate. For plot e) the merging strategy is better for j < 25
and marginally worse afterwards. In plot c) it is unclear which
feature sets are better. It is visible that in six of the eight plots
mRMR is outperformed by the merging strategy.

E. Implementation Details

As stated in Section III, the computational complexity is
O(l2 · N · M). When only calculating l up to 50, which is
done often in previous literature, the quadratic complexity of
l does not bother very much. However, in order to compute
Figure 1, the subset size l ranged from 1 to 1000. The naive
implementation with complexity depending on l2 is far too
computational infeasible to compute the feature sets derived
from the initializations. By storing and looking up every
previously computed I(x; y) the complexity can be reduced
to O(l ·N ·M) at the cost of l ·N entries in RAM. The pre-
vious statement assumes that a memory lookup costs nothing
compared to computing I(x; y). By using parallelization and
the lookup strategy, retrieving the feature sets for all datasets
took only about 4 hours on a 20-core machine.

VI. STATISTICAL SIGNIFICANCE

To provide statistical significant results a further experi-
ment was conducted in which the Wilcoxon signed-rank [25]
was applied to the results of the last experiment shown in
Figure 3.

When using the signed-rank test it is important to make
sure that all assumptions required by the test will hold.
Especially the interpretation of the result of the test should
be analyzed and understood in detail. The resulting p− value
serves as an instrument to decide whether two vectors deviate
statistically significant or not. For the experiments in this work
it was verified that all p − values have the correct meaning.
A low p− value corresponds to the cross validation results of
the merged strategy deviating (overall) much in the direction
of lower error rate. It is mandatory to use the signed-rank test
which incorporates continuity correction for random variables
with less than 60 elements, which is the case here. The widely
accepted threshold of 5% is used in order to decide if the
merging strategy is significantly better. All results from Figure
3 are annotated with an * if p− value ≤ 5%. In seven of the
eight experiments the merging strategy is significantly better
according to the signed-rank test. This might be surprising for
e) but it is important to notice that the signed-rank test gives
large deviations a higher weight.
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VII. CONCLUSION

Wrapper-methods often yield high classification accuracies
when selecting a feature subset for the task of classification.
Due to the dependency on training a classifier, these methods
can be very slow even for classifiers with relatively low
computational complexity. Filter-methods on the other hand
do not rely on a classifier. They therefore can have a very
low computational complexity compared to wrapper-methods.
However, generally feature sets found by filter-methods do not
reach as high classification accuracies as feature sets found
by wrapper-methods. Hence, it is desirable to increase the
classification accuracies of feature sets derived from filter-
methods which was addressed in this paper. With the first
complete mathematical formulation of how to initialize the
filter-method mRMR with features of descending relevance
(Section III), it was possible to generate k feature sets, which
are highly distinct. Furthermore, it was shown that the feature
sets which originated from different initializations have similar
classification error rates compared to the mRMR algorithm. A
caching algorithm was proposed which significantly reduces
the computational complexity compared to the traditional
mRMR, allowing empirical evaluations on the FarmAds
dataset. By combining knowledge from all feature sets, a
merging strategy was introduced in order to create a superior
feature set for the classification task (see Section IV). The
comparison of the merging strategy with mRMR (Section V)
together with the test for statistical significance (Section VI)
showed that using the merging strategy is a viable option to
increase classification accuracy. In applications where wrapper-
methods cannot be used due to e.g. the complexity of the
classifier, the proposed method can be helpful.

In a future work the number of initializations will be varied
to study the change in classification accuracies. The proposed
merging strategy only uses features if they appear in all feature
sets, which is a very hard constraint. Modifying the merging
strategy to allow features which only appear in a subset of
all feature sets can also lead to better classification results.
This work showed only one possible way to merge the feature
sets which resulted from different initializations while there are
numerous ways to do this. Future work will present alternative
ways of merging these features sets.
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