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Abstract—Data stream mining is the process of applying 
data mining methods to a data stream in real-time in order to 
create descriptive or predictive models. Due to the dynamic 
nature of data streams, new classes may emerge as a data 
stream evolves, and the concept being modeled may change 
with time. This gives rise to the need to continuously make 
revisions to the predictive model. Revising the predictive model 
requires that labeled training data should be available. Manual 
labeling of training data may not be able to cope with the speed 
at which data needs to be labeled. This paper proposes a 
predictive modeling framework which supports two of the 
common decisions that need to be made in stream mining. 
These decisions are: (1) determining when model revision 
should be performed and (2) deciding which newly arrived 
instances should be used as training data. The framework 
consists of an online component and an offline component. The 
online component uses Naïve Bayes ensemble base models to 
make predictions for newly arrived data stream instances. The 
offline component consists of algorithms to combine base 
model predictions, determine the reliability of the ensemble 
predictions, select training data for new base models, create 
new base models, and determine whether the current online 
base models need to be replaced. 

I. INTRODUCTION 
Data stream mining is defined as the process of applying 

data mining methods to a data stream in real-time in order to 
create descriptive or predictive models for the process that 
generates the data stream [1], [2], [3]. Due to the dynamic 
nature of data streams, the concept being modeled may 
change abruptly or gradually with time [4], [5], [6]. The 
changes in the concept being modeled give rise to the need to 
continuously make revisions to, or completely rebuild the 
predictive model when these changes are detected. 
Rebuilding the predictive model requires that labeled 
training data should be available. Data labeling for stream 
mining needs to be a fast process since stream data may 
arrive at a very high speed. Traditional methods of labeling 
training data may not be able to cope with the speed at which 
data needs to be labeled.  

Given the foregoing discussion, various decisions need to 
be made for the predictive modeling process in stream 
mining  [7]. Two of these decisions are: (1) determining 
when model revision should be performed and (2) deciding 
which newly arrived instances should be used as training 
data. This paper proposes a predictive modeling framework 
for stream mining based on Naïve Bayes ensemble 
classification [8]. The framework consists of an online 

component and an offline component. The online component 
uses Naïve Bayes ensemble base models to make predictions 
for newly arrived data stream instances. The offline 
component consists of algorithms to combine base model 
predictions, determine the reliability of the ensemble 
predictions, select training data for new base models, create 
new base models, and determine whether the current online 
base models need to be replaced. The main objective of this 
framework is to remove the need for manual labelling of 
training instances. A secondary objective is to detect when 
model revision should be performed.  

Three measures for assessing the performance of the 
ensemble base models are proposed in this paper. These 
measures are: Certainty, Reliability, and Incoherence. 
Certainty measures the frequency that all base models in the 
ensemble have predicted the same class. Incoherence 
measures the frequency that each base model in the ensemble 
has predicted a different class from the other base models. 
Reliability measures the frequency that one class is predicted 
by the majority of base models in the ensemble. Experiments 
were conducted to assess the usefulness of these measures in 
supporting decisions for the automated selection of new 
training data. The experimental results reported in this paper 
demonstrate that the proposed measures provide useful 
information for decision making and that the proposed 
framework has a high potential to produce predictive models 
with practical value. The rest of this paper is organised as 
follows: Section II provides the background to the reported  
research. Section III presents the proposed stream mining 
framework. The experimental results are presented in Section 
IV. Section V concludes the paper.  

II. BACKGROUND  

A. Challenges in Stream Mining 
One major challenge for mining data streams is due to the 

fact that it is infeasible to store the data stream in its entirety. 
This problem makes it necessary to select and use training 
data that is not outdated for the mining task. The second 
challenge for stream mining is due to the phenomenon of 
concept drift, which is defined as the gradual or rapid 
changes in the concept that a mining algorithm attempts to 
model [1], [2], [3]. Given these challenges, there is a need to 
continuously monitor model performance and revise the 
model when the performance degrades.  The third challenge 
is due to the fact that for predictive classification modelling 
there is a need to rapidly and continuously provide training 
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data which consists of instances that are labelled with the 
classes.  

One approach to selecting training data for mining data 
streams is called the sliding window approach. A sliding 
window, which may be of fixed or variable width, provides a 
mechanism for limiting the data used for modeling to the 
most recent instances. The main advantage of this technique 
is to prevent stale data from influencing the models obtained 
in the mining process [5], [6]. Two main problems with this 
approach are that firstly, for predictive modeling, there is an 
in-built assumption that labelled training data is rapidly 
available. Secondly, the predictive model needs to be 
continuously recreated as the window slides. Data stream 
instances do not typically arrive in an independent and 
identically distributed (iid) fashion. It is possible for 
instances of one class to arrive over a prolonged period of 
time. When this is the case, it may become infeasible to 
employ the sliding window approach, as the model could end 
up being trained on instances of one class only! A second 
approach to stream mining is to employ ensemble 
classification. Ensemble models for stream mining resolve 
the problems created by the sliding window approach by 
creating a new base model only when a new batch of labelled 
instances arrives and  keeping base models that are trained 
on both old and new instances.  

Masud et. al  [9], Zhu et. al [10] and Zhang et. al [11] 
have all observed that, for stream mining, manual labelling 
of data is a costly and time consuming exercise. In practice it 
is not possible to label all stream data, especially when the 
data arrives at a high speed. It is therefore common practice 
to label only a small fraction of the data for training and 
testing purposes. Masud et. al [9] have proposed the use of 
ensemble classification models based on semi-supervised 
clustering, so that only a small fraction (5%) of the data 
needs to be labelled for the clustering algorithm. Zhu et. al 
[10] have proposed an active learning framework for solving 
the instance labelling problem. The main challenge of active 
learning is to identify the most informative  instances that 
should be labelled in order to achieve the highest accuracy.  

Active learning is a branch of machine learning 
concerned with the automated selection of the most useful 
instances that should be manually labelled by a human expert 
[12]. Typically, these are instances that are located in the 
decision boundaries of the instance space. Settles [12] has 
observed that even though active learning provides a 
practical solution to the cost reduction for instance labelling, 
it suffers from two major weaknesses. The first major 
weakness is due to the fact that the training instances are a 
biased distribution and not an iid sample which represents 
the underlying natural density of the available data. The 
second major weakness is due to the computationally 
intensive algorithms for active learning. For each instance 
that is processed by the algorithm, a value must be computed 
for the measure of informativeness, measure of 
disagreement, or some other measure.  

B. Ensemble Classification for Stream Mining 
Several ensemble classification methods for stream 

mining have been reported in the literature. These methods 
include the use of All-Classes-At-once (ACA) base models 

(e.g. [13], [14]), the use of All-Versus-All (AVA) base 
models (e.g. [15] ) or the use of OVA base models (e.g. [16] 
). The main objective of ACA ensembles for stream mining 
is to (1) avoid overfitting, (2) avoid the use of a very limited 
amount of training data as is the case for the sliding window 
model, and (3) reduce the computational effort of revising 
the whole model when concept change/drift is detected [13], 
[14]. Examples of ACA ensemble frameworks that have 
been reported in the literature are the streaming ensemble 
algorithm (SEA) [17], the accuracy-weighted ensemble 
(AWE) [13], and the dynamically weighted majority (DWM) 
ensemble [14]. In the context of active learning, ensemble 
models have also been used in the Query-by-Committee 
(QBE) scheme to determine those instances that require 
manual labeling [12].  

III. PROPOSED STREAM MINING FRAMEWORK 
As stated above, the main objective for the research reported 
in this paper was to study methods for eliminating the need 
for manual labelling of training instances. A secondary 
objective was to study methods for determining when model 
revision should be performed. The approach that was 
adopted was to create a stream mining model consisting of 
two components: an online component and an offline 
component. The online component uses Naïve Bayes 
ensemble base models to make predictions for  newly arrived 
data stream instances. The offline component consists of 
algorithms to combine base model predictions,  determine 
the reliability of the ensemble predictions, select training 
data for new base models, create new base models, and 
determine whether the current online base models need to be 
replaced. This section provides a description of the online 
and offline components of the proposed framework. 

A. Naïve Bayes Classification 
Naïve Bayes classification has been reported in the 

literature as one of the ‘ideal’ algorithms for stream mining, 
due to its incremental nature [18]. The Naïve Bayes classifier 
assigns posterior class probabilities for the query instance x 
based on Bayes theorem. The training dataset for a classifier 
is characterised by d predictor variables X1,..,Xd and a class 
variable C. The set of n training instances is denoted as 
{(x,ci)} where )x,...,x( d1=x  are the values of a training 
instance and }c,...,c{c Ki 1∈  are the class labels.  Given a 
new query instance x = )x,...,x( d1  Naïve Bayes 
classification involves the computation of the score for each 
class defined as 

∝== )|cCPr( j xX    

     )cC|xXPr()cCPr( jiij === Π           (1) 

For zero-one loss classification, the class cj with the 
highest score is selected as the predicted class. For 
categorical features, the quantities )cCPr( j=  and  

)cC|xXPr( jii ==  are estimated from the training data. 
Naïve Bayes (NB) classification was selected for the 
proposed framework for two reasons. Firstly, NB 
classification is a probabilistic classification framework 
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based on the estimation of probability values from the data. 
This makes it difficult to justify the use of active learning as 
a suitable training instance selection method for NB 
classification. Secondly, model creation is a simple and fast 
activity. A single contingency table of counts for the feature 
values and class labels provides all the data needed for the 
computation of the probabilities in equation (1) as well as the 
selection of the relevant  features for prediction [19].   

B. Components of the Framework 
The online component uses Naïve Bayes ensemble base 

models to make predictions for  newly arrived data stream 
instances. Fig. 1 depicts the online component of the 
framework. The sub-components M1, M2 and M3 represent 
the Naïve Bayes base models. When a new data stream 
instance xq  arrives, each of the base models provides a 
prediction for the instance. The instance as well as the 
predictions are written to a disk file for further processing by 
the offline component. This ensures that the online 
component can operate at a very high speed. 

 

 

Fig. 1. The online components  

The offline component consists of five algorithms. Fig. 2 
depicts this component of the framework. The first algorithm 
is the combination algorithm which is used to determine the 
class predicted by the ensemble. The majority rule is used for 
the selection. The second algorithm is used to assign each 
prediction to one of three categories as specified in Table I. 
The third algorithm is used to determine whether an instance 
should be selected for the training data of a new base model, 
based on the prediction category for the instance. If the 
prediction category is certain or reliable, the instance is 
selected. The fourth algorithm is used to create  new base 
models in the form of  contingency tables for Naïve Bayes 
classification. The fifth algorithm is used to determine 
whether there is a need to revise the online ensemble by 
replacing one or more of the base models. The decision is 
based on the proportions of the prediction categories at the 
end of a time period. Three measures are used to assess the 
prediction performance of the ensemble. The measures are 
Certainty, Reliability, Incoherence, and are defined as 
follows: 

Certainty    =    count(certain)  /  count(all categories)      (2) 

Reliability   =  (count(certain) + 

                        count(reliable) ) / count(all categories        (3) 

 Incoherence =  count(incoherent) / count(all categories) ( 4) 

Certainty measures the frequency that all base models in 
the ensemble have predicted the same class. Incoherence 
measures the frequency that each base model in the ensemble 
has predicted a different class from the other base models. 
Reliability measures the frequency that one class is predicted 
by the majority of base models in the ensemble. This is used 
as a surrogate measure of accuracy. High levels of Certainty 
and Reliability indicate that the current online model is 
providing high predictive performance. A low level of 
Certainty and high level of Incoherence indicate that the 
current online model is providing poor predictive 
performance, and needs to be changed. 

 

 
Fig. 2. The offline component 

TABLE I.  PREDICTION CATEGORIES 

Category Description meaning 
 certain all models 

agree 
pred(M1) = pred(M2) = pred(M3) 

 
 reliable 

most recent 2 
models agree 

pred(M2) = pred(M3) �  pred(M1) 

oldest model 
agrees with 
most recent 
model 

pred(M1) = pred(M3)  � pred(M2) 
 

oldest 2 
models agree 

pred(M1) = pred(M2)  � pred(M3) 

incoherent no agreement 
between 
models 

pred(M1) �  pred(M2) �  pred(M3) 

 

1. combination  
algorithm 

2. determine 
prediction 
categories 

3. select training data 

ensemble 
 prediction

new 
base models 

Disk 
file 

predi- 
ctions

Disk 
file 

4. create new NB 
base models 

5. determine need for 
model change 

flag model 
change

M1 

M2 
write  xq 

 & 
predictions 
to disk file 

xq 

M3 

predictions 

Disk 
file 

337



C. Problems that are Solved by the Proposed Framework 
It was stated in Section II-A that instance labelling by 

human experts is a slow and expensive activity. Even though 
active learning reduces the number of instances that require 
labelling by human experts, it results in the usage of training 
samples which have a biased probability distribution. This is 
problematic for probabilistic classifiers such as Naïve Bayes. 
The proposed framework makes it possible for iid training 
data to be obtained at low cost and  very high speed without 
the need for labelling by human experts. 

A second problem that is solved by the framework is the 
assessment of model performance. In the literature on 
predictive modeling for data stream mining (e.g. [7]) it is 
often stated that the accuracy of the predictive model is 
periodically tested to determine whether there is a need to 
revise the model. Measuring the accuracy of a model 
requires test data with class labels. Since the class labels for 
training and test data are determined by human experts, there 
is a high level of latency between the time when this data 
appears in the data stream and when it is used for testing. 
The proposed framework solves this problem by using a 
meaningful measure of predictive performance which is 
applied to the current predictions. 

IV. EXPERIMENTS TO STUDY THE ENSEMBLE PERFORMANCE 
This section reports the results of the exploratory 

experiments that were conducted to study the performance of 
the proposed framework in terms of the usefulness of the 
proposed performance measures.  

A. Dataset for the Experiments 
The KDD Cup 1999 dataset available from the UCI KDD 

archive [20] was used for the studies.  This dataset consist of 
a wide variety of computer network intrusions (attack types) 
simulated for a military environment, and is available as two 
datasets: a training dataset and a test dataset. The 10% 
version of the training dataset was used for the experiments. 
This dataset consists of 494,021 instances, 41 features and 23 
classes. The 23 classes may be grouped into five categories: 
NORMAL, DOS, PROBE, R2L and U2R which can then be 
used as the classes [21]. A new feature (called ID) was added 
to the dataset with values in the range [1, 494021] as a 
pseudo timestamp.  

Class distribution for KDDCup99
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Fig. 3. Class distribution for the KDD Cup 1999 data stream  

Fig. 3 shows a plot of the class distribution for this data 
stream. The data stream also exhibits an extreme imbalance 
of the class distribution over time. It is clear from Fig. 3 that 
the classes DOS and NORMAL are the majority classes.  

B. Creation of the initial model 
The top 90,000 instances of the KDD Cup 1999 dataset 

were used for the creation of the three base models MW1, 
MW2 and MW3 for the initial ensemble. The instances were 
divided into three batches of training instances for each 
Naïve Bayes base model. Table II shows the instance counts 
by class for the first three time periods.  

TABLE II.  CLASS DISTRIBUTION FOR THE TOP 90,000 INSTANCES FOR 
KDD CUP 1999 

  
class 

Class counts for KDD Cup 1999  
training data for time period:   

Total for 
class 

0K-30K 
(W1) 

30K-60K 
(W2) 

60K-90K 
(W3) 

DOS 3816 15983 14199 33998 
NORMAL 26016 13282 15373 54671 
PROBE 111 719 391 1221 
R2L 53 15 34 102 
U2R 4 1 3 8 
Total: 30000 30000 30000 90000 

 

C. Experimental Results 
Exploratory experiments were conducted to answer the 
following questions: (1) Does the use of the Certainty, 
Reliability and Incoherence measures provide useful 
information for making decisions on model changes? (2) 
Does the use of instances for which the predicted class 
belongs to the certain or reliable category produce base 
models which provide high predictive performance? The 
initial ensemble was used to predict the classes of the data 
stream from time period 90K - 120K  to time period 480K - 
494K. The prediction performance is shown in Table III. 
Columns 3, 4, and 5 show the values of the Certainty, 
Reliability and Incoherence measures which were defined in 
Section III-B. Column 5 shows the accuracy computed for 
each time period based on the actual class labels in the 
dataset. Recall that the Reliability measure is used as a 
surrogate measure of accuracy. A comparison of Reliability 
and Accuracy values in Table III indicates that the values are 
very similar except for one time period (450K - 480K) where 
there is a large discrepancy. 

The initial ensemble was revised by replacing the base 
models MW1 and MW2 with MW4 and MW5. The new 
base models were created from data for the time periods 90K 
-  120K (MW4) and 120K - 150K (MW5). The class labels 
that were predicted as certain or reliable, by the initial 
ensemble were used in the training process. The decision to 
revise the model was based on the observation that for six 
consecutive time periods from 150K to 330K, there is only 
one class (DOS) in the data stream. The revised ensemble 
model (MW3, MW4, MW5) was used to predict the 
instances in the time periods from 330K - 360K to  480K - 
494K. The training data summary and prediction 
performance are shown in Table IV and Table V. A 
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comparison of Tables III and V for the time periods from 
330K - 360K to  480K - 494K indicates that the revised 
ensemble model provides an increase in the Certainty, 
Reliability and Accuracy values,  and a decrease in the 
Incoherence values. In other words, the model revision leads 
to improved performance. 

TABLE III.  PREDICTIVE PERFORMANCE OF INITIAL ENSEMBLE USING 
MW1, MW2, MW3 

 
 
 

Prediction time 
period 

 Measures of predictive performance 
 

Ce
rta

in
ty

%
 

Re
lia

bi
lit

y%
 

In
co

he
re

nc
e%

 

Ac
cu

ra
cy

%
 

90K -  120K 39.3 100 0.0 97.9 
120K - 150K 44.4 94.9 5.1 97.0 
150K - 330K 0.0 100 0.0 100 
330K - 360K 25.9 94.9 5.1 93.0 
360K - 390K 62.8 98.5 1.5 96.6 
390K - 420K 18.1 100 0.0 100 
420K - 450K 0.1 99.7 0.3 99.7 
450K - 480K 44.9 94.1 5.9 26.6 
480K - 494K 55.2 94.1 5.9 89.8 

 

TABLE IV.  CLASS DISTRIBUTION FOR W3, W4, W5 TRAINING  
INSTANCES  

class 

Class counts for KDD Cup 1999  
training data for time period:   

Total for 
class 

60K-90K 
(W3) 

90K-120K 
(W4) 

120K-150K 
(W5) 

DOS 14199 23364 16730 54293 
NORMAL 15373 6536 11290 33199 
PROBE 391 97 311 799 
R2L 34 2 127 163 
U2R 3 0 3 6 
Total: 30000 29999 28461 88460 

 

TABLE V.  PREDICTIVE PERFORMANCE OF REVISED ENSEMBLE USING 
MW3, MW4, MW5 

 
 

Prediction time 
period 

 Measures of predictive performance 
 

Ce
rta

in
ty

%
 

Re
lia

bi
lit

y%
 

In
co

he
re

nc
e%

 

Ac
cu

ra
cy

%
 

150K - 330K 0.0 100 0.0 100 
330K - 360K 47.2 100 0.0 99.0 
360K - 390K 91.3 100 0.0 96.8 
390K - 420K 23.3 100 0.0 99.9 
420K - 450K 0.4 100 0.0 100 
450K - 480K 85.7 100 0.0 32.0 
480K - 494K 60.0 100 0.0 95.8 

 
The second ensemble was revised by replacing the base 

model MW3 with MW12. The MW12 base model was 
created from data for the time period 330K – 360K. The 
class labels that were predicted as certain or reliable, by the 
second ensemble were used in the training process. The 

decision to revise the model was based on the observation 
that after the six consecutive time periods from 150K to 
330K, where only one class (DOS) appears the data stream, 
the time period 330K – 360K has two classes: DOS and 
NORMAL. The revised ensemble model (MW4, MW5, 
MW12) was used to predict the instances in the time periods 
from 390K - 420K to  480K - 494K. The training data 
summary and prediction performance are shown in Table VI 
and Table VII. A comparison of Tables V and VII for the 
time periods from 390K - 420K to  480K - 494K indicates 
that the revised ensemble model provides an increase in the 
Certainty values and a decrease in the Incoherence values. In 
other words, the  model revision leads to improved levels of 
confidence in the predictions. 

TABLE VI.  CLASS DISTRIBUTION FOR THE W4, W5, W12  INSTANCES  

 class 

Class counts for KDD Cup 1999  training 
data for time period: 

  
Total 
for 

class 
90K-120K 

(W4) 
120K-150K 

(W5) 
330K-360K 

(W12) 
DOS 23364 16730 23587 63681 
NORMAL 6536 11290 6113 23939 
PROBE 97 311 298 706 
R2L 2 127 0 129 
U2R 0 3 2 5 
Total: 29999 28461 30000 88460 

 

The experimental results presented in this section lead to 
the following conclusions. For the KDD Cup 1999 data 
stream, the selection of training data based on the use of the 
certain and reliable prediction categories led to the creation 
of base models which provided a high level of predictive 
performance. Secondly, the Reliability measure provided a 
useful surrogate measure of predictive accuracy. 

TABLE VII.   PREDICTIVE PERFORMANCE OF REVISED ENSEMBLE USING 
MW4, MW5, MW12 

 
Prediction time 

period 

 Measures of predictive performance 

Ce
rta

in
ty

%
 

Re
lia

bi
lit

y%
 

In
co

he
re

nc
e%

 

Ac
cu

ra
cy

%
 

390K - 420K 65.4 100 0.0 99.9 
420K - 450K 99.8 100 0.0 100 
450K - 480K 99.5 100 0.0 31.9 
480K - 494K 98.5 100 0.0 95.2 

 

V. CONCLUSIONS 
The purpose of the experimental studies reported in this 

paper was to assess the usefulness of the proposed measures 
in supporting the decisions on how to select training data that 
has been labelled by an ensemble classification model in a 
data stream mining setting. The first question for the 
exploratory studies was: Does the use of the Certainty, 
Reliability and Incoherence measures provide useful 
information for making decisions on model changes? The 
second question was: Does the use of instances for which the 
predicted class belongs to the certain or reliable category 
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produce base models which provide high predictive 
performance? The answer to both questions is yes.  The 
experimental results presented in Section IV have 
demonstrated that for the KDD Cup 1999 dataset, the 
Reliability measure provided a good surrogate measure of 
predictive accuracy for 12 out of 13 (i.e. 92%) of the 
prediction time periods that were used for the experiments. 
The experimental results presented in Section IV have also 
demonstrated that for the KDD Cup 1999 dataset, the use of 
training data which was labelled and selected based on the 
prediction categories of certain and reliable led to the 
creation of base models which provided a high level of 
predictive performance for 92% of the prediction time 
periods. For future work, it will be useful to study how the 
proposed measures as well as class entropy can be combined 
to provide a single measure that can be used to determine 
when model revisions should be performed. 
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