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Abstract—Automated Border Control (ABC) systems are
technologies designed to increase the speed and accuracy of
identity verifications performed at international borders. A great
number of ABCs deployed in different countries use fingerprint
recognition techniques because of their high accuracy and user
acceptability. However, the accuracy of fingerprint recognition
methods can drastically decrease in this application context due
to user-sensor interaction factors. This paper presents two main
contributions. The first of them consists of an experimental evalu-
ation performed to search the main aspects that could negatively
affect the usability and accuracy in ABCs based on fingerprint
biometrics. The second contribution consists in a novel approach
for automatically identifying the type of user-sensor interaction
that caused quality degradations in fingerprint samples. This
method uses a specific feature set and computational intelligence
techniques to detect non-idealities in the acquisition process and
to suggest corrective actions to travelers and border guards.
To the best of our knowledge, this is the first method in the
literature designed to detect problems in user-sensor interaction
different from improper pressures on the acquisition surface. We
validated the proposed approach using a dataset of 2880 images
simulating different scenarios typical of ABCs. Results showed
that the proposed approach is feasible and can obtain satisfactory
performance, with a classification error of 0.098.

I. INTRODUCTION

Automated Border Control (ABC) systems are promising
solutions that use biometrics to facilitate border crossings and
to increase the accuracy of the identity verifications performed
by border guards. Biometric recognition has many potential
benefits for border controls [1]: reducing border processing
time, diminishing travelers’ frustration, increasing throughput,
improving security, reducing costs and discharging border
guards from tedious controls.

A great number of ABC systems use fingerprint recognition
technologies. In particular, out of the 67 ABCs considered by
the EU project ABC4EU [2], [3], [4], 41 of them (61.2%)
employed fingerprints (also combined with other biometric
traits) to verify the identity of the travelers. Moreover, the
International Civil Aviation Organization selected fingerprint
as one of the biometric traits that shall be included in the new
generation of biometric passports [5].

However, the use of fingerprint biometrics in ABC envi-
ronments poses several challenges that need to be addressed to
guarantee satisfactory recognition performance. Among them,
one of the most important issues is the user-sensor interaction

in fingerprint recognition systems. In this context, the study
presented in [6] presented a detailed analysis of negative
factors in user-sensor interaction. These factors include both
operational aspects and environmental conditions. Based on
this classification, we propose an analysis of the most im-
portant user-sensor interaction factors that can decrease the
performance of fingerprint recognition technologies in ABCs.

The most relevant causes of accuracy decreasing are the
operational conditions. Among them we highlight the follow-
ing aspects as the most important ones:

• Inexperienced travelers: individuals who are not fa-
miliar with fingerprint recognition systems can have
trouble performing biometric acquisitions.

• Stress: for many travelers, the border cross can be a
stressing experience.

• Luggage: most of the travelers carry hand luggage
with them, which can both create problems in the
fingerprint placement and temporarily modify the
characteristics of the fingertip due to the pressure on
the finger skin.

• Dirty hands: frequently, travelers consume food or use
hand creams, which can deposit grease and dirt on the
acquisition surface of the biometric acquisition device
and affect the quality of the fingerprint images.

• Sensor cleaning: the repeated use of the sensors can
provoke the presence of latent fingerprints on the
acquisition surface. In order to avoid this problem,
trained operators should periodically clean the acqui-
sition device.

• Lack of feedback: in absence of a proper feedback,
users cannot understand the problems that caused the
acquisition of low quality images. Feedback on the
acquisition quality can simplify the acquisition process
and increase the quality of the acquired samples [7].

• Lack of supervision by an operator: if the system does
not provide the correct indications, the users can fail
in the interaction with the sensor. The assistance of an
operator that explains the sensor functioning can help
in acquiring good quality samples [7].

Environmental factors also influence the biometric recognition
performance, and can be classified as follows:
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• Temperature: this factor can affect skin properties.

• Moisture level: high humidity conditions can produce
images affected by smudged ridges in different zones
of the image, background noise, latent fingerprints,
significant breaks in the ridge structure and artifacts
between ridges. On the other hand, a dry environment
can induce a non-uniform contrast of the ridges or a
weak impression of the ridge structure [8].

Considering the previously described aspects, it is neces-
sary to design acquisition procedures that help the users to
provide good quality samples, thus increasing the biometric
recognition performance of ABCs.

In this context, one of the contributions of this paper
consists in experimental evaluations of the behavioral and
environmental conditions that could result in the decrease of
the fingerprint quality during the recognition step in ABC
systems, with the consequent reduction of the recognition
accuracy. Moreover, we evaluated methods for compensating
these factors. In particular, we analyzed fingerprint samples
acquired under different conditions that can be present in ABC
gates, including swollen hands, dirt on fingers, greased hands,
and clean hands. These conditions are related to the contact
with food and creams and to the pressure of the handles of the
luggage and bags on the hands.

In order to mitigate effects of user-sensor interaction fac-
tors, this paper introduces an approach to propose corrective
actions for improving the quality of the acquisition process.
Our approach automatically recognizes a set of relevant acqui-
sition problems that can potentially occur during actual ABC
operations by analyzing fingerprint images acquired with a
standard resolution of 500 DPI. Our approach uses a set of
optimized features and computational intelligence techniques
designed to learn the distinctive characteristics of the samples
introduced by different classes of acquisition problems. The
final output consists of corrective actions to be performed by
both travelers and the border guards.

Other authors have proposed techniques that help the user
to control the amount of pressure applied to the sensor platen
or the position of the fingers [7], [8], [9]. However, to the best
of our knowledge, this paper is the first study in the literature
focused on important problems that may appear in an ABC
environment.

The paper is structured as follows. Section II presents
related studies in the literature. Section III describes the
performed experiments aimed at searching the main causes of
performance degradation of fingerprint recognition technolo-
gies in ABCs. Section IV details our approach for detecting
problems in user-sensor interaction from fingerprint samples.
Section V describes the experiments performed to validate our
approach and presents the obtained results. Finally, Section VI
concludes the work.

II. RELATED WORK

Given its important impact on the recognition perfor-
mance, the literature presents many works aimed at improving
the user-sensor interaction in fingerprint recognition systems.
HBSI [10] is a method for evaluating the repeatability of the
presentation of the biometric trait to the sensor. This evaluation

then permits defining corrective actions for improving the
system accuracy and usability. Other works focus on the
study of how different usability parameters can affect the
quality of fingerprint images. For instance, the height and
inclination of the fingerprint sensor [11], the use of different
instructional methods [12], or the system’s feedback and the
user’s experience [13].

As stated in [6], another approach that can be of great help
to improve the robustness of fingerprint recognition systems
to non-ideal acquisitions is the use of quality assessment
methods that permit to discard low quality images [14], [15].
The standard ISO/IEC TR 29794-4 [16] analyzes aspects
of fingerprint image quality, which include: usual important
defects of fingerprint images; a common interpretation of
quality scores; a terminology that can be used to specify,
use and test fingerprint image quality metrics; and global and
local features that can affect the performance of fingerprint
recognition systems. These specifications are complemented
by the standards ISO/IEC 19794-2 [17] and ISO/IEC 19794-
4 [18], which define aspects as minutiae quality and zonal
quality.

The work in [19] divides quality assessment algorithms for
fingerprint images into three classes: 1) those that employ local
features of the image, 2) those that analyze the global features
of the image, 3) and those that consider quality assessment
as a classification problem. The last class of algorithms is the
most commonly used in the literature.

In general, classifier-based methods combine local and
global features to predict the matching performance that can
be achieved using a fingerprint image. NIST NFIQ [20], one
of the most commonly used quality assessment algorithms,
adopts this approach. NFIQ uses features computed from a
local quality map and the quality of the minutiae points.
The computation of the local quality map analyzes the ridge
orientation map and detects regions with low contrast, low
ridge flow, and high curvature. The output of the classifier
is a discrete value between 1 (highest quality) and 5 (lowest
quality), which is a predictor of the accuracy that can be
achieved by the software NIST NBIS [21] for the evaluated
image.

NFIQ 2.0, the evolution of NFIQ, which is now under
development, also applies classifier-based techniques. In par-
ticular, the authors have proposed an open methodology [22]
that divides the process into two steps. In the first step, they
propose to gather a set of features that convey discriminative
information about the quality of the image. In the second step,
they propose to create a machine learning technique model
that relates matching performance to the previously extracted
features.

In the literature, there are other studies on quality assess-
ment techniques for fingerprint samples. As an example, [23]
proposes to employ self-organizing maps to calculate a set of
features that are used by a random forest classifier to predict
matching performance. Moreover, the works presented in [24],
[25] use neural networks to deal with the quality assessment of
fingerprint images acquired using touchless sensors [26], [27].

The aforementioned works only discriminate images based
on their quality, but they are not capable of giving any
information about what was the problem that caused a low
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quality score. To improve the repeatability of the presentation
to the sensor, algorithms should explain to the user what she
is doing wrong, so that she can correct the problem. The work
described in [7], [8] explores this path proposing an image
analysis method that detects a set of problems that caused
wrong acquisitions. This system can detect issues regarding
finger positioning and pressure against the acquisition surface,
and provide corrective messages accordingly. More recently,
the work in [9] explored the same approach, but providing
a graphical feedback. Nonetheless, none of the previously
introduced approaches can detect frequent problems that may
appear in ABCs, like swollen or dirty fingers. This paper covers
this aspect. To the best of our knowledge, it is the first study
in the literature on this topic.

III. ANALYSIS OF COMMON SITUATIONS IN ABC GATES

THAT MAY IMPACT FINGERPRINT RECOGNITION

This section presents an experimental evaluation that aims
at determining the negative aspects in user-machine interaction
that have a greater impact on the accuracy of fingerprint
recognition systems in ABCs.

In this context, we simulated different scenarios in our
laboratory that represent a set of common situations in real
ABCs. For each scenario, we computed the quality of each
fingerprint sample and we computed the Student’s t-test to
determine if the sets of data are statistically different one to
each other.

Results showed that dirty fingers present poor image
quality, which causes an important decrease in recognition
accuracy. Differently, the presence of grease has a limited influ-
ence in recognition performance but favors the appearance of
latent fingerprints over the acquisition surface. Moreover, the
presence of luggage reduces recognition accuracy only in the
cases in which it makes the acquisition process uncomfortable.

This section is organized as follows. First, we present the
considered scenarios and the acquired image dataset. Second,
we analyze the results obtained by applying different quality
assessment methods in the literature in the considered scenar-
ios.

A. Studied scenarios

We collected a dataset composed of 4320 fingerprint
images simulating 6 scenarios typical of ABCs. For each
simulated scenario, we collected 4 samples of the 10 fingers
of 18 volunteers. We collected the samples in a single session
from males and females in a range from 20 to 50 years old.
The involved volunteers are students, professors and manual
workers. We acquired the fingerprint images using a Dermalog
ZF1 sensor. This is an optical plain fingerprint scanner capable
of acquiring one fingerprint at a time. Table I resumes ZF1s
technical specifications.

The acquisition procedure simulated a real ABC scenario.
A traveler can face many situations that can affect her hands,
producing an impact in the fingerprint recognition accuracy.
For instance, travelers usually carry a luggage in their hands or
on their shoulders, or eat food while they are at the airport. In
order to simulate these situations, we acquired the fingerprint
of our volunteers in the following conditions:

TABLE I. SCANNER CHARACTERISTICS

Dermalog ZF1

Scanning area 24mm x 16 mm
Scan resolution 500 dpi

Grey scale 8 bit, 256 grey levels
Certifications FBI EFTS/F, BSI TR-PD, CE, EMV and GS

• Normal: This scenario represents normal acquisitions.
The users presented their fingers with no special
behavioral or environmental conditions.

• Hand-bag: This scenario represents a case in which the
user carries a hand-bag. This is a quite common sce-
nario, especially in airports, which can cause swollen
or sweaty hands. To simulate it, we performed each
acquisition after the user has hand-carried a bag of 4
kg for two minutes.

• Shoulder-bag: This scenario presents a situation in
which the user carries a bag on the shoulder. This is
a frequent situation in airports that can cause swollen
hands and make uncomfortable the acquisition pro-
cess. To reproduce it, we acquired fingerprint samples
while the user was carrying a 4 kg bag on the shoulder.

• Dirt: This scenario illustrates a case in which the
traveler has dirtied her fingers with some kind of
powder, like flour or dust. This scenario is usual in
airports. For example, when the traveler touches a
dirty surface or when she eats food covered with flour
or powdered sugar (e.g., sandwiches/panini, donuts,
croissant). In order to reproduce it, the user dirtied her
fingers with flour and then cleaned them by clapping
her hands.

• Grease: This scenario simulates a case in which the
user’s fingerprints are greasy after she has touched a
greasy substance. This scenario is frequent in airports.
For example, when the user eats food like pizza or
sandwiches, mayonnaise, ice cream or when she uses
hand cream. To simulate it, we acquired the fingerprint
samples after the user had used hand cream.

• Cleaned: This scenario illustrates how the cleaning of
the hands using diverse products can help to alleviate
problems introduced by dirty and greasy hands. To
simulate it, we acquired fingerprint images after the
user had cleaned her hands using wet wipes and a
disinfecting substance.

Fig. 1 illustrates how the different scenarios influence the
quality of fingerprint images.

B. Impact on fingerprint quality

To study how the different scenarios impact the fingerprint
image quality, we used two well-known quality assessment
methods and evaluated the quality of the acquired fingerprint
images:

• NFIQ quality index: computed using the quality as-
sessment method developed by the NIST [20]. This
is one of the most commonly used quality indexes
in the literature. This index ranges from 1 (maximum
quality) to 5 (minimum quality).
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Fig. 1. Examples of the fingerprint images acquired under the different
scenarios. Each column illustrates a sample obtained from the same user and
finger. It is possible to observe that non-ideal acquisition scenarios introduce
different kinds of artifacts in the fingerprint images, thus reducing the sample
quality and the overall accuracy of the biometric recognition process.

TABLE II. QUALITY RESULTS OBTAINED

Dermalog NFIQ

Mean Std. dev. Mean Std. dev.
Normal 31.01 18.45 1.76 0.88

Hand-bag 30.61 18.61 1.78 0.88
Shoulder-bag 27.06 16.71 1.93 0.81

Dirt 17.13 9.44 3.13 1.03
Grease 31.94 19.14 1.84 1.05

Cleaned 30.89 17.58 1.64 0.81

• Dermalog quality index: computed using the quality
assessment method developed by the sensors producer.
This index ranges from 0 (minimum quality) to 100
(maximum quality).

Figure 2 presents the boxplots of the quality distributions
for Dermalog quality index, and Figure 3 presents the same
results for NFIQ. Table II shows the obtained quality values for
each scenario, indicating the average fingerprint image quality
and its standard deviation. Table III presents the obtained p-
values with Student’s t-test when comparing normal scenario
with other ones. The values that represent a significant differ-
ence, with a threshold of 0.05, are highlighted in bold.

We extracted the following conclusions from the obtained
results:

• Hand-bag scenario: The results indicate that carrying
a bag in a hand does not significantly affect the

Fig. 2. Boxplot that compares the different scenarios using Dermalog quality
index. On average, the quality worsened 0.4 points when the user carried a bag
in hand, 3.95 points when he/she carried the bag on the shoulder, 13.88 points
when her fingers were dirtied with a powder and 0.12 points after cleaning
her hands. On the other hand, the average quality increased 0.93 points with
greasy fingers.

Fig. 3. Boxplot that compares the different scenarios using NFIQ quality
index. On average, the quality went down 0.02 points when the user had
carried a bag in hand, 0.17 points when the bag was on the shoulder, 1.37
when the user dirtied her fingers with powder and 0.08 points with grease.
The mean quality improved in 0.12 points after the user cleaned her hands.

quality of fingerprint images, independently from the
employed quality index.

• Shoulder-bag scenario: according to the statistical
study, carrying a bag on the shoulder has a negative
impact on the quality of the fingerprint image for
both the considered quality indexes. Several volun-
teers complained about the inconvenience of using the
sensor while carrying the bag. The uncomfortable ac-
quisition procedure can justify the decrease in quality.

• Dirt scenario: the presence of dirt on the finger skin
has significantly reduced the quality of the samples.
The images presented in Figure 1 show the great
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TABLE III. STATISTICAL STUDY OF QUALITY VALUES

Dermalog NFIQ

Normal vs. Hand-bag 0.75 1.00
Normal vs. Shoulder-bag 9.10E-04 8.99E-03

Normal vs. Dirt 1.44E-40 6.15E-79
Normal vs. Grease 0.46 0.55

Normal vs. Cleaned 0.93 0.01

impact of this issue in the acquired images. With
respect to images acquired in a normal scenario, the
acquired samples are smaller, present reduced ridge-
valley contrast and include a higher number artifacts.
In addition, each acquisition deposits dust on the
acquisition surface, which also reduces the quality of
later acquisitions.

• Grease scenario: with respect to acquisitions per-
formed in normal conditions, the presence of grease on
the fingertip does not produce significant differences
in the image quality. However, we observed that the
sensor gets dirty after a few acquisitions. This favored
the appearance of latent fingerprints in the images.

• Cleaned scenario: cleaning hands removes negative
effects introduced by dirt and grease. Fingerprint im-
ages acquired after cleaning hands present very similar
quality with respect to samples acquired in normal
scenarios.

IV. USING COMPUTATIONAL INTELLIGENCE TO CORRECT

FINGERPRINT ACQUISITION PROBLEMS

A. Required feedback to improve fingerprint acquisition pro-
cess

The proposed approach aims at detecting those situations
that can reduce the image quality or that may affect subsequent
acquisitions. After the study performed in Section III, we
isolated three situations that can affect the acquisition quality.
These situations correspond to the scenarios Shoulder-bag, Dirt
and Grease. If all these situations are correctly identified, the
acquisition system can indicate the user how to behave in order
to obtain a better fingerprint image.

Considering the aforementioned observations, we defined
the following feedback messages for the considered acquisition
scenarios:

• Correct acquisition. This message corresponds to the
class Normal scenario.

• Remove the bag from your shoulder. This message
should be displayed when the system detects that the
user is carrying a bag on the shoulder (Shoulder-bag
scenario).

• Clean the finger and the sensor. The system should
recommend this action when it detects that the finger
is dirty with powder (Dirt scenario).

• Clean the sensor. This output should be shown when
the system detects that the user has her hands dirtied
with grease (Grease scenario).

The approach to detect these problems is divided into three
steps. The first one performs a segmentation of the fingerprint

image. The second step extracts different sets of features from
the fingerprint sample. The final step estimates if a problem
affected the acquisition process and determines its type by
using neural classifiers.

B. Feature extraction

The proposed approach extracts the following sets of
features:

• Features related to the shape of the Region of Interest
(FS): this set is composed by 4 features that evaluate
the presence of deformations in the fingerprint image.
These features are the length, width and area of the
ROI, and the eccentricity of the ROI shape.

• Hog Features (FH ): this set contains cw × ch × cb
features. Their values summarize the information con-
tained in a set of Histogram of Oriented Gradients
(HOG) applied to the area of the image I belonging
to the ROI. To compute these features we use the
algorithm described in [28]. In particular, first we
compute the gradient module image GM (x, y) and the
gradient phase image GP (x, y) of the image I . Then,
we divide each image into cw × ch blocks. For each
block, we quantize the orientation G̃P (x, y) into cb
orientation bins, which are weighted by its magnitude
GM (x, y). For each cell, we compute a histogram with
the cb orientations.

• Local Mean (FM ): this set includes lw × lh features
that summarize the gray level values of the image. In
particular, we partition the image into lw × lh blocks.
For each block, we compute the mean gray level value.

• Local Variance (FV ): this set includes lw× lh features
that summarize the standard deviation of the gray level
values of the image. In particular, we partition the
image into lw×lh blocks. For each block, we compute
the standard deviation of the gray level value.

• Gray-level co-occurrence matrix features (FC ): this
set contains 2×mw×mh features that summarize the
information contained in the Gray-level co-occurrence
matrix. We divide the image into mw×mh blocks. For
each block we compute the homogeneity and energy
of the gray level co-occurrence matrix.

• Ridge orientation features (FR): This set comprises
ow × oh features that describe the ridge orientation
across the image. We divide the image into ow × oh
blocks. For each block, we compute the mean orien-
tation reliability.

C. Dimensionality reduction

If all the features studied in the previous section are
included in the final learning dataset, the number of features
can be very high. However, if this number is too big the
efficiency and effectiveness of the learning algorithm can be
undermined. Hence, we apply a dimensionality reduction tech-
nique to obtain a more discriminative dataset. We consider two
methods, feature selection and linear dimensionality reduction.

For feature selection we use Sequential Forward Selection
based on Linear Classifier [29]. This is a greedy algorithm
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Fig. 4. Neural networks’ topology. We use one neural network per acquisition
situation. We choose the final class as the one with the highest score.

that sequentially adds a feature that minimizes classification
error given the current set of features. The algorithm terminates
when the adding of any feature does not improve error. In
order to estimate the error we use linear discriminant analysis.
The model uses the pseudo inverse of the covariance matrix
to avoid errors.

In the case of linear dimensionality reduction, we apply
Principal Component Analysis (PCA) [30]. PCA aims at con-
verting a set of observations that possibly contains correlated
variables, into a set of values of linearly uncorrelated variables,
called principal components. To do that it uses an orthogonal
transformation.

D. Learning technique

To detect the acquisition issues, we use classifiers based
on feed-forward neural networks. Fig. 4 presents the topology
of the neural networks. The proposed classification method
consists of a set of n neural networks and of a score fusion
algorithm. Considering n classes representing n acquisition
conditions, the classifier uses n trained feed-forward neural
networks FFNNi. Each neural network FFNNi is a two-classes
classifier, which considers the acquisition condition i as the
positive class and returns a value oi ∈ [0, 1]. Our method uses
the score fusion strategy class = argmaxi=1...n(oi) to obtain
the final class representing the acquisition issue.

Each FFNNi consists of a linear node as output layer, and a
hidden layer composed by an empirically determined number
of tan-sigmoidal nodes. The method used for the training of the
neural networks is the Levenberg-Marquardt algorithm [31]. In
order to properly estimate the generalization capability of the
trained neural networks, we used the N-fold cross validation
technique with N = 10 [32].

V. EXPERIMENTS

This section analyzes the ability of the proposed approach
to detect problematic situations during the acquisition of
fingerprint samples.

We tested the proposed method by using a subset of the
dataset introduced in Section III. This dataset is composed by
2880 samples pertaining to the scenarios Normal, Shoulder-
bag, Dirt, and Grease. We selected only those samples be-
cause we experimentally proved that the considered scenarios

TABLE IV. RESULTS USING NEURAL NETWORKS WITH 10 HIDDEN

UNITS AND DIFFERENT FEATURE SETS.

Feature set Mean error Standard deviation Learning time

All features 0.136 0.027 186 s
PCA 20 0.252 0.044 33.3 s
PCA 40 0.159 0.019 49.7 s
PCA 60 0.152 0.024 71.6 s

LSFS 0.138 0.022 46.8 s

Notes: PCA-x= Principal Component Analysis with x dimensions; LSFS = Sequential
Feature Selection based on Linear Classifier.

presenting more acquisition problems are Shoulder-bag, Dirt,
and Grease (Section III).

First, we analyzed the need of applying dimensionality
reduction strategies. Successively, we evaluated different learn-
ing topologies. Finally, we compared the proposed approach
with other classification techniques.

A. Feature set evaluation

We analyzed the performance of the proposed method
using different feature sets, dimensionality reduction algo-
rithms and a neural network composed of 10 hidden nodes.
In this test, we compared the performance of the proposed
learning technique using the full dataset, the dataset after
applying Sequential Forward Selection, and the dataset after
applying PCA. Sequential Feature Selection achieved the best
performance using a set of 58 features.

The complete feature set included the following 160 fea-
tures:

• FS : 4 features describing the ROI.

• FH : 81 HOG features. The parameters cw, ch and cb
took the values 3, 3 and 9, respectively.

• FM : 15 local mean features. The parameters lw and
lh took the values 3 and 5, respectively.

• FV : 15 local standard deviation features. The param-
eters lw and lh took the values 3 and 5, respectively.

• FC : 30 gray-level co-occurrence matrix features. The
parameters mw and mh took the values 3 and 5
respectively.

• FR: 15 ridge orientation features. The parameters ow
and oh took the values 3 and 5, respectively.

The reduced dataset obtained after applying Sequential
Forward Selection contained a total of 58 features, which
include: 2 features from FS ; 26 features from FH ; 7 features
from FM ; 6 features from FV ; 11 features from FC ; and 6
features from FR.

Moreover, we tested three configurations of PCA transfor-
mation: 20, 40, and 60 features.

Table IV presents the results obtained for each feature
set. Tests indicate that the feature set that obtained the best
performance is the one containing all the features. However,
the feature set obtained by LSFS was capable of achieving a
very similar result in much less time. Hence, we decided to
use it for the rest of the experiments.
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TABLE V. RESULTS USING A DIFFERENT NUMBER OF HIDDEN UNITS

IN TERMS OF MEAN ERROR, STANDARD DEVIATION AND LEARNING TIME.

Hidden units Mean error Standard deviation

5 0.168 0.027
10 0.138 0.022
30 0.112 0.017
50 0.098 0.026
70 0.103 0.019

TABLE VI. RESULTS USING DIFFERENT TOPOLOGIES IN TERMS OF

MEAN ERROR AND STANDARD DEVIATION.

Topology Mean error Standard deviation

S-FFNN-1 0.259 0.059
S-FFNN-4 0.131 0.025

V-FFNN 0.112 0.019
M-FFNN 0.098 0.026

Notes: S-FFNN-1 = single feed-forward neural network with one output node; S-FFNN-4
= single feed-forward neural network with four output nodes; V-FFNN = voting approach
based on K(K1)/2 feed-forward neural networks; M-FFNN = approach based on
multiple feed-forward neural networks (Section IV-D).

B. Tuning of the neural networks

This section studies the number of nodes in the hidden layer
that needs to be used in order to achieve the best results. We
tested five configurations: 5, 10, 30, 50 and 70 hidden units.
Table V presents the results obtained for each configuration.
We obtained the best results with 50 hidden units, achieving a
mean error of 0.098.

C. Learning topology evaluation

To search the best configuration of our proposed method,
we evaluated the performance of four topologies of classifiers.
Results validated the choice of the approach described in
Section IV-D.

The evaluated topologies are the following:

• S-FFNN-1: a single feed-forward neural network with
single hidden layer and one node in the output layer.
The output is a number from 1 to 4, which corresponds
to the output class.

• S-FFNN-4: a single feed-forward neural network with
single hidden layer and four nodes in the output layer,
one for each class. The output node with the highest
score determines the output class.

• V-FFNN: a set of n(n − 1)/2 feed-forward neural
networks, where n indicates the number of classes.
Each neural network is trained to distinguish between
two classes. The final output is the class with the
highest number of votes.

• M-FFNN: The approach proposed in Section IV-D.

Table VI presents the results obtained by using each
topology of classifier. The results include the mean error
and the standard deviation. The topology that obtained the
best accuracy was M-FFNN, achieving a mean error equal
to 0.098. On the other hand, S-FFNN-1 was not capable of
differentiating between the different classes, achieving a mean
error equal to 0.259. These results endorse the choice of the
topology M-FFNN.

TABLE VII. RESULTS USING DIFFERENT LEARNING TECHNIQUES IN

TERMS OF MEAN ERROR AND STANDARD DEVIATION.

Model Mean error Standard deviation

Linear 0.218 0.015
kNN-1 0.2517 0.035
kNN-3 0.3229 0.025

M-FFNN 0.098 0.026

D. Comparison with other classifiers

This section compares the results obtained by the proposed
neural classifier in its best configuration and other well-
known techniques in the literature. In particular, we compared
the performance of the proposed classification method with
k nearest neighbor and linear classifier. Table VII presents the
obtained results.

Table VII shows that neural classifiers outperformed all
the compered methods on the considered dataset. Moreover,
simple classifiers did not obtain satisfactory accuracy on the
considered problem. However, classifiers able to approximate
more complex functions, like a neural network with a large
number of hidden units, obtained a significant reduction of the
classification error. The analysis of which computational intel-
ligence technique obtains the best results is out of the scope
of this paper, since it is also dependent on the specific data
of the studied application. Other computational intelligence
techniques, like support vector machines, could be analyzed
in future research studies.

VI. CONCLUSIONS

This paper presented a study on the human-sensor inter-
action factors that mainly affect the accuracy of fingerprint
recognition technologies used in Automated Border Control
(ABC) systems. We presented two main contributions. First,
we experimentally evaluated the effect of different acquisition
scenarios on the sample quality. Second, we presented a novel
approach for automatically detecting non-idealities in the user-
sensor interaction from fingerprint samples. Our approach uses
computational intelligence techniques and detects different
classes of problems that frequently affect ABCs. The final
output consists of a message describing corrective actions to
be performed by travelers and border guards. To the best of our
knowledge, this is the first method in the literature designed
to detect problems in user-sensor interaction different from
improper pressures on the acquisition surface.

To evaluate negative factors in user-sensor interaction, we
collected a dataset of 4320 images describing 6 frequent
scenarios in ABCs. We evaluated the quality of the collected
samples using well-known quality assessment methods in the
literature. From the obtained results, we derived the following
conclusions: uncomfortable acquisitions performed wearing a
shoulder bag obtained poor quality images; the presence of
dirt on the finger skin drastically reduced the visibility of the
ridge pattern and caused latent fingerprints on the acquisition
surface; the presence of grease on the fingertip did not affect
the image quality but introduced problems due to the release of
latent fingerprints; cleaning hands can reduced problems due
to the dirt and grease.

We validated the proposed approach for estimating the type
of eventual acquisition problems on a set of 2880 fingerprint
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samples, which included the images of the collected dataset
pertaining to those scenarios that produced a decrease in
fingerprint image quality. Results showed that the proposed
approach is feasible and obtained a classification error equal
to 0.098 on the used dataset.

Future studies should regard the analysis of data collected
from real ABCs and to study the impact of our approach on the
usability of fingerprint recognition systems applied in ABCs.
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