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Abstract—Existing studies suggest the vulnerability of finger-
print verification system against spoof attacks. A spoofing attack
occurs when an adversary mimics the biometric trait of another
individual for illegitimate access and advantages. Liveness de-
tection algorithms aim to detect live fingerprint samples from
the fake artifact. A variety of materials, such as latex, gelatine
and silicone, can be used to fabricate fake fingerprint samples.
Continuous advancement in the spoofing techniques will lead to
the introduction of new materials for fake fingerprint fabrication.
However, the performance of these liveness detection algorithms
severely degrade when new spoof materials are encountered dur-
ing the operational stage. Therefore, there is a need for automatic
detection of the fabrication material from fake fingerprint images.
To this aim, this work investigates texture descriptors such as
LBP, BSIF, BGP and GLCM for automatic detection of the
fabrication material from fake fingerprint images.

I. INTRODUCTION

Fingerprint recognition systems for person identification
have proliferated over the past few decades [1]. Fingerprint
recognition system is often required for government-controlled
activities such as border crossings, as well as by private
institutions such as banks. Moreover, many mobile devices
now use fingerprints instead of passwords (e.g., iPhone 5s).
Despite the recent progress, fingerprint recognition systems
can be compromised through malicious attacks at many points
within the system [2], [3]. In particular, they are vulnerable to
many a spoof attack, which consists in submitting to the system
an artefact fingerprint [4], [5], [6]. The spoofed/fake fingers
can be fabricated using commonly available materials (e.g.,
latex) with the fingerprint ridges of an individual engraved
on the surface [7], [8], [9]. These fake fingers can then be
used by an adversary to launch a spoof attack by placing them
on a fingerprint sensor and claiming the identity of another
individual. The success rate of such spoof attacks can be up
to 70% [7], [6], [9].

In fact, spoofing attacks have great practical relevance
because they don’t require advanced technical skills; therefore,
the potential number of attackers is large [10]. Likewise,
spoofing attacks are a major issue for companies selling
biometric-based identity management solutions. For instance,
in 2013, doctors at the Ferraz de Vasconcelos hospital in
Brazil were caught using fake silicone fingers to defraud
the hospital’s biometric punch-in clock to get overtime [11].
Fingerprint liveness detection algorithms have been proposed
as a quintessential anti-spoofing mechanism against spoof

attacks [6], [8].

A fingerprint liveness detection method aims at discrim-
inating live fingerprint samples from spoof artifacts [12].
Despite recent advances, the state-of-the-art in fingerprint
liveness detection is not mature enough. This is because of
the high error rates associated with current liveness detection
algorithms [4], [13]. Further, the performance of these liveness
detectors is significantly degraded during the operational stage,
when spoofs are generated using materials not used during the
training stage. Similarly, majority of liveness detectors do not
account for the variations introduced by different sensors and
datasets [10].

Reported studies [13], [14], [15] suggest a three fold in-
crease in the error rate of the fingerprint liveness detector when
spoofs using new materials (not used during the training stage)
are encountered during the operational stage, thus suggest-
ing the limited interoperability of existing liveness detectors
across materials, sensors and datasets. Very few methods have
been developed that are robust to variations instigated by the
spoof fabrication materials, sensors and datasets [6], [7], [11].
However, Rattani et al. [5], [6], [7] and Akhtar et al. [10]
recently devised schemes to improve the interoperability of
liveness detection algorithms across spoof fabrication materials
and sensors.

With the evolvement of the spoof attacks, it is likely that
new materials will be discovered to launch spoof attacks,
thus the nature of attack is unpredictable. As the liveness
detector cannot be trained against spoofs generated using all
the possible fabrication materials [7], it becomes necessary to
automatically detect new spoof materials [5], [6], [7], [11].
The liveness detector can be retrained to new spoof materials
to minimize any security risk posed by new spoof materials.

The problem of fingerprint liveness detection and identi-
fication of spoof fabrication materials is exacerbated by two
facts. First, standard sensors are not able to distinguish images
of a real fingerprint from those of an artificial replica. Second,
there is often no obvious cue, visual or otherwise, that a
captured image is coming from a spoof attack. In order to
detect and mitigate vulnerabilities related to spoof fabrication
materials or techniques, digital spoof-material fingerprinting
methods may be applicable.

We define ‘digital spoof material fingerprinting’ as the
process of identifying the source material used to fabricate
spoof attacks, regardless of the image content. In other words,
‘digital spoof material fingerprinting’ provides the ability to
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(a)   (b)   (d)   (e)   (c)   

Fig. 1. Examples of fingerprint spoofing based on: (a) 2-D (flat) fake fingerprint using Silicone (b) synthesized 3-D fake fingerprint (c) reverse-engineered
fingerprint image (d) cadaver fingerprint (e) finger cut from the user.

identify or validate the source material that was used to fabri-
cate spoof attack, also called as source material identification.
This technique i.e., ‘source material identification’ could be
used for analyzing distinguishing characteristics in images
due to different spoof fabrication material’s imperfections
[5], [6], [7]. All spoof fabrication materials and techniques
have different characteristics and are also subject to manu-
facturing imperfections, resulting from inconsistencies during
the production process. Such characteristics and fabrications
errors/imperfections manifest as noise or texture changes in
the ensuing image (which are often undetectable to human
observers) and can be detected and characterized by machine
learning, computer vision or image processing algorithms for
the purpose of ‘source material identification’.

In this paper, our focus is on “fingerprinting” fake finger-
print fabrication materials. In particular, the aim of this work
is to design a scheme for automatic detection of the fabrication
material from the fake fingerprint images. Such a classifier will
facilitate the detection and automatic adaptation of the liveness
detector to novel spoof materials.

This paper is organized as follows. Section II list different
characteristics of fake fabrication materials and techniques
that lead to performance differences. Section III outlines the
features used for material detection. Section IV discusses the
experimental protocol and experimental results. A conclusion
is drawn in Section V.

II. FINGERPRINT SPOOFING

In this section, we first give a short illustration of finger-
print spoofing methods, and then summarize spoof fabrication
materials’ characteristics.

A. Fingerprint Spoofing Methods

A fingerprint recognition system can be fooled by (see
Fig. 1) (a) a 2-D (flat) fake fingerprint of a genuine user;
(b) a synthesized 3-D fake fingerprint of a genuine user;
(c) a reverse-engineered fingerprint image from template of
a genuine user; (d) a cadaver fingerprint of a genuine user; (e)
a dismembered finger from a genuine user.

Fake fingerprint could be fabricated either
by ‘consensual/cooperative/direct casts’ or ‘non-
consensual/noncooperative/ indirect casts’ method using
easily available materials1 like latex, gelatin and so on

1http://www.lumidigm.com/liveness-detection/: Fifty seven materials and
variants have been recognized for fake fingerprints.

[8], [13]. In a non-consensual method fake fingerprints are
fabricated from latent finger-marks on daily use product or
sensors; hence, the cooperation of the user is not required.
While, a consensual procedure [2] (i.e., with the consent
and collaboration of the user) for fake fingerprint fabrication
consists of the following steps: (i) a user is asked to press
his finger against a soft material, such as wax, play-doh or
plaster, to create a mould that holds a negative impression of
the fingerprint; (ii) a casting (fabrication) material such as
liquid silicon, wax, gelatin, or clay is poured on the mould;
and (iii) after the liquid solidifies, the cast is lifted from the
mould and is used as a fingerprint replica or fake finger [5],
[6], [7].

B. Spoof Fingerprint Fabrication Materials

Rattani and Ross in [6], [7] mention that fabrication
material should have high elasticity and very low shrinkage
to avoid reduction in the volume as the cast cools and
solidifies. Further, the authors [6], [7] also identified different
characteristics exhibited by fabrication different materials as
mentioned below. Note that studies in [6], [7] did not propose
any scheme for automatic detection of the fabrication material
from fake fingerprint images.

1) Differences in artifacts: Different fabrication mate-
rials possess different potential to hold a ridge and
valley pattern [6], [7]. This can result in fabrication
errors. Further, due to differences in the elasticity of
materials, non-linear deformations may be introduced
when pressure is applied by an adversary while
presenting the fake finger to the sensor. Fig. 2 shows
examples of fake fingerprint samples corresponding
to five different fabrication materials (from LivDet
2011 [13]). Fabrication errors and non-linear defor-
mations (an example indicated using red circle and
white square) are quite evident in the case of silgum,
woodglue and ecoflex.

2) Differences in image quality: Due to the presence of
organic molecules in fabrication materials that tend
to agglomerate, noise components are observed in
the acquired fake fingerprint images [16], which may
vary across materials [6], [7]. Consequently, quality
of the fake fingerprint samples may vary across
fabrication materials. Fig. 3 shows the difference in
the range of quality values (obtained using the Im-
age Quality of Fingerprint (IQF) freeware developed
by MITRE2) across spoof samples generated using

2http://www2.mitre.org/tech/mtf/
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different fabrication materials. It can be seen that
silgum and woodglue produced spoofs of relatively
low quality. On the contrary, the quality of the spoofs
generated using latex is quite similar to that of live
fingerprint samples. The performance of the liveness
detection algorithm significantly degrade when spoofs
generated using new materials are encountered dur-
ing the operational stage due to the aforementioned
reasons. Therefore, it becomes beneficial to auto-
matically detect the fabrication material of the fake
fingerprints.

III. TEXTURE FEATURES USED FOR MATERIAL

DETECTION

Here, we discuss the image descriptors used in this study
to extract the fabrication material characteristics from fake
fingerprint image.

• Binary Gabor Patterns (BGP)[17]: These are effi-
cient and effective multi-resolution approach to gray-
scale and rotation invariant texture classification.
Given a texture image, it is first convolved with
J Gabor filters sharing the same parameters except
the parameter of orientation. Then by binarizing the
obtained responses, J bits are obtained at each loca-
tion. Then, each location can be assigned a unique
integer, namely rotation invariant binary Gabor pattern
(BGPri), formed from J bits associated with it using
a rule. The classification is based on the image’s
histogram of its BGPris at multiple scales.

• Binary Statistical Image Features (BSIF)[18]: This
method for constructing local image descriptors which
efficiently encode texture information and are suitable
for histogram based representation of image regions.
The method computes a binary code for each pixel
by linearly projecting local image patches onto a
subspace, whose basis vectors are learnt from natural
images via independent component analysis, and by
binarizing the coordinates in this basis via threshold-
ing. The length of the binary code string is determined
by the number of basis vectors. Image regions can
be conveniently represented by histograms of pixels’
binary codes.

• Grey level Co-occurence Matric (GLCM)[19]: A
statistical method of examining texture that considers
the spatial relationship of pixels is the gray-level co-
occurrence matrix (GLCM), also known as the gray-
level spatial dependence matrix. The GLCM functions
characterize the texture of an image by calculating
how often pairs of pixel with specific values and in
a specified spatial relationship occur in an image,
creating a GLCM, and then extracting statistical mea-
sures from this matrix. Some of the features include
contrast, correlation, energy and homogeneity.

• Local Binary Patterns (LBP)[20]: The LBP feature
vector, in its simplest form, is created in the following
manner: Divide the examined window into cells (e.g.
16x16 pixels for each cell). For each pixel in a cell,
compare the pixel to each of its 8 neighbors (on
its left-top, left-middle, left-bottom, right-top, etc.).

Follow the pixels along a circle, i.e. clockwise or
counter-clockwise. Where the center pixel’s value is
greater than the neighbor’s value, write 1. Otherwise,
write 0. This gives an 8-digit binary number (which
is usually converted to decimal for convenience).
Compute the histogram, over the cell, of the frequency
of each number occurring (i.e., each combination
of which pixels are smaller and which are greater
than the center). Optionally normalize the histogram.
Concatenate (normalized) histograms of all cells. This
gives the feature vector for the window.

IV. EXPERIMENTS

In this section, we provide experimental protocol and eval-
uation procedure of the proposed method to detect fabrication
material from fake fingerprint images.

Database:

LivDet11 [13]: We exploited the same data set that was
used to evaluate fingerprint liveness detection algorithms in
the Second International Competition on Fingerprint Liveness
Detection (LivDet11)3. This data set consists of 1000 live and
1000 fake fingerprint images each in training and test set,
respectively. All images collected using the Biometrika sensor
have been used in this study. These live images are obtained
from 100 subjects with 10 samples from distinct finger per
subject for each set (training and test). The fake fingerprints
are fabricated using the following materials: gelatine, silicone,
woodglue, ecoflex and latex. For each of these five materials,
200 images are fabricated from 20 subjects for each set.

Protocol and Performance metrics: Following the
LivDet2011 protocol as adopted in , we used 1000 live
and 1000 fake images to train the proposed classifier, and the
remaining 1000 live and 1000 fake images were reserved as
the test set, which is used uniquely to gauge the generalization
performance of the proposed material-detector.

(a) Training stage: During the training stage of the material
detector, a set of n feature vectors X = {x1,x2 . . .xn} extracted
from both live and spoof samples, along with their correspond-
ing class labels {y1,y2, . . .yn} where yi ∈ {c1,c2, . . . ,cK} are
used to train a multi-class AdaBoost. Spoofs generated using
different materials have different class labels (c1 . . .cK−1). Live
samples are assigned a separate class (cK). Thus, there are
K classes, where K − 1 is the number of spoof materials
represented in the training set. The Adaboost algorithm [21]
(adaptive boosting) is an ensemble learning method which
combines multiple weak classifiers to form a single strong
classifier as:

y(x) =
T

∑
t=1

αtht(x) (1)

where ht(x) refers to the weak classifiers operating on the
feature vector x, T is the number of weak classifiers, y(x) is
the classification output and αt is the corresponding weight for
each weak classifier.

3http://people.clarkson.edu/projects/biosal/fingerprint/index.php
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(a) EcoFlex (b) Latex (c) Gelatine (d) Silgum (e) WoodGlue

Fig. 2. Examples of fake fingerprint images (from the LivDet 2011 [13] database) corresponding to five different fabrication materials. The artifacts introduced
(an example indicated using circle and square) are typically quite prominent for silgum, woodglue and ecoflex materials, taken from [5], [7].
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Fig. 3. Box-plot of the quality measures computed for 200 live and 200 fake
fingerprint samples (acquired using Biometrika sensor) fabricated using five
different materials from the LivDet 2011 dataset [13], taken from [5], [7].

The weak classifiers are generated after extracting a texture
descriptor from the image. The following descriptors are
considered in this work: Grey Level Co-occurence Matrix
(GLCM) [19], Binary Statistical Image Features (BSIF) [18],
Binary Gabor Patterns (BGP) [17] and Local Binary Patterns
(LBP) [20].

For each of these descriptors, several weak classifiers
are defined and iteratively added until a total of T = 200
(see equation (1)) weak classifiers are generated. Thus, the
AdaBoost classifier for a particular descriptor is an ensemble of
these 200 weak classifiers. Note that each of these descriptors
is independently incorporated into an AdaBoost framework for
implementation of the fabrication material-detector.

(b) Testing stage: For each input sample (x̄i) encountered
during the operational phase, the label of the input sample(

p(ck|x̄i) for k = 1 . . .K
)

belonging to each of the K classes
is computed.

(c) Performance metrics: The performance of the fabrication
material-detector is assessed using the following performance
metrics: Correct detection rate (CDR): the proportion of fin-
gerprint samples whose material has been correctly detected.
False detection rate (FDR): the proportion of the fingerprint
samples whose materials have been falsely identified. Confu-
sion matrices to allow visualization of the performance of the
material-detector in correctly identifying the material or falsely
classifying as another material.

Results:

The confusion matrices of the material-detector imple-
mented using GLCM, BSIF, LBP and BGP, respectively, are

shown in the Tables I - IV for five fabrication materials and
live fingerprint class. From these tables, it can be observed
that Latex (66.5%) and Gelatine (64.0%) obtained the highest
detection rate using LBP and BSIF-based image descriptors,
respectively. Further, live samples can be easily distinguished
from fake ones with the detection rate upto 94%.

However, the average correct detection rate for each ma-
terial is low and unacceptable for real-time implementation.
This suggest that these state-of-the-art descriptors are not very
efficient in detecting the fabrication material from the fake
fingerprints. In practical scenarios where nature of attacks can
never be a priori known. Thus, a particular emphasis should
be put on generalized liveness detection methodologies that
have potential to detect varying or previously unseen spoofing
attacks. Hence, the texture analysis should be combined with
other characteristics such as coarseness analysis of the surface
of fake fingerprint samples and noise residual for error rate
reduction to acceptable level.

V. CONCLUSION

It is a well-know fact that fingerprint recognition systems
are vulnerable to spoof attacks, which has led to the great
advances in fingerprint anti-spoofing technologies, especially
fingerprint liveness detection methods. Despite recent ad-
vances, counteracting fingerprint spoof attacks has proven to
be a challenging task due to variations in spoof fabrication
materials and techniques. In fact, recent studies suggest a three
fold increase in the error rate of a fingerprint liveness detector
on encountering spoofs generated using materials that were
not used during the training stage. Therefore, in this paper, we
designed a scheme for automatic detection of the fabrication
materials from the fake fingerprint images, which may be
used for novel spoof material detection and then to update
the liveness detector. The proposed automatic spoof material
detection scheme obtains a correct detection rate upto 67%
depending upon the material and the features. This preliminary
work suggests high error rate exhibited by state-of-the-art
textural descriptors in detecting fabrication material from spoof
fingerprint images. Future work will involve investigating new
features such as noise residual and coarseness analysis and
their fusion with the textural descriptors to reduce the error
rate of the fabrication material-detector to acceptable level.
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