
Interpretation and Analysis of Input Selection
Approaches in Distance Space

Tim Oliver Heinz
Automatic Control, Mechatronics

Department of Mechanical Engineering

University of Siegen

D-57068 Siegen, Germany

Email: tim.heinz@uni-siegen.de

Oliver Nelles
Automatic Control, Mechatronics

Department of Mechanical Engineering

University of Siegen

D-57068 Siegen, Germany

Abstract—In this paper five different model free input selec-
tion approaches are summarized. All of them rely on distance
measurements of the data, which can be visualized in the here
called ’Distance Space’. The five discussed approaches for input
selection are interpreted and analyzed in the Distance Space
scatter plot. The influence of noise and wrong chosen inputs to
the Distance Space is outlined. With the chosen search strategy,
the input space is changed. Afterward the best input combination
is selected. Several dynamic systems are used to generate data
sets, in order to compare the different approaches.

I. INTRODUCTION

The modeling of static realworld problems is usually in-

volved with a large number of potential model inputs. The

identification of dynamic systems expands this amount of

model inputs by the delayed versions of the physical inputs

and outputs. In practice only a few of them are necessary

for the representation of the process. So the number of the

initial given potential inputs must be reduced. This reduction

leads to a higher density of data in the input space and also

to fewer parameters of the estimated model (e.g. in case of

linear regression). The initial set of inputs can be defined as:

X = {x1, x2, x3, . . . , xd} . (1)

Note that for a dynamic model the potential inputs xi are

delayed inputs or outputs. The set of inputs in X is chosen

very generously to make sure that every necessary input is

included. Out of this set different subsets can be extracted:

Si ⊂ X . (2)

The methods for determining the model order can generally

be divided into two main groups: The modelbased and the

modelfree methods. The modelbased methods predict the

output with different subsets. To evaluate the selected input

space, there are several criteria which can be used. In [1]

the Akaike information criterion (AIC) is proposed, but also

the root-mean squared error (MSE) on the training or an

independent (validation) data set can be used. After all, the

subset with the best evaluation is chosen.

These model-free approaches are only able to detect the

order with respect to the overall relationship between input(s)

and output. Recent research indicates that substantial advan-

tages may be obtained from distinguishing between two types

of input variables: (i) scheduling or operating variables and

(ii) local model or submodel variables. All scheduling type

of approaches fall in this category like local model networks

of Takagi-Sugeno fuzzy systems. In a fuzzy system context

type (i) variables describe the rule premise space and type (ii)

variables describe the rule consequents space [2]. Note that

both types of variables can be dynamic in nature but typically

scheduling or operating variables are chosen statically or with

very simple dynamics. This allows for much easier modeling

and strongly weakens the curse of dimensionality [3]. Clearly,

for these more advanced strategies a model-free approach is

not sufficient.

There are several model free criteria which try to determine

the right subset. The following five are discussed: The Lips-

chitz Quotient approach [4], which tries to determine the right

model order by approximating the Lipschitz-bounds of the

underlying continuous function. The False Nearest Neighbor

approach [5] classifies the nearest neighbors in the input by

geometric properties of the data. The Proximal Correlation

Coefficient approach [6] attempts to determine the model

order with autocorrelation. The Gamma Test [7] estimates the

variance of the process, which can be used to evaluate a chosen

subset. The Delta Test [8], a simplification of the Gamma

Test, averages the distances of output pairs defined by the two

nearest neighbors in the selected subset.

With an increasing number of possible inputs d, the number

of potential subsets increases with 2d − 1. To overcome

this challenge a search strategy has to be chosen. In [9]

several of them are summarized. Most popular are the forward

selection or sequential growing and the backward elimination

or sequential pruning. These algorithms start at an empty

(full) input space and add (take away) the best (worst) of

input variables. Other methods alternate between growing and

pruning (e.g. plus l-take away r, or floating search strategies

[9]). This increases the number of evaluated input spaces,

which decreases the danger of local optimum. Afterwards the

best combination is chosen to be the correct input space.978-1-4799-7560-0/15/$31 c©2015 IEEE
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II. FIVE APPROACHES FOR INPUT SELECTION

In contrast to a static model, a dynamic time-discrete NARX

model depends on time delayed inputs and outputs. In this

paper the focus lies on Single-Input Single-Output (SISO)

Systems. So lets assume some nonlinear dynamic function:

y(k) = f(�x(k)) , (3)

�x(k) = [y(k − n1), y(k − n2), . . . , y(k − nno), . . .

u(k −m1), u(k −m2), . . . , u(k −mni)] .
(4)

Here y(k) is the physical output and u(k) is the physical

input of the nonlinear process at time instance k. nno and

mni represent the number of delays for output and input

respectively. A common choice is nj+1 = nj + 1, n1 = 1
and mj+1 = mj + 1, m1 = d where dT0 is the dead

Time of the model with T0 being the sampling time. For

nno = 0 an NFIR model is obtained. For nno ≥ 1 an

NARX model of order max(nno,mni) is the most common

choice. However, it is more flexible, but seldom, to drop the

restrictions nj+1 = nj + 1 and mj+1 = mj + 1 in order

to obtain more flexibility. An extension to multiple physical

inputs is straightforward.

A. Lipschitz Quotient Approach

With the assumption, that the underlying dynamic process is

Lipschitz continuous (which aplies for a great number of real

world processes) the derivative of every secant of the unknown

nonlinear function is bounded by some value L. He and Asada

[4] showed that neglecting a necessary input leads to high

derivatives of the secant. With the choice of the right subset

the bounding value L can be approximate. Further increase

of the input space dimension leads to similar or even higher

values of the secant derivative, so that the minimum indicates

the right subset.

For a Lipschitz bounded function the following expression

holds:

L ≥ |f(�x1)− f(�x2)|
|�x1 − �x2| . (5)

The derivative of every secant between the points �xi and �xj

can be defined by:

qi,j =
|f(�xi)− f(�xj)|
|�xi − �xj | . (6)

The numerator can be rewritten with total differential and the

Cauchy-Schwarz inequality:

qi,j =

∣∣∣ ∂f
∂x1

dx1 + . . .+ ∂f
∂xn

dxn

∣∣∣√
(dx1)

2
+ . . .+ (dxn)

2

≤M · |dx1 + . . .+ dxn|√
(dx1)

2
+ . . .+ (dxn)

2
≤ √n ·M .

(7)

The number of inputs is n and M is a bounding value. The

difference of the n-th component of xi and xj is represented

by dxn.

Because of (5) the value of qi,j lies between zero and L. So

the largest values of qi,j are close to L. With this information

an index is defined based on the p largest qi,j . Because of

the quotient which defines qi,j the geometric mean is used to

average:

q(�x) =
√
n

(
p∏

l=1

qi,j(l)

) 1
p

. (8)

High values for q(�x) indicate a derivative which violates

the bounding value L. These huge q(�x) only occur at small

changes in �x while the corresponding output y shows a

relatively big discrepancy. This leads to the assumption that

an important input of the system is missing.

It was proposed to add successive delayed inputs and

outputs until the value of q(�x) becomes a minimum or runs

into saturation.

B. False Nearest Neighbor Approach

The proposed approach classifies data points in true or false

nearest neighbors (TNN/ FNN). For every data point in the

chosen subset the nearest neighbor (NN) can be computed (e.g.

with the Euclidean distance). This is done by minimizing the

distance dx:

dx = |�xi − �xi,NN|2 . (9)

After that, the distance of the corresponding output variables

y(�xi) and y(�xi,NN) is computed dy = |y(�xi)− y(�xi,NN)|. To

check if the nearest neighbors in the input are also near in the

output the quotient of the distances is computed:

dy
dx

=
|y(�xi)− y(�xi,NN)|
|�xi − �xi,NN|2

. (10)

If an important input is neglected, there will be some huge

distances in the output space, while in the input space the

distance is small. In this case the quotient in (10) becomes very

large. In order to classify these points as FNNs a threshold R
is introduced:

|y(�xi)− y(�xi,NN)|
|�xi − �xi,NN|2

≤ R . (11)

If the expression in (11) is true the neighbor are true

neighbors, otherwise they are false.

C. Gamma Test approach

The Gamma Test uses k-Nearest-Neighbors (kNN) in the

input space to estimate the variance of the process, with 1 <
k < p and p ≈ 10. For each k the averaged squared distance

between �xi and its kNN �xi,kNN is calculated:

δ(k) =
1

N

N∑
i=1

(�xi − �xi,kNN)
2
. (12)

For each distance between �xi and �xi,kNN, the squared output

distance is calculated and averaged to get γ(k) (note that
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y(�xi,kNN) and y(�xi) are not necessarily kNN in the output

space, although �xi and �xi,kNN are kNN in the input space).

γ(k) =
1

2 ·N
N∑
i=1

(y(�xi)− y(�xi,kNN))
2
. (13)

The values of �γ and �δ are used to fit a regression line. On

the one hand the vertical intercept of this line represents the

variance of the process, on the other hand, the intercept can

be interpreted as the squared distance of the 0th Nearest

Neighbor, which is a good measurement for the variance.

While in this paper it is not the task to determine the

variance of the process, the Gamma Test can be used to

evaluate the subset. This is possible, because to small subsets

act like the true subset with high variance (see Sec. III).

D. Delta Test approach

The Delta Test is a simplification of the Gamma Test [7].

The Delta Test uses in contrast to the Gamma Test just the

first-Nearest-Neighbor (NN) for this approach. Similar to FNN

the distance in the output, is calculated by the nearest neighbor

in the input. In contrast to FNN the aggregated distance of the

output is used to evaluate the chosen subset. Note that δ is the

same value like γ(1) out of the Gamma Test (Eq. (13)):

δ =
1

2 ·N
N∑
i=1

(y(�xi)− y(�xi,NN))
2
. (14)

E. Proximal Correlation Coefficient approach

The main idea of the Proximal Correlation Coefficient is

based on the relation of distances in the input to the output

space. It can be shown, that a function h(�x) correlated with

itself where the input is disturbed by some small quantities

h∗(�x+Δ �x0), the correlation will be high:

rh,h∗ =
1

N

N∑
i=1

(h(�xi)− μh)(h
∗(�xi)− μh∗)

σhσh∗
≈ 1 . (15)

The mean and standard deviation of the function f is

represented by μf an σf On the other hand, two different

functions h(�x) and g(�x) are usually uncorrelated:

rh,g =
1

N

N∑
i=1

(h(�xi)− μh)(g(�xi)− μg)

σhσg
≈ 0 . (16)

By reproducing the introduced functions f and f∗ this can

be used to determine the correct subset. Let �xi be a data point

in a chosen subset, then the nearest neighbor of �xi can be

represented by.

�xi,NN = �xi +Δ�x . (17)

By sorting the input space by the nearest neighbors (here

the Euclidean distance is used) subsequent data points can be

described by

�xi+1 = �xi +Δ�x (18)

so the correlation of the related outputs of the nonlinear

function can be used for rating the chosen subset:

rf,f =
1

N − 1

N−1∑
i=1

(f(�xi)− μf )(f( �xi+1)− μf )

σ2
f

. (19)

A high correlation near to one indicates the chosen subset to

be the ‘true’ input combination. In the following section the

differences of the introduced approaches are discussed.

III. A DISCUSSION OF THE APPROACHES

We propose the ”Distance Space” to visualize distances

in the output over the corresponding distances in the input.

This approach is inspired by [7] and can be used to show the

strategy of most approaches. In this section the following steps

are investigated:

1) To introduce the Distance Space a static process is used.

The input is defined by uniform distributed input data

u and N = 100 data points. The process is a sigmoid

function: The effect of noise and a wrong selected subset

is underlined.

2) In the next step the undisturbed process with correct in-

put is transformed to the Distance Space and visualized

with a scatter plot.

3) For the most approaches only the (lower) left corner of

the whole Distance Space is important, which leads to

a reduction of the whole Distance Space. The influence

of noise and wrong chosen subsets will be illustrated.

4) Finally the different approaches are visualized in the

Distance Space using the wrong subset Si = {v}.
It is obvious, that all of the introduced approaches are based

on a geometrical approach. Especially the Lipschitz quotient

approach, the FNN approach, the Gamma Test and the Delta

Test evaluate the distances in the input and output space

directly. In the first step the PCC uses also the geometric

characteristics of the input, but in the second step the output

is used to compare with some theoretic assumptions.

While the distances of the input and output space are used

for determination of the correct subset, these two values can

be plotted, using a scatter plot. In Fig. 1a) the undisturbed

sigmoid function output is plotted over the correct input.

In the following the influence of noise and wrongly chosen

subsets are investigated. Fig. 1b outlines the influence of white

gaussian noise. For a wrong subset Si = {v} where v is

uniform distributed data, Fig. 1c clarifies, that there is no

relation between v and y. By expanding the input space to

Si = {u, v}, Fig 1d shows that only u influences the output.

So v is not necessary to reconstruct the output.

The whole Distance Space for the correct subset without

noise is plotted in Fig. 2.

Now the examples shown in Fig. 1 are transformed to the

Distance Space. For the transformation only the ten nearest

neighbors in the input are used. Because of that qualitatively

only the left hand side of the whole Distance Space is plotted.

In Fig. 3 the reduced Distance Space is plotted for the

examples from Fig. 1.
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(d) Wrong subset: Si = {u, v}
Fig. 1. For representation of the Distance Space a sigmoid function with
uniform distributed input data N = 100 is used. Upper left: Undisturbed
process. Upper right: Process disturbed with gaussian noise (σ = 0.05).
Lower left: Wrong subset Si = {v} without noise. Lower right: Wrong
subset Si = {u, v} without noise.
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Fig. 2. All distances in the output plotted over the input distances for an
undisturbed process with correct input

Figure 3a demonstrates how an ideal process dataset looks

like in the Distance Space. A sharp separation line, crossing

the origin of the coordinate system, can be observed. Neither

Fig. 3b nor Fig. 3c show this clear separation. This indicates,

that the process output is noisy, or the wrong/ to small

input space is used to represent the output. Only Fig 3d

delivers similar results like the correct input without noise.
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(c) Wrong subset without noise
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(d) Wrong subset without noise

Fig. 3. Distribution of the first ten nearest neighbors in the Distance Space.
Upper left: correct subset without noise. Upper right: correct subset with
gaussian noise. Lower left: Wrong subset Si = {v} without noise. Lower
right: Wrong subset Si = {u, v} without noise.

This underlines, that it is hard to seperate the correct input

from an expanded input space.

In the following the five discussed approaches for input

selection are interpreted and analyzed in the Distance Space

scatter plot. Because of the similarity of the disturbed process

with correct input and the undisturbed process with the wrong

subset Si = {v}, only the wrong subset will be further

investigated.

1) Lipschitz quotient approach in the Distance Space:
The Lipschitz quotient approach estimates a regression

line without intercept in the Distance Space. To calculate

the regression line, the points with the highest resulting

slopes are selected. These slopes are geometrical av-

eraged to build the quotient q. This value q rates the

subset. When q is very large, this indicates a wrong

subset, while a low q refers to the right input space.

Distance in S = {v}
0 0.05 0.1 0.15

D
is
t
a
n
c
e
in

y

0

0.2

0.4

0.6

0.8

1

(a) View including all kNN distances
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(b) Zoomed view to the critical points

Fig. 4. Representation of the Lipschitz Criterion in the Space of input and
output distances

2) FNN approach in the Distance Space:
The threshold R of FNN can be represented by a line

in the Distance Space with the slope R and no intercept
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(see Figure 5). The points above this line are classified

as false nearest neighbors. The ratio of FNN to TNN is

used to rate the subset. For the correct subset the value

for FNN should tend to zero.
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FNN
TNN
classification boundary

Fig. 5. Classification of FNN in the Distance Space

3) Gamma Test in the Distance Space:
Figure 6 illustrates the Gamma Test. The Gamma Test

fits a regression line in the Distance Space similar to the

Lipschitz quotient approach. In contrast to Lipschitz, the

regression line has an intercept and is calculated with

the averaged distances in the output corresponding to

the 1st to kth nearest neighbor in the input. Through

these resulting points (circles in Fig. 6) in the Distance

Space a regression line is fitted. The intercept with the

vertical axis of this line represents the variance of the

underlying data set. This value can be interpreted as the

’0-th Nearest Neighbor’. An incomplete subset shows

similar properties in the Distance Space like noise in

the output. So a high variance can be interpreted as a

wrong subset.
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Fig. 6. Data distribution in the scaled u-y input space

4) Delta Test in the Distance Space:
The Delta Test is a simplification of the Gamma Test.

While the Gamma Test needs the 1st to kth nearest

neighbor in the input to determine the variance, the Delta

Test approximates the variance just by the 1st nearest

neighbor. So the value of the most left circle in Fig 6

represents the value of the Delta Test.

Note that the values for the Gamma Test and Delta Test (see

Fig. 6) where linear transformed from the original equations

in (12) to (14) to visualize these approaches in the introduced

Distance Space.

Here were only the wrong subset Si = {v} investigated.

For a perfect dataset without noise and the correct input, the

approaches would bring even better results. For example: The

critical points of the Lipschitz quotient approach would lie on

the sharp separation in Fig. 3a. The FNN would classify all

neighbors as true, with an proper adjusted R. Even the Gamma

Test would deliver an variance close to zero, which is just a

little bit smaller than the Delta Test value.

IV. EXAMPLE PROCESSES

For illustration and comparison, some synthetic dynamic

systems are used. Different chosen subsets are evaluated and

classified according to the five approaches.

1) Nonlinear dynamic function from [10]:

y(k) = (0.6− 0.1 · a(k − 1)) · y(k − 1)

+ a(k − 1) · u(k − 1)

with: a(k) =
0.6− 0.06 · y(k)
1 + 0.2 · y(k) .

(20)

2) Nonlinear dynamic function from [10]:

y(k) = 0.95 · y(k − 1)

+ sin(0.8 · π · u(k − 1)) · (1.5− u(k − 1)) .
(21)

3) Nonlinear dynamic function from [4]:

y(k) =
u(k − 1) + a(k) · (y(k − 3)− 1)

1 + y(k − 2)2 + y(k − 3)2

with:

a(k) = y(k − 1) · y(k − 2) · y(k − 3) · u(k − 2) .
(22)

4) Nonlinear time series from [6]:

y(k) = 3.57 · y(k − 1) · (1− y(k − 1)) . (23)

5) Nonlinear time series from [11]:

y(k) = (0.8− 0.5 · exp(−(y(k − 1)2))) · y(k − 1)

− (0.3 + 0.9 · exp(−(y(k − 1)2))) · y(k − 2)

+ 0.1 · sin(π · y(k − 1)) .
(24)

These dynamic systems are excited by a chirp signal.

For a given data size the input signals are equal which

would lead to similar results. To modify these signals a small

random variation is added to the original input. One input

signal is shown in Figure 7. The output of the systems are left

undisturbed, to exclude this influence.
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Fig. 7. One of the evaluated input signals for N = 100 data points

While the proposed approaches deliver a value to rate the

chosen subset, it is the task of the user to decide on a strategy

to generate these subsets. Here we take a forward selection

approach, which adds successively the inputs with the best

evaluation criterion and the best subset is chosen.

The potential inputs for the function are chosen as u(k −
1), . . . , u(k− 5) and y(k− 1), . . . , y(k− 5). To determine the

effect of the amount of data 20 different data sizes are used.

For each signal length 20 datasets are generated for statistical

evaluation.

V. RESULTS

The results can be separated into two parts: First in Sec.

V-A the delayed inputs and outputs were chosen free. Sec.

V-B presents the results with an additional restriction: The

delayed inputs and outputs have to be chosen successively,

which means, that an delayed input u(k−n) or y(k−n) can

only be chosen, if u(k − n+ 1) or y(k − n+ 1) was chosen

before.

A. Choosing the inputs free

To rate the results the chosen subset is compared to the

right subset. The figures 8a-9b show the fraction of correctly

chosen inputs. Only the FNN approach has a tuning parameter

which is set to R = 0.1 for all computations.

1) For the first function the correct input space is spanned

by {u(k − 1), y(k − 1)}. As we can see, the Delta Test

and FNN approach find the right subset in many cases.

The median indicates, that also the Lipschitz quotient

approach choses the right inputs relatively often but with

much higher variance. The PCC and the Gamma Test

perform significantly worse.

2) The second function posses the identical correct subset

like the first function. The results are comparable to the

previous ones.

3) In Fig. 8c the results for function 3

with an input space spanned by

{u(k − 1), u(k − 2), y(k − 1), y(k − 2), y(k − 3)}
are shown. This subset size brings the approaches to

their limits. FNN and PCC find most of the right inputs

in many cases. The Gamma Test, and its approximation

the Gamma Test, are close to PCC and FNN. Here
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Fig. 8. Results of the input output processes
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Fig. 9. Results of the time series processes

the Lipschitz quotient shows a median around 0.5with

high variance which is insufficient for model order

determination.

4) In Fig. 9a a time series is reviewed. To deal with the time

series function in a fair manner compared to the input-

output systems, the approaches are allowed to select

delayed inputs, like the previous functions. Here the dif-

ferences between the approaches are more pronounced.

While FNN, Delta Test and even PCC perform well with
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correct subset selection ratios close to one (with a few

outlier), the Gamma Test and Lipschitz fail in many

cases. Note that missing boxes are concentrated on the

median value.

5) The last time series function 5 with a strong nonlinearity

is harder to determine than the other time series function.

Here all the approaches perform unsatisfactory. The

Lipschitz quotient and the Gamma Test often determine

one out of two inputs correct. The other approaches

operate slightly better, but also unsuitable.

B. Choosing the inputs successively
Figure 10 visualizes the results of the successively chosen

inputs and outputs according to [4]. Equal to Sec. V-A for

each of the 20 different data sizes, 20 variations of the input

signal are used, so that each approach-function combination

represents 400 evaluations. The color in fig. 10 shows how

many of the evaluated data reached the input order (identified

by the axes). A dark color indicates a high concentration of

results.
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Fig. 10. Results of successively chosen inputs and outputs. A dark shaded
color indicates a high concentration of results.

Similar to the free chosen results, it is shown, that the

certainty of the estimation decreases with the complexity of the

underlying function. By comparing the different approaches

it becomes clear, that the PCC delivers uncertain results for

each function. The Lipschitz quotient in contrast has a high

certainty for each function, followed by the Delta Test. The

Gamma Test and the FNN approach have similar reliable

results in between of PCC and Delta Test.
It is obvious, that all the reviewed approaches identify a

to complex model structure. One reason for this could be the

difficult task, to recognition of the saturation.
Beside the discussed results, the systems were also evalu-

ated with a different input signal. Even an amplitude modu-

lated pseudo random binary signal (APRBS) shows qualita-

tively the same results as the presented chirp signal. But the

APRBS needs to get a variation like the presented chirp signal.

That is because the APRBS delivers a constant zero signal for

the first T steps u(k = 0) = u(k = 1) = . . . = u(k = T ) = 0.

So the output of the investigated systems become zero too

y(k = 0) = y(k = 1) = . . . = y(k = T ) = 0. This leads to

a distance equal to zero in the input and the corresponding

output. So the fraction of these distances is not defined.

Another possibility is to cut the first steps of the signal, to

get rid of this problem.

VI. CONCLUSION AND OUTLOOK

In this work several model free input selection approaches

are reviewed. It has been shown, that the most of them rely

of the geometric in the Distance Space. The right subset

with undisturbed output shows a sharp separation between

feasible and unfeasible regions in the Distance Space, which

the proposed approaches try to detect. While a to small input

space acts similar to the true subset with noise, an input set

with to many inputs does not differ that much from the true

subset. So the automatically determination for each approach

is a difficult task.

The free and the successively selection of inputs can be

summarized as followed: For simple processes, all of the

proposed approaches determine the model structure with a

high certainty, but less quality. And the quality decreases even

more with more complex process structures. Remember, that

the development of the results are under optimal conditions.

There was no noise in the input and in the output and the

input has a high dynamic range, so that the whole input space

is covered with data.

In contrast to the size of the right input space, there is no

visible effect of the number of data samples to the result. Also

the successively adding has to consider the structure (e.g. time

series or input output system) of the underlying process. By

disregarding, at least one unnecessary input is chosen by each

approach.

Obviously it is hard to determine the correct model order

of an complex process with uncomplex approaches. The next

step is to compare the results of the model free approaches

with model based ones. While today’s modeling techniques are

possible to identify nonlinearities, there should be noticeable

differences between these two classes of model order deter-

mination approaches.
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