
Extended Deterministic Local Search Algorithm for
Maximin Latin Hypercube Designs

Tobias Ebert, Torsten Fischer, Julian Belz, Tim Oliver Heinz, Geritt Kampmann, Oliver Nelles
Department of Mechanical Engineering

University of Siegen

D-57068 Siegen, Germany

Email: http://www.mb.uni-siegen.de/mrt/mitarbeiter/

Abstract—This paper introduces the Extended Deterministic
Local Search (EDLS) algorithm for Latin Hypercube (LH)
designs. The main goal of the algorithm is to improve an existing
algorithm towards a better uniformity of the data distribution,
while maintaining a good computational performance. Uniform
distributed data sets are well suited for system identification
if no model structure is known beforehand. After presenting
background information about LH designs and how to assess
their quality (choice of loss function), the EDLS algorithm is
explained and compared to two other algorithms for LH designs.

I. INTRODUCTION

The foundation for creating good models from (measured)

data is a good distribution of the data points in the input space,

the so-called experimental design. In the field of Design of

Experiments (DoE) many methods to find a well-suited design

for function approximation have been proposed. This generally

means to find a design that, despite of measurement noise,

allows for low bias and minimizes the variance in the estimated

parameters of the model, while requiring as few data points

as possible to minimize experimental costs.

If the model structure corresponds to a linear regression

problem, several popular optimality criteria exist (e.g. D-,

A-,V-optimal designs) for which an optimal design can be

calculated efficiently. For instance, an A-optimal design min-

imizes the sum of the variances of the regression coeffi-

cients [1].

If it is not known what kind of model structure will fit

the identification problem best or the model type is unknown

beforehand for other reasons, different criteria may be of

higher importance. For example an uniform distribution of

data points in the entire input space is a reasonable demand

in this case. Also a non-collapsing design is desirable, if the

importance of individual inputs is unknown and some might

later be removed from the model. Non-collapsing means, that

if all data points are projected onto one axis, all values along

that axis will only occur once. While providing uniformity,

simply placing the points on an evenly spaced grid is usu-

ally not feasible in situations with a high number of input

dimensions. Furthermore, the grid points coincide on all axis-

projections. In these situations the use of Sobol sequences [2],

[3] is preferable. A strategy that places points on a fine grid but

avoids the curse of dimensionality is the Latin Hypercube (LH)

design. LH designs have the property of being non-collapsing,

but do not inherently provide a uniform data distribution.

To gain a (at least approximately) uniform distribution, the

LH design has to be optimized using a loss function suitable

to represent the uniformity. This is an intractable complex

combinatorial problem, if an exhaustive method is used which

simply tries to calculate the loss function for each possible

LH configuration. For higher dimensions or a higher number

of design points, this is not a feasible approach.

To solve this problem, some researchers use global opti-

mization methods like particle swarm optimization [4], sim-

ulated annealing [5] or a special form of evolutionary algo-

rithm [6] for maximizing a distance measure between points.

For these methods a continuous loss function is advantageous

for optimization. Therefore [5] introduced the so called φp cri-

terion, which approximates the maximin distance criterion [7].

Local search methods, like in [8], do not need a continuous

loss function. They can directly use the maximin distance

criterion, although it is a discontinuous loss function. Another

approach is a geometrically ordered LH design [9], [10]. An

overview of LH design methods can be found in [11].

The algorithm presented in this paper is a local optimization

approach based on the Deterministic Local Search (DLS)

algorithm presented in [8], where it was shown that in many

cases the algorithm is superior to a simulated annealing

approach. Here the DLS algorithm is extended by a second

phase, to improve the uniformity of the data distribution, while

simultaneously improving the performance, keeping the com-

putational demand moderate and retaining the deterministic

nature.

Since it is not a simple task to define a suitable quality

criterion for LH design optimization, the following section

discusses some aspects of the loss functions usually used. In

Sec. III LH designs and their properties are briefly introduced,

before in Sec. IV the Deterministic Local Search (DLS)

algorithm and the proposed extended version (EDLS) are

explained. In Sec. V the EDLS algorithm is tested against two

other algorithms for LH designs. Besides the DLS we consider

the geometrically approach called translational propagation

algorithm (TPLHD) developed in [9], which is supposed to

approximate the optimal latin hypercube design reasonably

well for up to 6 variables. Finally, a conclusion is given.

2015 IEEE Symposium Series on Computational Intelligence

978-1-4799-7560-0/15 $31.00 © 2015 IEEE

DOI 10.1109/SSCI.2015.63

375

II. LOSS FUNCTION

To evaluate the quality of a data distribution, a loss function

has to be defined. Here quality refers to the uniformity of the

data distribution, since an even coverage of the input space

is the best choice, if no prior knowledge about the process

of interest is available. All of the presented loss functions

are based on distances in the design space. Basically, they

depend on one critical pair of points, which delivers the critical

distance dcrit . The definition of dcrit depends on the loss

function at hand as will be described in the following. Usually

euclidean distance measures are used, but the functions are not

restricted to these.

The general idea is to rearrange the data points such that

the loss function and thereby the data distribution improves

until a so-called optimal design is achieved. Depending on the

loss function either maximin (Mm) or minimax (mM) designs

arise, that are introduced in [7]. Both loss functions are based

on nearest neighbor distances and typically possess many local

optima.

Minimax (mM) Loss Function

In a set of NP potential design points P, a chosen design

with NX points X is a subset of P. Typically, NX � NP.

When the maximum distance of each p ∈ P to the nearest

x ∈ X is minimized, X is called a minimax design of P. In

other words: In an mM design, the farthest distance of p ∈ P

to its nearest point x ∈X has a minimal distance. In [7] a mM

design is described as follows:

min
X

(
max
p∈P

(
min
x∈X

(d(p,x))
))

= d∗ (1)

Where d(p,x) is the distance between one potential design

point p and a chosen point x. It is obvious, that a part of (1)

can be used to rate a chosen design Xi:

max
p∈P

(
min
x∈Xi

(d(p,x))
)
= dmM,i (2)

The distance dmM,i rates the design Xi, where smaller values

are preferred. The calculation of dmM,i needs (NP−NX) ·NX

distance evaluations, which makes it not feasible for big NX.

Figure 1 illustrates two different LH designs (see Sec.III).

Here the values of P are represented by crosses and X are

circles. In Fig. 1a one can observe a poor data distribution

in two corners. The distances dmM can be interpreted as

the distance to the largest “hole” which is penalized in the

mM loss function. Figure 1b highlights a mM design. The

distance to the biggest “hole” is considerably smaller than

in Fig. 1a. Another motivation of the mM design is based on

the assumption, that each x delivers an amount of information,

which decreases with increasing distance. So in an mM design,

the minimal information of each p ∈ P is maximized.

u1

u2

dmM

(a) Bad LH design

u1

u2

dmM

(b) mM LH design

Fig. 1. One of the critical distances in terms of a minimax loss function for
a bad (a) and optimal (b) design

Maximin (Mm) Loss Function

In an Mm design, the distance of the two nearest neighbors

of a chosen design is maximized, so that it satisfies the

following equation:

max
X

(
min

xi,x j∈X,i �= j
(d(xi,x j))

)
= do (3)

The distance of the two nearest neighbors in X can be used

to measure the quality of the design.

min
xi,x j∈Xi,i�= j

(d(xi,x j)) = dMm,i (4)

The calculation of the Mm loss function needs at least
(NX−1)·NX/2 distance evaluations. For NX � NP the computa-

tional effort is significantly smaller than for mM.

dMm

u1

u2

(a) Bad LH design

dMm

u1

u2

(b) mM LH design

Fig. 2. One of the critical distances in terms of a maximin loss function for
a bad (a) and optimal (b) design

Figure 2a shows high data concentration in two corners.

This density can be represented by the distance dMm. In the

Mm loss function these data clusters are penalized. The goal of

an Mm design can be interpreted as follows: Each x delivers

an amount of information, which decreases with increasing

distance. For an Mm design each point covers a maximal

hyper-volume (see dMm in Fig. 2b) with its information.

Even if the mM design in Fig. 1b and the Mm design in Fig.

2b are equal, this is not the case for more complex designs.

As discussed in [7], Mm designs are typically denser around

the boundaries.

376

In case of Mm LH designs the squared critical distance is

often used to assess the quality of the data distribution.

D2 = d2
Mm ∈ N (5)

This value can easily be interpreted, if the LH levels

incorporate only integer values from 1 up to N. For n input

dimensions the minimum diagonal squared distance is known

to be n for two points next to each other.

For an LH design P the loss function of mM and Mm

are discontinuous. Both depend on a critical pair of points,

which delivers the critical distance dcrit that can either be

dMm,i or dmM,i. To overcome this discontinuity for the Mm

loss function, an approximation is proposed in [5].

Maximin Approximation

It is obvious, that (4) is not continuously differentiable,

because changing the critical points, which define dMm,i, would

lead to change in the critical point pair. Such a function is hard

to optimize. In [5] the φp value was introduced:

φp =
p

√√√√ N

∑
i=1

N

∑
j=i+1

(d(i, j))−p (6)

In contrast to (4), φp is a continuous function for finite values

of p. For p→∞, the maximin design criterion is reestablished.

Note that the higher p is, the more the smallest distances will

be emphasized. Besides the property of being a continuous

function, the φp value represents the data distribution better

than just the critical distance. All distances contribute to

that value. According to [5], [7], [8], typical values are p =
20 . . .50. One main weakness of mM and Mm optimization is

the sole focus on the worst point. A perfect distribution can be

destroyed by a single bad point. This example illustrates the

weakness of these quality criteria. Of course their optimization
drives the points to a “good” overall distribution. However,

these criteria are not suited in order to evaluate the quality of

any overall point distribution. φp can weaken but not overcome

these shortcomings.

III. LATIN HYPERCUBE DESIGNS

Basically there are two desirable properties for the design of

experiments, if no prior knowledge about the function or pro-

cess of interest is available. The design should cover the whole

input space uniformly and it should be non-collapsing [12]

as explained in the introduction. This property is especially

appealing if the relevance of the input variables is unknown

a-priori. In case some inputs are identified to be irrelevant,

the values of each remaining relevant input are still uniformly

spread across each single axis without repetitions.

Latin hypercube (LH) designs were originally proposed for

computer experiments by [13] and [14] and automatically

fulfill the requirement of being non-collapsing. They are

computationally cheap to construct, cover the design region

without replications and pursue a geometrical approach to be

build [15]. The number of samples N has to be determined

a-priori and can be chosen arbitrarily. Once N is defined, each

axis of the input space is partitioned into N levels. For n inputs

an n-dimensional grid with Nn grid points emerges. Each level

of each input is only occupied once, such that a non-collapsing

design is guaranteed. Different LH designs for n= 2 and N = 7

are shown in Figures 1 and 2.

The property of being an LH design does not automatically

guarantee a space filling or uniform data distribution. There-

fore an optimization of the LH design has to be performed.

In order to achieve good space filling properties, one of the

loss functions presented in Sec. II can be utilized for the

optimization. The optimization of LH designs with respect to

a defined loss function leads to so called optimal LH designs

[15]. In contrast to the computationally cheap construction of

LH designs in general, the computational cost for optimal

LH designs is enormous. Thus, the algorithm for finding

optimal LH designs should be fast. The optimization procedure

proposed in this paper is based on element exchanges in the

design matrix and pursues a greedy strategy. It is explained in

detail in Sec. IV.

IV. ALGORITHM

The basis for our study is the local search with coordinate

exchange described in [8]. The idea of a coordinate exchange

algorithm is straightforward: A set X of N samples with

n variables or dimensions is given. The aim of the DLS

algorithm is to maximize the critical distance according to the

maximin (Mm) criterion in ((3)), see Sec. II. The optimization

criterion is improved by swapping the coordinates in one

dimension between a pair of samples. Pseudo code for a

deterministic local search (DLS) is shown in Algorithm 1.

The presented pseudo code is more detailed than necessary,

to allow for an easy extension to the code for an improved

algorithm, see next subsection. The DLS algorithm features

several desirable properties:

• It preserves an LH design, if the initial set of samples is

a LH.

• It is able to optimize designs with multiple samples per

level, i.e. the algorithm is also able to optimize any

collapsing design.

• As long as the range of variables is normalized in a

reasonable way, the algorithm operates on mixed discrete

and continuous variables.

• It is deterministic, its results are reproducible.

• It ensures improvement in every iteration and thus is

guaranteed to converge.

For an example of the algorithm see Fig. 3: a) Initialization:

The first critical point pair is 1-2 (the points are numbered

according to their columns 1 . . .5). b) Illegal swap 1 with 3

since the partner point distance to its new nearest neighbor is

not bigger than the critical distance: No improvement. c) Legal

swap 1 with 4: A distance improvement from 1-1 to 1-2 units.

Now the critical point pair is 2-3. Critical distance still is 1-1.

Swapping the first neighbor point 2: d) Illegal swap 2 with

1: The partner point does not improve the critical distance.

e) Illegal swap 2 with 4: Swap does not improve critical

377

Input: A normalized set of points X

Output: Set of points X with maximized distance of

each element to its nearest neighbors

Step 1: Calculate the nearest neighbors �xi,NN and its

distance di,NN to every point �xi ∈ X. Combine all nearest

neighbor distances di,NN in a vector �dNN and calculate

the critical distance dcrit = min(�dNN);
Step 2:The set of points with di,NN = dcrit form the worst

set of points W⊂ X;

Step 3: while W �= /0 do
Choose first element of W

�w :=�x j |�x j ∈W;

Form a set of possible coordinate swap partner points

S := X\{�x j,�x j,NN};

while S �= /0 do
Choose first element of S

�s :=�xk |�xk ∈ S;

Form a set of variables, where coordinates shall

be swapped V := {1, . . . ,n};

while V �= /0 do
swap coodinates of �w and �s in dimension

v := vm | vm ∈ V

resulting in �̃w and �̃s;

Calculate the distances dw,NN and ds,NN to

their nearest neighbors

�̃wNN ∈ X and �̃sNN ∈ X;

if dw,NN > dcrit and ds,NN > dcrit then
Update X by replacing �xk := �̃s and

�x j := �̃w;

goto Step 1 for next iteration.
else

Remove vm from V.

end
end
Remove �xk from S.

end
Remove �x j from W.

end
Algorithm 1: Deterministic Local Search (DLS)

distance. f) Illegal swap 2 with 5: Point and partner point

do not improve critical distance. Result: First neighbor point

cannot be swapped with any partner in dimension 1.

Swapping the second neighbor point 3: g) Illegal swap 3

with 1: Point does not improve critical distance. h) Illegal

swap 3 with 4: Partner point does not improve critical distance.

i) Legal swap 3 with 5: Point and partner point improve the

critical distance, a success! Critical distance increases from

1-1 to 1-2. Next critical point pair is again 1-2 but no legal

swapping partner can be found for point 1 or 2. Next critical

point pair is 4-5 but no legal swapping partner can be found

for point 4 or 5. Algorithm terminates.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 3. A 5×5 example of the DLS algorithm

Extended Deterministic Local Search

The DLS algorithm produces good results (see Sec. V), but

it exhibits one important flaw: If none of the critical or worst

points can be improved, the algorithm is terminated. While

it is reasonable to terminate the algorithm if performance

improvement is no longer possible, the DLS algorithm might

produce a suboptimal, non-uniform design. In order to further

improve the homogeneity of the data distribution, the DLS

procedure is extended. A subtle but far-reaching alteration

of the DLS algorithm leads to substantial improved results:

Instead of stopping the algorithm after the nearest neighbor

distance of the worst set of elements W can not be improved

anymore, all elements are examined, see Algorithm 2. The

With the structure presented in algorithm 1, replace Step

2 with:

Step 2: Sort the vector �dNN by increasing values. This

forms a sorted set of points W⊂ X.

Algorithm 2: Extended Deterministic Local search

(EDLS)

critical distance does not necessarily improve in each iteration

of the extended deterministic local search (EDLS) algorithm,

but no deteriorations are accepted. With every successful

iteration, the elements are distributed more homogeneously

in the input space, thus converging to a uniform distribution.

Also, by clearing space for other samples, the EDLS allows

further iterations of formerly locked elements, thus the critical

distance can further be improved during future iterations

leading to a more homogeneous data distribution. Therefore

378

�� ��� �� ��� �� ��� �� ���� �� ���	

�� ���
 �� ���� �� ���� �� ���� �� ����

�� ���� �� ��	� �� ��	 �� ��	
 �� ���

�� ��� �� ��� �� ���� �� ���� �� ���	

�� ���� �� ���� �� ����

�� ���� �� ��
� �� ��

����������
�������������
������������

��������
�������������
������������

Fig. 4. Improvement of the D2 values together with the corresponding data distribution for n = 2 inputs and N = 100 data points

the proposed Algorithm 2 improves the data distribution and

thereby also makes room for and realizes further improvements

in the critical distance (the actual optimization goal).

The complexity of the algorithm theoretically should be

approximately quadratic in the number of LH data points

because the number of pairs grows quadratically. Indeed this

complexity can be experimentally verified. With respect to the

input dimension an exponential complexity can be observed

which seems to be a manifestation of the curse of dimension-

ality.

Further improvements of the algorithms:

The pseudo code of the algorithms above shows only a

minimal realization of a local search. To improve the com-

putation speed or quality of the results, further improvements

are realized:

• It is not necessary to recalculate the distance to all

neighbors in step 1 in every iteration. This is only

necessary in the first iteration. The proximity relationship

only change for a very limited number of samples in

subsequent iterations, i.e. �xk, �x j, their former and new

nearest neighbors.

• The set of coordinate exchange partner points S can

be reduced by excluding useless for swapping samples.

Samples who have been tested in earlier loop cycles

within the same iteration must not be tested again. The

set S becomes significantly smaller, as more elements of

W are processed in Algorithm 2.

• The set of variables for coordinate exchange V should be

permuted from one iteration to the next. This improves the

quality of the result by impeding the alignment of samples

379

in repeating patterns. For many random initializations this

is irrelevant, but the effect is visible in bad initializations,

e.g. if all elements are diagonally aligned.

• It is possible to incorporate fixed elements. For example

if an old set of measurements is available and should

only be extended by some new measurements. The fixed

elements must simply be excluded from W and S, while

remaining in X. Though this may produce a collapsing

design, the algorithm still improves the distribution of

samples towards uniformity.

• If the number of critical point pairs after one swap

decreases, the swap is still accepted. Though no im-

provement is visible in the D2 value, the data will be

more uniformly distributed. This adjustment of the swap

acceptance improves the DLS as well as the EDLS

algorithm. In the example from Fig. 4 the D2 value of the

DLS is improved from 52 to 65. The EDLS gets from a

D2 value of 72 to a value of 74.

V. COMPARISON

A comparison between our approach (EDLS) for the op-

timization of LH designs and two other algorithms is made,

which are generally well-known for their good performance.

One competitor is called translational propagation algorithm

(TPLHD) and is based on geometrical patterns. The user must

choose a so called seed design, that is translated into arbitrary

high dimensions by recreating these patterns [9]. This heuristic

procedure is very fast, but the achieved quality of the LH

design highly depends on the chosen seed design. For this

comparison we choose the 1 x n seed design as recommended

by [9] and for which they claim to achieve comparable results

to simulated annealing optimization approaches, at least up to

six input variables. The second competitor to our approach

is the iterated local search (ILS) algorithm for maximin LH

designs proposed by [8]. In this procedure local optima found

through local searches (see Algorithm 1) are perturbed by

rearranging randomly chosen variables and points from the

current design. Through the perturbation the local search is

able to continue the optimization. Its result is only accepted,

if the achieved LH design quality increases. Perturbations and

subsequent local searches are repeated until a termination

condition is met. In [8] it is shown, that the LH designs

obtained by the ILS algorithm are superior to LH designs

found by simulated annealing optimization approaches. In

addition to the three competing approaches, the results from

basic local search (DLS) are given as reference.

The comparison of the three algorithms is done for 2, 4 and

6 variables for 10 to 200 points. For a better readability of the

following figures only every tenth point is plotted. The squared

critical distance D2 is plotted versus the number of points N.

Comparison can only be done, if the algorithms have the same

preconditions. Here we measure the calculation time required

by our EDLS and use it as termination criterion for the ILS

method to guarantee a good comparability. The calculation

times reach from nearly one second (N = 10; n = 2) to two

hours (N = 200; n = 6) on a simple personal computer. One

convergence plot, belonging to the data distributions shown

in Fig. 4, for n = 2 and N = 100 data points is exemplarily

shown in Fig. 5. As can be seen, most of the calculation time

Computation time in seconds
0 5 10 15

D
2 d

is
ta

nc
e

0

20

40

60

80

DLS
EDLS

Fig. 5. Convergence plot of the D2 distances obtained by the EDLS algorithm
for n = 2 inputs and N = 100 data points

is needed for the extension of the original DLS algorithm. For

large problems the algorithm can be stopped at any point in

time because it improves continuously. Note that even though

the D2 distance does not significantly improve through the

algorithm extension, a better uniformity of the data distribution

is significant, as can be seen in Fig. 4. The result of the

TPLHD algorithm and the intermediate result of our approach,

i.e. the D2 value after completing DLS without extension,

are obtained much faster. The comparison is still legitimate,

because both deterministic approaches have reached their best

possible solution for each combination of points and variables.

All search algorithms start with a diagonal LH design. This is

the worst initialization for finding a space-filling design.
Figure 6 shows the experimental results for a design space

consisting of 2 variables. Note that the D2 values increase

with the number of points N due to the fact, that the input

scaling grows. Each axis covers values between [1, N] and no

normalization is done. This leads to a better interpretability

of the achieved critical distances, since the minimum diagonal

distance maintains to be n for an input space of dimension n.

For a small number of points up to 70, all algorithms perform

equally well. EDLS has similar D2 values as the ILS algorithm,

in some cases it is even slightly better. The TPLHD leads to

better results in some particular cases, but is not generally

superior. For a design space consisting of 4 variables shown

in Fig. 7 the results are similar. For designs up to 80 Points

the algorithms achieve similar results. With more points in

the design space the TPLHD algorithm performs poorly and

DLS without extension becomes successively worse. EDLS is

slightly better than the ILS method and they both outperform

the other two. By increasing the number of variables to 6 these

effects are enhanced, as can be seen in Fig. 8. The quality

of the LH designs is comparable up to 50 points. For larger

number of points, the TPLHD algorithm becomes inferior.

The ILS and EDLS approach are both superior, but EDLS

is slightly better. With an increasing number of points DLS

without extension becomes successively worse. Note that close

380

Number of points
0 50 100 150 200

D
2 d

is
ta

nc
e

0

50

100

150

200

EDLS
ILS
DLS
TPLHD

Fig. 6. D2 distance for 10 to 200 Points for EDLS, ILS, DLS and TPLHD
with 2 variables.

Number of points
0 50 100 150 200

D
2 d

is
ta

nc
e

0

1000

2000

3000

4000

EDLS
ILS
DLS
TPLHD

Fig. 7. D2 distance for 10 to 200 Points for EDLS, ILS, DLS and TPLHD
with 4 variables.

Number of points
0 50 100 150 200

D
2 d

is
ta

nc
e

0

2000

4000

6000

8000

10000

EDLS
ILS
DLS
TPLHD

Fig. 8. D2 distance for 10 to 200 Points for EDLS, ILS, DLS and TPLHD
with 6 variables.

to the global optimum, small improvements in D2 correspond

to significantly improved point distributions.
Additionally, a comparison of the ILS method and our

EDLS is done for different initial LH designs. Therefore

100 random LH designs are generated and are optimized

afterwards with the two competing optimization algorithms.

Again, the computation time needed by EDLS is used as the

termination criterion for the ILS method. The comparison is

performed for three different data amounts (N = 50; N = 100;

N = 200) and n = 2, n = 4 as well as for n = 6 input variables.

Figure 9 exemplarily shows the histograms for N = 200

data points and n = 4 input variables. Note that the bins

count φp values, where smaller values indicate better data

distributions. Instead of the squared critical distance D2 the

φp (p = 50) values are shown. Since all point-pair distances

contribute to the φp value, it is a better representation of

the whole data distribution. As can be seen from Fig. 9 the

�
p

0 50 100 150

Fr
eq

ue
nc

y

0

10

20

30

40

(a) Initial designs

�
p

3.8 3.9 4 4.1 4.2

Fr
eq

ue
nc

y

0

10

20

30
EDLS (o)
ILS (�)

(b) Optimized designs

Fig. 9. Histograms of the initial (a) and optimized (b) φp values with the ILS
method and EDLS for N = 200 and n = 4. The cross indicates the LH design,
where all data points lay on the diagonal of the input space. The circle and
triangle show the optimized designs.

initial designs vary strongly in their φp values (variance of

initial φp values σ2
ini = 59.00). The variance of the optimized

LH designs is decreased heavily (σ2
EDLS = 2.85 · 10−4 and

σ2
ILS = 4.58 · 10−4). The mean φp value achieved by EDLS

is significantly smaller than the one obtained by using the

381

ILS algorithm for equal computation times, considering a

significance level of α = 0.01. This result is representative

for all our performed calculations. The only exception, where

no significant difference in the mean φp values can be found,

is for N = 50 and n = 2, see Table I. The gap between the

two optimization methods, that can be seen in Fig. 9b, tends

to become bigger with an increasing number of points for all

input dimensions. Besides the histograms for the randomly

generated initial LH designs, values for the initialization on

the diagonal of the hypercube are shown. Starting at the same

φp value marked with a cross in Fig. 9a, the optimized values

differ. Here EDLS yields a better result, indicated by the circle

in Fig. 9b, than the ILS method, marked with a triangle in

Fig. 9b.

TABLE I
MEAN φp VALUE ACHIEVED BY EDLS IS SIGNIFICANTLY BETTER (+) OR

WORSE (−) THAN THE ONE ACHIEVED BY ILS ALGORITHM. NO

SIGNIFICANT DIFFERENCE IS INDICATED BY O. THE SIGNIFICANCE LEVEL

IS α = 0.01.

������N =
n =

2 4 6

50 o + +

100 + + +

200 + + +

In summary, for a small number of design points the algo-

rithms yield comparable LH designs. For a two dimensional

design space and very few data points no algorithm is generally

superior. If the number of points increases for a given input

dimensionality, EDLS outperforms the other approaches for

the analyzed examples. For a practical use of these designs in

engineering applications, often more design points are required

to achieve a good result for modeling, especially for a high

number of variables. Considering higher dimensional input

spaces with an increasing number of points, EDLS tends to

result in the best distributed designs.

VI. CONCLUSION

A new algorithm for the maximin optimization of LH

designs is presented, that extends the local search used within

the already existing ILS method proposed in [8]. It is based

on element exchanges in the design matrix and pursues a

greedy strategy in order to improve the uniformity of the data

distribution. Our deterministic EDLS method is compared to

two other algorithms, i.e. ILS [8] and TPLHD [9] as well as

to an intermediate result, the DLS [8]. The investigations for

different input space dimensionalities show the superiority of

EDLS, if the number of samples is large. For small sample

sizes all competitors achieve comparable results. Additionally

the robustness of the EDLS as well as the ILS method with

respect to varying initial LH designs is shown. The achieved

uniformity of the data distribution for each algorithm scatters

only slightly due to different initializations.

REFERENCES

[1] D. C. Montgomery, Design and Analysis of Experiments, 5th ed. John
Wiley & Sons, Inc., USA, 2001.

[2] I. M. Sobol, “Distribution of points in a cube and approximate evaluation
of integrals,” USSR Computational Mathematics and Mathematical
Physics, vol. 7, pp. 86–112, 1967.

[3] I. M. Sobol, D. Asotsky, A. Kreinin, and S. Kucherenko, “Construc-
tion and Comparisonof High-Dimensional Sobol’ Generators,” Willmot
Magazine, pp. 64–79, Nov. 2011.

[4] R.-B. Chen, D.-N. Hsieh, Y. Hung, and W. Wang, “Optimizing latin
hypercube designs by particle swarm,” Statistics and Computing, vol. 23,
no. 5, pp. 663–676, 2013.

[5] M. D. Morris and T. J. Mitchell, “Exploratory designs for computational
experiments,” Journal of statistical planning and inference, vol. 43,
no. 3, pp. 381–402, 1995.

[6] R. Jin, W. Chen, and A. Sudjianto, “An efficient algorithm for con-
structing optimal design of computer experiments,” Journal of Statistical
Planning and Inference, vol. 134, no. 1, pp. 268–287, 2005.

[7] M. E. Johnson, L. M. Moore, and D. Ylvisaker, “Minimax and maximin
distance designs,” Journal of statistical planning and inference, vol. 26,
no. 2, pp. 131–148, 1990.

[8] A. Grosso, A. Jamali, and M. Locatelli, “Finding maximin latin hyper-
cube designs by iterated local search heuristics,” European Journal of
Operational Research, vol. 197, no. 2, pp. 541–547, 2009.

[9] F. A. C. Viana, G. Venter, and V. Balabanov, “An algorithm for fast
optimal latin hypercube design of experiments,” International journal
for numerical methods in engineering, vol. 82, no. 2, pp. 135–156, 2010.

[10] B. Husslage, G. Rennen, E. R. Van Dam, and D. Den Hertog, Space-
filling Latin hypercube designs for computer experiments. Tilburg
University, 2006.

[11] F. A. C. Viana, “Things you wanted to know about the latin hypercube
design and were afraid to ask,” in 10th World Congress on Structural
and Multidisciplinary Optimization, Orlando, Florida, USA (cf. p. 69),
2013.

[12] T. J. Santner, B. J. Williams, and W. Notz, The design and analysis of
computer experiments. Springer, 2003.

[13] M. D. McKay, R. J. Beckman, and W. J. Conover, “Comparison of three
methods for selecting values of input variables in the analysis of output
from a computer code,” Technometrics, vol. 21, no. 2, pp. 239–245,
1979.

[14] R. L. Iman and W. Conover, “Small sample sensitivity analysis tech-
niques for computer models. with an application to risk assessment,”
Communications in statistics-theory and methods, vol. 9, no. 17, pp.
1749–1842, 1980.

[15] J.-S. Park, “Optimal latin-hypercube designs for computer experiments,”
Journal of statistical planning and inference, vol. 39, no. 1, pp. 95–111,
1994.

382

