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Abstract—Accurate and effective fault detection and diagnosis
of modern engineering systems is crucial for ensuring reliability,
safety and maintaining the desired product quality. In this
work, we propose an innovative method for detecting small
faults in the highly correlated multivariate data. The developed
method utilizes partial least square (PLS) method as a modelling
framework, and the symmetrized Kullback-Leibler divergence
(KLD) as a monitoring index, where it is used to quantify
the dissimilarity between probability distributions of current
PLS-based residual and reference one obtained using fault-free
data. The performance of the PLS-based KLD fault detection
algorithm is illustrated and compared to the conventional PLS-
based fault detection methods. Using synthetic data, we have
demonstrated the greater sensitivity and effectiveness of the
developed method over the conventional methods, especially when
data are highly correlated and small faults are of interest.

I. INTRODUCTION

Process safety and product quality are two crucial issues

for modern industrial processes. Fault detection (FD) and

diagnosis play an important role from the view point of

improving product quality and enhancing process safety. As a

result of proper process monitoring, downtime is minimized,

safety of process operations is improved, and manufacturing

costs are reduced [1]. Of course, monitoring process can be

defined as the set of actions carried out to detect, isolate faulty

measurement sources and then remove them before they affect

the process performance [1]. The purpose of fault detection

is to identify any fault event indicating a distance from the

process behavior compared to its nominal behavior. Whereas

fault isolation is used to determine the location of the detected

fault. This work focuses on fault detection.

Data-based process monitoring methods, also known as

process history based methods or model-free methods[2], [3],

are able to extract useful information from the historical data,

computing the relationship between the variables without the

need for an analytical model. Towards this end, data-based

monitoring methods rely on the availability of historical data

obtained from the monitored process under nominal operating

conditions[4]. The fault-free data are first used to build an

empirical model that describes the nominal process’s behavior,

which is then used to detect faults in future data. Then,

the empirical model is used to estimate true values of new

measurements, and faults are detected and diagnosed. Since

no explicit models are required, the development of which

is usually costly or time consuming, data-based methods has

become very popular in industrial processes. However, the

performance of data-based methods mainly depends on the

availability of quantity and quality of the input data.

Various data-based FD techniques are referenced in the

bibliography, and they can be broadly categorized into two

main classes: univariate and multivariate techniques [4]. The

univariate statistical monitoring methods such as EWMA

(exponentially weighted moving average) chart and CUSUM

(cumulative sum) chart are essentially used to monitor only

one process variable [4], [5]. However, modern industrial

processes often present a large number of highly correlated

process variables. This is the area where univariate FD meth-

ods are unable to explain different aspects of the process and,

therefore, it is not appropriate for modern day processes [4].

Moreover, to monitor several different process variables in the

same time multivariate statistical monitoring were developed.

A multivariate FD methods take into account the correlation

between a process variables while univariate FD methods

do not. Particularly, for multivariate process monitoring pur-

pose, the latent variable regression (LVR)-based method has

received much attention in last decades. The main idea of

the LVR-based monitoring approach (e.g., partial least square

(PLS) regression, principal component analysis (PCA)) is to

extract the useful data information from the original data set,

and construct some statistics for monitoring [6], [7], [8], [8].

PLS also known as projection to latent structure is among

the most widely used multivariate statistical process monitor-

ing (MSPM) method for monitoring multivariate processes [9].

PLS attempts to decompose the data in such a way that

the correlation between predictor and predicted variables are

maximized [10]. By extracting the useful data information

from the original dataset, and then using monitoring indices

such as T 2 and Q statistics, PLS has been used successfully for

fault detection in multivariate process with highly correlated

variables. PLS-based process monitoring method as well its

variants has been largely exploited and used to different

engineering applications [7], [11], [12].

Detecting small or incipient faults in highly correlated

multivariate data is one of the most crucial and challenging

tasks in the area of fault detection and diagnosis. Indeed,

early detection of small or incipient faults can provides

an early warning and helps to avoid catastrophic damage

and subsequent financial loss. Unfortunately, the conventional978-1-4799-7560-0/15/$31 c©2015 IEEE
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PLS-based monitoring indices such as T 2 and Q statistic are

less efficient in detecting small faults as they use only the

information enclosed about the process in the last observa-

tion to take decision. These shortcomings of the T 2 and Q
statistics motivate the use of other alternatives in order to

mitigate these disadvantages. To do so, this paper is focused

in developing enhanced PLS fault detection method by using

Kullback-Liebler divergence (KLD) [13]. Such a choice is

mainly motivated by the greater ability of the KLD metric

to evaluate the similarity between two distributions, which

makes it very attractive as monitoring index. In particular, the

KLD is used as a measure to quantify the similarity between

the probability distributions of actual PLS-based residuals

and reference one. Of course, the main contribution of this

work is to exploit the advantages of the KLD index and

those of PLS modeling for enhancing detection performances

of conventional PLS, especially for detecting small faults in

highly correlated multivariate data.

The reminder sections of this paper is organized as follows.

In section II, a brief introduction to PLS and how it can be used

in fault detection are reviewed. In Section III, the Kullback-

Liebler divergence is briefly described. Section IV describes

the proposed PLS-based KLD fault detection approach. Next,

in Section V, we assess the proposed scheme and present

some simulation results. Finally, some concluding remarks and

future research directions are given in Section VI.

II. PLS-BASED PROCESS MONITORING

PLS is a well reputed multivariate statistical technique for

dimensionality reduction of process data [9]. The key role of

a linear PLS is based on its capability to deal with collinear

data, and several variables in both the input (predictor) ma-

trix X and output (response) matrix Y [10]. In its general

form PLS finds the latent variables from the process data

by capturing the largest variability in the data and achieves

the maximum cross-correlation among the predictor and the

response variables [10]. Given an input data matrix X ∈ Rn×m

having n observations and m variables, and an output data

matrix Y ∈ Rn×p consisting of p response variables, a PLS

model is formally determined by two sets of linear equations:

the inner model and the outer model [10]. The inner model

represents the relations between the latent variables (LVs), and

the outer model represents the relations linking the LVs and

their associated observed variables [14]. More details on the

PLS algorithms can be found in [10], [15].

The outer model, which links LVs, and the response and

predictor matrices, can be expressed as [14]:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

X = X̂+E =
l

∑
i=1

tiPT
i +E = TPT +E

Y = Ŷ+F =
l

∑
i=1

uiqT
i +F = UQT +F

(1)

where X̂ and Ŷ represent modeling matrices of X and Y,

respectively, the matrices T ∈ Rn×l and U ∈ Rn×q consist of l
kept LVs of the predictor and response data, respectively, the

matrices E ∈ Rn×m and F ∈ Rn×p represent the approximation

residuals of the predictor and response data, respectively, and

the matrices P ∈ Rm×l and Q ∈ Rp×q represent the predictor

and response loading matrices, respectively. The number of

LVs, l, can be estimated by using cross-validation or some

other techniques [16].

U = TB+H, (2)

where B represents a regression matrix which consists of the

model parameters linking the predictor and response LVs, and

H represents a residual matrix. The response Y can now be

expressed as: Y = TBQT +F∗. Of course, the PLS method

projects the data down to a number of LVs that explain most of

the variation in both predictors and responses and then models

the LVs by a linear regressions.

For PLS-based monitoring, two statistics, Hotelling’s T 2 and

Q or squared prediction error (SPE), are generally used [4].

The Hotelling’s T 2 is a statistical metric that captures the

behavior of retained LVs [17], and is defined as [17]:

T 2 = t̂T Λ̂−1 t̂, (3)

where Λ̂ = 1
n−1 T̂T T̂, is the covariance matrix of the l retained

LVs. For new testing data, when the T 2 value of exceeds the

control limit, it can be concluded that the process is out of

control [17].

The Q statistic, on the other hand, shows deviations from

normal operating conditions based on variations in the pre-

dictor variables that are not described by the PLS model [10].

Indeed, the Q(X) statistic quantifies the loss of fit with the PLS

model developed and is defined as [18]:

Q(X) =
∥∥x− x̂

∥∥2

2
, (4)

where x̂ represents the prediction of x by the PLS model.

When a vector of new data is available, the Q statistic is

calculated and compared with the threshold value Qα given

in [18]. A fault is detected if the Q statistics exceeds a

threshold Qα . The PLS-based fault detection algorithm is

summarized next.

1) Given:

• A training fault-free data set (X and y) that repre-

sents the normal process operations and a testing

data set (possibly faulty data),

2) Data preprocessing
• Scale the data that is used for process model build-

ing, to zero mean and unit variance,

3) Build the PLS model using the training data
• Select the number of latent variables using cross

validation or any other model selection method,

• Express the data matrix as a sum of approximate

and residual matrices as shown in equation (1),

• Compute the control limits for the statistical model

(e.g., the Qα statistic limits),

4) Test the new data
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• Scale the new data with the mean and standard

deviation obtained from the training data,

• Compute the residuals of the response variables, F,

• Compute the monitoring statistic (Q or T 2 statistics)

for the new data using equation (4) or (3),

5) Check for faults
• Declare a fault when new data exceeds the control

limits (e.g., Q > Qα ).

In conventional PLS-based monitoring, two statistics, T 2

and Q, are generally used for FD [4]. Although the two meth-

ods have their advantages and disadvantages, both tend to fail

to detect small faults [4], because they treat each observation

individually and don’t take into account information from past

data. That makes them insensitive to small fault in the process

variables and causes many missed detections. To overcome

these limitations of the conventional PLS-based monitoring

methods, we have developed an alternative fault detection

approach, in which PLS is used as a modeling framework for

fault detection using KLD metric. More details about KLD

metric, and how it can be used in fault detection are presented

next.

III. KULLBACK-LEIBLER DIVERGENCE-BASED

MONITORING METRIC

The Kullback-Leibler information (KLI) also well-known

in information theory as the relative entropy is an important

statistical measure that can be used to quantify the dissim-

ilarity, separability, distinguishability or closeness between

two probability density functions (PDFs) [13], [19]. It plays

a key role in various problems of statistical inference and

data processing such as detection, estimation, compression,

classification [20], [21].

Given two pdf’s p(x) and q(x) which are assumed to have

the same support, the KLI between p versus q is a measure

of the information lost when p is used to approximate q, and

defined as

I(p//q) = ∑
x∈X

p(x) ln
p(x)
q(x)

. (5)

As a matter of fact, the KLI measure is not a distance or

metric in the Euclidean sense, basically because the distance

between two distributions generally is not symmetric function

of p and q, i.e. I(p//q) is not equal to I(q//p)), and the triangle

inequality is not satisfied. Hence it must be interpreted as

a pseudo-distance measure only. It is non-negative and null

only when the two densities are equal. A familiar symmetrized

version of the Information is called the Kullback divergence,

which will be used in this paper as fault detection index.

Therefore, the KL divergence (KLD) between p(x) and q(x)
is given by:

J(p;q) = I(p//q)+ I(q//p). (6)

Assuming that p(x) and q(x) are two univariate normal

distributions, that is, p∼ N (μ0,σ0) and q∼N (μ1,σ1), the

KLD can be simplified as follows:

J(p,q) =
1

2

(
σ2

1

σ2
0

+
σ2

0

σ2
1

+(μ1−μ0)
2

(
1

σ2
0

+
1

σ2
1

)
−2

)
(7)

If σ2
1 = σ2

0 , the the Equation (7) can be rewritten as:

J(p,q) =
(μ1−μ0)

2

σ2
0

. (8)

Two similar distributions will have a small KLD close to

zero, while very different distributions would have a larger

KLD. It is this comparison operation which makes it well

useful index to anomaly detection. The KLD can be used

as a fault indicator by comparing the statistical similarity

between the residuals distributions before and after anomaly.

Therefore, it seems meaningful to adopt rather a PLS-based

KLD technique for the statistical process monitoring. In the

next section, the KLD metric will be integrated with PLS to

extend its fault detection abilities for detecting small faults.

IV. FAULT DETECTION USING PLS-BASED KLD

TECHNIQUE

In this section, PLS modelling framework is integrated with

KLD statistical index to develop a new fault detection scheme

with a higher sensitivity to small faults in the data. Towards

this end, the KLD is used to measure the divergence from the

reference distribution (using fault-free data) of residuals of the

responses variables obtained from the PLS model, in order to

detect anomalies. When the inspected system is under normal

operating conditions (no faults), the divergence measures

between the current distribution of residuals and reference

distributions is zero or close to zero in cases of modeling

uncertainties and measurement noise. However, when a fault

occurs, the KLD between the distributions before and after

change deviate significantly from zero indicating the presence

of a new condition that is significantly distinguishable from

the normal faultless working mode. Thus, this work exploits

the advantages of the KLD to improve fault detection over the

conventional PLS-based methods. The detailed procedure will

be exposed in the subsequent section.

A. PLS-Based KLD Monitoring Algorithm

As shown in Equation (1) of outer model, the output vector

y can be written as the sum of an approximated vector ŷ and

a residual vector F, i.e.,

y = ŷ+F. (9)

The difference between the observed value of the input

variable, y, and the predicted value, ŷ, obtained from PLS

model represent the residual of the output variable, F =
[ f1, . . . , ft , . . . , fn] which can be used as an indicator to detect

a possible fault. The residual F obtained from PLS model

is assumed to be Gaussian. In this paper, the problem of

detecting additive faults (or more specifically incipient faults)

385



is addressed. It is assumed that the fault affect the mean pa-

rameter of residual distributions and the variance is supposed

unchanged after the fault occurrence. The KLD measures the

distance of probability distribution of current residual p0( f )∼
N (μ1,σ2

0 ) against a reference one p1( f )∼N (μ0,σ2
0 ), where

μ0 and μ1 are the means and σ2
0 > 0 is the variance for

p0( f ) and p1( f ). Then, the KLD decision function based

on the residuals distributions of the response variable can be

computed as follows: J(p0( f ), p1( f )) = (μ1−μ0)
2

σ2
0

. Where μ0

and σ0 are the mean and the standard deviation of PLS-based

residuals obtained with fault free data. The KLD-based test

makes decision between the null hypothesis H0 (absence of

faults) and alternative hypothesis H1 (existence of faults) by

comparing between the decision statistic J(p0( f ), p1( f )) and

a given value of the threshold TJ .

J(p0( f ), p1( f )) =
(μ1−μ0)

2

σ2
0

><
H0

H1
TJ . (10)

For setting the detection threshold TJ , a simple approach based

on the three-sigma rule was used.

TJ = μTJ
0 +LσTJ

0 (11)

where μTJ
0 is the mean value, σTJ

0 is the standard deviation of

the nominal KLD value obtained with fault-free data, and L is

the width of the control limitswhich determines the confidence

limits, usually specified in practice as 3 for a false alarm rate

of 0.27%.

If the decision function J(p0( f ), p1( f )) is larger than the

threshold TJ , the KLD-based test decides for H1, otherwise

H0 is assumed to be true. The steps of the PLS-based KLD

anomaly detection algorithm are summarized in Figure 1.

In the next section, the performance of the PLS-based KLD

fault detection method will be evaluated and compared to

that of the conventional PLS fault detection scheme through

simulated example using synthetic data.

V. SIMULATED EXAMPLES

A. Fault detection in synthetic data

In this section, the performance of the proposed PLS-based

KLD fault detection algorithm is assessed through its utiliza-

tion to detect faults in synthetic data sets which contained

several different types of fault scenarios. We also conducted

the same tests for the standard PLS method and compared the

results with each other.

1) Data generation: The simulated data used in this exam-

ple consists of six input variables and one output. The input

variables are generated as follows:

x1 = u1 + ε1; x2 = u1 + ε2; x3 = u1 + ε3; x4 = u2 + ε4;

x5 = 2u2 + ε5; x6 = 2x1 +2x4 + ε6; (12)

where, εi, represent measurements errors, which follow a

zero-mean Gaussian distribution having a standard deviation

of 0.095. The first two input variables u1 and u2 represent

a quad-chirp signal (sinusoidal waveform with quadratically

Fig. 1. A block diagram of the PLS-based KLD anomaly detection algorithm.
KLD is used to compare the statistical distribution of a PLS-based residual
against that of a reference. If the divergence, J , is greater than some prede?ned
threshold, TJ , the presence of anomaly is declared.

increasing frequency) and a mishmash signal (this signal starts

with low frequency oscillations but frequency increases as time

goes on), respectively. The other input variables are computed

as linear combinations of the first two inputs, which means

that the input matrix X = [x1, . . . , x6] is of rank 2. Then, the

output variable is obtained as linear combination of the input

variables as follows:

y =
6

∑
i=1

aixi, (13)

where ai = {1,2,1,1.5,0.5}, with i ∈ [1,6].
2) PLS model building: A first step of the modeling

procedure, the model building step, was performed on the

training dataset. Then, the testing or model application step

was performed on the testing dataset. The training dataset was

chosen to define normal operating conditions. One thousand

process measurement dataset corresponding to the normal

operating conditions were first generated by the above models,

to perform a PLS model on (X; y). These data, are scaled to

be zero mean with a unit variance, and then will be used to

develop a PLS model.

An important step in PLS model building is the selection

of the number of latent variables. In this study, the cross

validation technique has been used to determine the number of

latent variables for PLS model. To perform cross validation,

the training dataset is divided into training and testing subsets.

Then, the model is fitted to the training subset, and the
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prediction errors are calculated for the testing subset. For this

example the first 500 faultless observations are considered as

the training data and the whole data set as the test data. The

optimal number of latent variables has been found to be 2.

Before applying the PLS-based KLD anomaly detection

strategy, we need to check whether the residuals of the

response variables follow Gaussian distribution to make sure

that the data are well represented using a linear PLS model.

Checking the normality of the residuals of response variable,

F , which were not captured by the PLS model, can be done

by visually checking the Henry’s line and the histogram of

residual vector, which are shown in Figure 2. Histogram and

Henry’s line, which are depicted in Figure 2, indicate that the

normality assumption appears to be a reasonable one.

−4 −3 −2 −1 0 1 2 3 4

x 10
−5

0.0005
0.001

0.005
0.01

0.05

0.1

0.25

0.5

0.75

0.9

0.95

0.99
0.995

0.999
0.9995

Residuals

 

 

P
ro

ba
bi

li
ty

−4 −3 −2 −1 0 1 2 3 4

x 10
−5

0

0.5

1

1.5

2

2.5

3
x 10

4

Residuals

F
re

qu
en

ci
es

 

 

Fig. 2. Gaussian distribution test; Left: Henry’s line. Right: Histograms
showing the normality of the residuals.

Now, the performance of the PLS-based KLD anomaly

detection strategy will be assessed. Before pre-processing the

training data, additive anomalies were injected into the raw

data. Two different cases of anomalies were simulated: abrupt

anomaly and gradual anomaly. In the first case study, it is

assumed that the testing data sets contains additive bias faults,

(case A). In the second case study is assumed that the testing

data set contains drift sensor fault (case B).

Case A: abrupt anomaly
In this case study, we investigated the problem of detecting

abrupt anomaly. The testing data used to compare the various

fault detection methods, which consist of 500 samples, are

generated using the same model described earlier in Equations

(12) and (13). To simulate a abrupt fault in the variable x1, an

additive fault having a magnitude 5% of the total variation in

x1 is introduced between samples 200 and 300.

The performances of the Q(x) and T 2 statistics are demon-

strated in Figure 3, top and bottom panels, respectively. The

dashed horizontal lines represent a 95% confidence limit used

to identify the possible faults. These results show that the

conventional PLS-based methods (Q(x) and T 2) are completely

unable to detect this small simulated fault. This is because

these conventional PLS-based fault detection metrics only take

into account the information provided by the present data

samples in the decision making process, which makes these

metrics not very powerful in detecting small changes. The

results of PLS-based KLD fault detection algorithm, however,

which are illustrated in Figure 4, clearly show the capability

of this proposed method in detecting this small fault without

false alarms.
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Fig. 3. The time evolution of the Q(X) statistic (top), and T 2 statistic (bottom)
in the presence of a bias fault in x1 (Case A).
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Fig. 4. The time evolution of the KLD decision statistic on a semi-logarithmic
scale in the presence of a bias fault in x1 (Case A).

Case B: gradual anomaly
Gradual or incipient anomalies, for example a slow drift in

a sensor, are more subtle and the impact is not so obvious.

However, incipient anomalies if left unattended for a long

period of time might degrade the required performance of

the inspected system and might lead to catastrophic damages.

The aim of this case study is to assess the potential of

the proposed PLS-based KLD anomaly detection approach in

detecting incipient or gradual anomaly. Towards this end, a

slow increase in the input variable x1 with a slope of 0.001

was added to the test data starting at sample number 300 of

the simulated testing data. In other words, the input variable

x1 was linearly increased from sample 300 till the testing data

by adding 0.001(k-300) to the x1 value of each sample in this

range, where k is the sample number. The Q(x) and T 2 statistics

for this case are plotted in Figure 5, top and bottom panels,

respectively. The result of the Q(x) and T 2 statistics show that

faults remained undetectable by applying the conventional PLS

statistic. In other words, The conventional PLS approach fails

to detect this small fault. In contrast to the conventional PLS,
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the results of KLD scheme, which are shown in Figure 6,

clearly indicate that the proposed strategy can successfully

detect this fault. The KLD statistic was gradually increased

as the fault was slowly developed, and began to violate the

threshold value when the fault magnitude become sufficiently

large enough to be detected by given model.

Fig. 6. The evolution of the KLD decision statistic in the presence of drift
fault with slope 0.001 in x1 (Case B).

In summary, the proposed method clearly outperforms the

Q(x) and T 2 methods. It successfully detects the small bias

faults without false alarms and detects the drift faults correctly

and more quickly. These results are encouraging especially

when it is of interest to detect faults with small magnitudes.

VI. CONCLUSION

Early detection of small fault is of crucial interest in order

to avoid the economic or even catastrophic consequences that

can result from an accumulation of such small anomalies. In

this paper, an incipient anomaly detection technique based on

KLD has been developed. PLS was used as the modelling

framework of the proposed PLS-based KLD anomaly detection

methodology. Then, the KLD was used as monitoring index

was applied to the output residuals of PLS model to detect

anomalies when the data did not fit the reference PLS model.

To assess the fault detection abilities of the proposed PLS-

based KLD anomaly detection method, two case studies were

considered, one involving an abrupt fault, the second one

involving a gradual or drifting fault. The simulation results

of all the cases clearly show the effectiveness of the proposed

algorithm anomaly detection methodology over conventional

PLS methods, especially small or moderate anomalies. It has

been shown that satisfactory detection results were obtained

using the proposed method, especially for detecting small

fault.

REFERENCES

[1] R. Isermann, “Model-based fault-detection and diagnosis : status and
applications,” Annual Reviews in Control, vol. 29, pp. 71–85, 2005.

[2] L. Chaing, E. Russel, and R. Braatz, “Fault detection and diagnosis in
industrial systems,” Springer, London, 2001.

[3] V. Venkatasubramanian, R. Rengaswamy, S. Kavuri, and K. Yin, “A
review of process fault detection and diagnosis part III: Process history
based methods,” Computers and Chemical Engineering, vol. 27, pp.
327–346, 2003.

[4] D. C. Montgomery, “Introduction to statistical quality control,” John
Wiley& Sons, New York, 2005.

[5] F. Harrou and M. Nounou, “Monitoring linear antenna arrays using an
exponentially weighted moving average-based fault detection scheme,”
Systems Science & Control Engineering: An Open Access Journal,
vol. 2, no. 1, pp. 433–443, 2014.

[6] F. Harrou, F. Kadri, S. Chaabane, C. Tahon, and Y. Sun, “Improved
principal component analysis for anomaly detection: Application to an
emergency department,” Computers & Industrial Engineering, vol. 88,
pp. 63–77, 2015.

[7] F. Harrou, M. N. Nounou, H. N. Nounou, and M. Madakyaru, “PLS-
based EWMA fault detection strategy for process monitoring,” Journal
of Loss Prevention in the Process Industries, vol. 36, no. 1, pp. 108–119,
2015.

[8] F. Harrou, M. Nounou, H. Nounou, and M. Madakyaru, “Statistical fault
detection using PCA-based GLR hypothesis testing,” Journal of Loss
Prevention in the Process Industries, vol. 26, no. 1, pp. 129–139, 2013.

[9] S. Wold, H. Ruhe, H. Wold, and W. D. III, “The collinearity problem in
linear regression. the partial least squares (PLS) approach to generalized
inverses,” SIAM Journal on Scientific and Statistical Computing, vol. 5,
no. 3, pp. 735–743, 1984.

[10] P. Geladi and B. Kowalski, “Partial least-squares regression: a tutorial,”
Analytica chimica acta, vol. 185, pp. 1–17, 1986.

[11] R. Muradore and P. Fiorini, “A PLS-based statistical approach for fault
detection and isolation of robotic manipulators,” IEEE Transactions on
Industrial Electronics, vol. 59, no. 8, pp. 3167–3175, 2012.

[12] G. Li, X. Zeng, J. Yang, and M. Yang, “Partial least squares based
dimension reduction with gene selection for tumor classification,” in
Proceedings of the 7th IEEE International Conference on Bioinformatics
and Bioengineering, BIBE 2007. IEEE, 2007, pp. 1439–1444.

[13] S. Kullback and R. Leibler, “On information and sufficiency,” The annals
of mathematical statistics, pp. 79–86, 1951.

[14] T. Kourti and J. MacGregor, “Process analysis, monitoring and diagnosis
using multivariate projection methods: A tutorial,” Chemometrics and
Intelligent Laboratory Systems, vol. 28, no. 3, pp. 3–21, 1995.

[15] H. Wold, “Nonlinear estimation by iterative least squares procedures,”
Research papers in statistics, vol. 12, no. 5, pp. 134–139, 1966.

[16] B. Li, J. Morris, and E. Martin, “Model selection for partial least squares
regression,” Chemometrics and Intelligent Laboratory Systems, vol. 64,
no. 1, pp. 79–89, 2002.

[17] H. Hotelling, “Analysis of a complex of statistical variables into principal
components,” Journal of Educational Psychology, vol. 24, pp. 417–441,
1933.

[18] J. Jackson and G. Mudholkar, “Control procedures for residuals asso-
ciated with principal component analysis,” Technometrics, vol. 21, pp.
341–349, 1979.

[19] M. Basseville and I. Nikiforov, Detection of Abrupt change: Theory and
Application. Prentice Hall, Information and System Sciences Series,
1993.

[20] F. Harrou, L. Fillatre, and I. Nikiforov, “Anomaly detection/detectability
for a linear model with a bounded nuisance parameter,” Annual Reviews
in Control, vol. 38, no. 1, pp. 32–44, 2014.

[21] F. Liese and K.-J. Miescke, Statistical decision theory: estimation,
testing, and selection. Springer Science & Business Media, 2008.

50 100 150 200 250 300 350 400 450 500
0

0.1

0.2

0.3

0.4

0.5

Q
(X

)  s
ta

tis
tic

Observation Number

 

 

Q
(X)

 statistic

Threshold Qα
Fault region

Start sensor drift

50 100 150 200 250 300 350 400 450 500
0

5

10

15

20

25

Observation Number

T
2  s

ta
tis

tic

 

 

T
2
 statistic T

2
 Threshold

Fault region

Fig. 5. The evolution of the Q statistic (top), and T 2 statistic (bottom) in the
presence of drift fault with slope 0.001 in x1 (Case B).
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