2015 IEEE Symposium Series on Computational Intelligence

Building Markov Decision Process Based Models
of Remote Experimental Setups for State Evaluation

Ananda Maiti, Alexander A. Kist, Andrew D Maxwell

School of Mechanical and Electrical Engineering, University of Southern Queensland, Australia
anandamaiti@live.com, kist@ieee.org, andrew.maxwell@usq.edu.au

Abstract—Remote Access Laboratories (RAL) are online
environments that allows the users to interact with instruments
through the Internet. RALs are governed by a Remote
Laboratory Management System (RLMS) that provides the
specific control technology and control policies with regards to
an experiment and the corresponding hardware. Normally, in
a centralized RAL these control strategies and policies are
created by the experiment providers in the RLMS. In a
distributed Peer-to-Peer RAL scenario, individual users
designing their own rigs and are incapable of producing and
enforcing the control policies to ensure safe and stable use of
the experimental rigs. Thus the experiment controllers in such
a scenario have to be smart enough to learn and enforce those
policies. This paper discusses a method to create Markov’s
Decision Process from the user’s interactions with the
experimental rig and use it to ensure stability as well as
support other users by evaluating the current state of the rig in
their experimental session.

L.

Markov Decision Process (MDP) are models to represent
stochastic processes and have been applied in many fields to
model partly random decision processes. The Stochastic
Shortest Path MDP [1] or SSP MDP is a particular version of
the MDP that specifies a set of goal states that must be
reached from any other state. For a system modeled by
MDPs, there is a decision maker or agent which decides
what to do in the system. The agent is provided with a plan
or policy that gives the best chances with minimal cost or
delays to succeed in reaching certain goal states.

Remote Access Laboratories (RAL) are online
environments where instruments or experimental rigs are
shared with users through the Internet [4]. The experiment
parameters are changed by the learner and the rig responds
by altering its configuration or state. From an MDP
perspective, the human learner's input is the random factor
and they act as the agents. For each experiment, there is a
Controller Unit (CU) that follows predefined control policies
created by the experiment provider to operate the
experimental setup (see Fig. 1) to guarantee stability and
reliability. However, in some scenarios such as in Peer-to-
Peer RAL [3], it is difficult for makers, or the experiment
providers to create specific control policies by themselves. In
P2P RAL, Micro-Controller Units (MCU) such as Arduino,

This work is supported through the Australian Governments CRN
Digital Futures program

INTRODUCTION

978-1-4799-7560-0/15 $31.00 © 2015 IEEE
DOI 10.1109/SSC1.2015.65

389

LEGO etc. are used which have common characteristics and
provide a generalized control platform [3]. Each experiment
has definite goals to achieve and unless proper guidelines are
set by the makers, the learners may be unaware on how to
operate the rig to get to those goal states.

In this paper, a method to generate these control policies
automatically from makers’ usage of MCU based rigs is
presented. To do this, a variant of the SSP MDP of the
experimental rig is created from the training data from the
makers interactions with it. The MDP defines the perimeters
of admissible states of the rig's state space. This allows for
the CUs to check the transitions of the state and blocks any
command that leads it to an unknown or undesired state. The
MDP also generates proper policies that indicate best ways
to change the states to reach a desired goal state. Three
indicators based on these policies to evaluate the current
state of the rig with respect to the overall operation of it are
also presented. Finally, the MDPs, policies and indicators are
used to create a system that is able determine if the learner
needs any or what guidance to perform the experiment i.e. a
support system.

The rest of the paper is organized as follows: Section II
describes the role of MDPs and its use in control and
automation as well as describing the P2P RAL and its
dependence on automation. Section III introduces state
space, characteristics and models of an experimental rigs as
well as user and system related constraints. Section IV
presents the smart aspects of the Controller Units based on
MDPs in order to evaluate the state transitions and detect
unstable conditions in the experimental rig. The use of the
MDP in RAL environment and an example of a rig and its
application of the smart paradigms are discussed in Section

¥ Experimental
&
@0 Setup
&
& A
o :
Learner Co\’\“ \ooY Control o
o Policies i
1el i E Il
Controller Unit and
ControlInterface | guevrremnnes Experiment
Setup Provider

Fig. 1. The system architecture of RAL experiment.

IEEE
computer
pSOC|e

ty

V. The strengths and limitations of this approach are
discussed in Section VII.

II. RELATED WORK

A. Markov Decision Processes and Control

Markov decision processes are used to model systems
that maintain the memoryless properties i.e. choosing a new
system state solely based on the current state and the
corresponding action chosen. However, there are some
approaches that store the past information into the current
state of the system and carry it forward [11]. The next best
state and the corresponding action are chosen based on a
prescribed policy (m) that maps each state to one action.
Again the policy may not be static for every time step of the
system [12] and it may be updated with variable rewards
within the system. MDPs are used in artificial intelligence
[2] to model and create decision-based support systems. It
provides a framework to model complex problems that have
large state-spaces and complex cost functions. It also
provides a model to further develop learning algorithms to
aid reinforcement learning corresponding to the system.
There are also some well-known and efficient methods to
solve MDPs such as the Value Iteration Algorithm (VIA)

(8].

In [5] the MDP is used to model the aircraft's movements
and autonomously avoid collision. The performances of
different types of sensors are evaluated in the model. But the
aircraft state vector is fixed to the properties of an aircraft,
thus limited to a specific application. In the RAL scenario,
the MCUs provide a generic platform to create variable
experiments. Thus a method is required that can generate a
MDP for any rig using the MCU based architecture [3].
Similarly another particular application to guide people with
dementia is reported in [6]. It exploits the MDP’s implicit
capability to manage stochastic dynamics and capturing the
trade-offs between multiple objectives. All of these
applications are capable of handling high dimensional data
and large number of states, although the computational
capacity required becomes a challenge on low-cost devices
like MCUs.

B. RAL and Automation

In a centralized or federated RAL, the RLMS is managed
from a select set of computer nodes. The entire RLMS is
provided as a service by universities or institutions [10]. The
RLMS governs the wusers’ access aspects such as
authorization of users, scheduling users when they access
which rig and store any experiment setup data. The RLMS
also implements the control policies that determine the exact
manner of operations and the limits of parameter both inputs
and outputs. The control policy differs between experimental
setups depending upon the components used and their
configuration. The control policies’ main aims are:

e to make sure that the rig is always in a stable state by
blocking or rejecting any inputs that is not within the
allowed range of parameters.

e Attempt recovery, re-boot of the experimental rig, if
possible and inform the RLMS administrators about any
unstable state that is persistent and cannot be rectified
without human intervention.

390

@ et

Experiment 1

User 1 @Q// - ng\Z@ 8 Experiment 2

Fig. 2. The P2P RAL architecture.

b User 2
Internet

Remote Access Laboratories being remote in nature must
have some form of automation the experimental rigs to help
guide the experiment run without the assistance of human.
The automations involve a mechanical or electro-mechanical
device that re-configures the experiment rigs as the current
learner wants. The RLMS stores the control-interface (CI)
created by the provider, which collects inputs for operating
these rigs. The control policies regarding the inputs are hard-
encoded into the control program for e.g. the definite limits
of an actuator are specified in the program. This requires
deep understanding of programming to create such policies.
Also, it is more difficult to alter these policies in case the
hardware is changed.

In a P2P RAL, individual makers are given the
opportunity to create a rig and it’s CI. The maker, based
upon their knowledge of any particular experimental activity
creates and shares an experimental setup (see Fig. 2). This
setup or rig is based upon a MCU [3]. The MCU can be
modelled as a special automaton that contains an instruction
processing capabilities, memory to store instructions and
related contents. It also has a set of ports to control or
interact with the experiments environments or objects
through actuators and sensors.

The MCUs gives enough flexibility to create an
experimental rig along with necessary automation. Makers
can connect any sensor and actuator to the ports and create
the CI using a visual programming language on an online
platform [9]. However, providing this flexibility comes at the
cost of lower reliability of the components used in the rig.
Also, the makers of the experiments have disparate
backgrounds and knowledge about control and automation.
Thus the experimental rigs and CI created by them are less
reliable both in terms of the control policy implemented as
well as the actual equipment are not guaranteed to perform
accurately for a lengthy period of time especially without
human supervision.

Every experiment will have a set of tasks that signifies
the completion of the experiment successfully. This means
the experimental rig must go through the particular states of
its state space within the experiment session. These set(s) of
state may be called goal states. In the P2P RAL system, it is
difficult identify whether the learner have met those goals.
However, the makers are able to run their rigs as they desire.
This way they can train the experimental rigs to accept valid
inputs only.

In this paper, the MCU based experimental rigs for
P2PRAL is described as an MDP which is then used to filter
out inputs that are potentially incorrect and recover from any
erroneous state as well as predict the next proper steps
towards the goal of the experiment. This increases the

reliability of the components and the rig as whole. It also
keeps the human intervention out of the way as much as
possible.

III. THE P2P RAL CHALLENGES

This section discusses the properties and constraints of
the P2P RAL system.

A. The state space of the rigs

The state space of an experimental rig is dependent on
the status of the ports. Each port signifies a variable in the
experimental rig whether it is connected to a sensor or
actuator. The change in the state space is caused by a change
in the value of any port i.e.

Y, = AY; + BG; (D
where Y represents the controlled system or the rig, C; is
the command issued by the user or the agent and A4 and B are
constant matrices for each experiment. In terms of simple
control, only the actuators have any impact on state transition
as this are the only components that can directly change the
orientation of the experimental rig. But, from a decision and
automation point of view, the state space contains the values
of the all active ports on the MCU both sensors an actuators.
The state space of the rig is infinite as each actuator in the
rigs can have a value between -0 and oo. But in reality while
training and running the rigs, it will only attain a finite set of
states.

Fig. 3. (a) A pendulum experiment setup

sk on Green Flag to sart

oz

ray— o |

w O

Fig 3 (b) The control interface of a RAL experiment in SCRATCH.

Hello

391

B. The automaton based model

The rigs and its controller can be represented as twin-
finite state automata. This architecture consists of two sides -
Control Interface (CI) and the CU. The CU acts upon the
inputs from CI and the human users. The language between
CI and CU is the communication protocol for the instrument
control in the P2P RAL. This language consists of the very
basic (or atomic) components of instrumentation -

e read (r) - reading the value of a port (sensors and
actuators)

e write (W) - writing a value to a port (for actuators)
e wait (@) - pause the CU for maintain synchronization

The program logic created by the maker, process the
learner inputs for the UI to generate the corresponding
symbol sets or communication commands composed of a
combination of these three atomic instructions.

Fig 3(a) illustrates a typical example of a MCU based
experimental rig. It is built using LEGO Mindstorms parts
and based on a LEGO smart Brick as the MCU. This
experiment demonstrates a pendulum with 3 actuators. The
aim is to swing the pendulum and take measurements at
different heights of the ball. Fig 3(b) is the corresponding
web browser based CI with a number of buttons relating
directly to an actuator on the rig. The users can view the
outcome of the experiment via a web-camera stream as
shown in Fig 3(a). There is also an animated character that
can provide feedback and guidance (red circle).

C. User and System Constaraints

Makers have constraints in hard-encoding control
policies in the CI as these require expert knowledge. They
are however, capable of running the experimental rig with
basic commands associated with a control interface. The
systems constraints are:

1. The users and experimental rigs can be geographically
located anywhere and interact with the rig via the Internet.
Video feedback is used for viewing experiment outputs. As
the system uses the Internet, control message between
learner and experiment node are subject to delays. This
means that there can be a chance that the learner may give an
asynchronous wrong input depending upon what they
perceive as the current state of the rig.

2. MCUs have limited computational capacity to process
data per unit time [3].

3. The learners who interact with the experiment are
provided with detail about the experiment and its goals. But,
initially they will not be aware of the exact steps that need to
be completed to achieve the experiment outcomes.

Also, as the P2P RAL is decentralized, there is no
external entity to co-ordinate between the learner and the
experiment rigs. This means that the experiment rigs have to
be intelligent enough to create the control policies and avoid
erroneous rig states. Thus creating the MDP for the rigs can
help in:

1. Setting up the admissible boundary of the state space of
the experimental rig. It can then always keep the rig in a
valid state that can be obtained from the MDP. There can be
two broad types of states:

e Valid state: a possible rig state that is stable and in the
MDP, thus permissible. It is when the rig is not executing
any command and the rig's parameters are not changing.

e Error state: a possible rig state that will break the rig and
make it inactive, thus not permissible.

The valid states can be determined in the MDP. But error
states are not possible to be identified as they are never
recorded in the MDP. There can be two other types of states:

e [nterpolated state: a possible rig state that is not in the
MDP, but may be valid. Whether the state is valid or not
may be determined by interpolating nearby valid state.

o Undesired states: A possible state that is not in the
MDP, but cannot be validated in any way i.e. it may not
break the rig, but not permissible either. An undesired
state is essentially assumed to be an error state by the rig.

2. Predicting the next best step towards the immediate
goals keeping in view any other goals depending solely upon
the current state of the rig. The leaners’ actions are matched
against these best moves to evaluate their interaction and
determine if any support is required for them.

Iv.

This section discusses the MDP and the system state
indicators that help with evaluating the system.

SMART CONTROL AND AUTOMATION IN RAL CUS

A. The experimental rigs as MDPs

The MDP is created from the state space of the
experimental rig. An experimental rig may consist of
multiple sensors (or actuators with feedback mechanisms)
each of which is considered a variable in the state space. For
actuators, it contains sensors to determine their current state.
The conversion of the experimental rig's state space into
MDP maintains a direct relationship between the MDP states
and the rig’s state space, i.e. rig's state that are positioned in
the MDP adjacent to other states that precedes or succeeds
them during the course of rig control. This can help in
evaluating whether the transition in experimental rig's state is
desirable.

Construction of the MDP requires a training data set
containing sample input commands. The training set X has
the set of makers’ inputs during testing phase of the
experiment,

X={x0 x2, x3 ..x3)}

where x, is the state vector at time ¢ of the experimental
rig, n is the dimension of the feature vector i.e. the number of
variables (or sensors) in the rig and g is a finite integer. The
feature vector contains the values of all ports connected to a
component, both sensors and actuators. Each x}, is a stable
rig state when a command has finished executing and before
the beginning of the next command execution. A command
can be composite i.e. contain multiple instance of I, w, a to
accomplice an action that requires to either maintain strict
time intervals between multiple states transition from x} to
xt*1 (e.g. w,aw,) or even change multiple ports in parallel
in a single w command. However, each composite command
can be broken down to its corresponding set of atomic
instructions and executed in reverse order (e.g. Woaw,) to
get back to the previous state x',.

Thus, the MDP for the rig system is defined as

392

Y: {S, A, T: G, R[, Rg RIGL}
where,

S =E U F. E contains all the valid states the rig can be in.
F is a set of failed states corresponding to each transition t
€ T for valid states. E represents a small subset of all
possible states of the rig as most others would be error or
undesired. Each element in E corresponds to one or more
elements in X.

A = { w(P, V)} are the write commands that are issued by
the user. This is the random factor in the MDP as the agent
may choose to issue any command regardless of whether
that is optimal or not. P is a set of port(s) the command
works on and V are the values to be written.

T is a set of transition rules (or edges) that defines action
allowed from a state, that would lead it to the next state(s)
if the associated command is executed. t € T also contains

the probability of success of the transition i.e. 0 < T(s, s')
<1l

A

i 4 ’
/ g)
A / ANEN
! v o
\
\

Fig. 4. Example of an MDP graph.

G is the set of goal states and G < S.

Ri is a set of rewards strategies corresponding to each goal
state i € G. Each reward strategy consists of a matrix of
rewards for each transition t € T.

The Fig 4 shows an example of the MDP where A, B, C,
D, E, G are valid states, D is a goal state and Fap, Fap, Fec
... are failed states corresponding to the actions of a valid
states. The characteristics of the MDP graph are:

There can be no self-loop in the MDP graph i.e. there can
be no action that will keep or bring the rig to the same
state.

There can be many numbers of actions (or commands) in
the MDP corresponding to the components on the CI. But
any action from a state s can lead to only one other valid
state s°. So, the actions can be represented simply by the
corresponding states (s; s;) it is between i.e. the edges
between valid states represents a command. For two states
s and s', if there is only one edge (s, s') during training with
a command (e.g. W;aw,), the edge (s', s) may be created
by reversing the command (e.g. w,aw,), if that is
permitted.

There a path should exist from every node to another node
1.e. it cannot have an absorbing state or locking states. This
means, that the rig cannot stall at any position with that
learner having no control over it to bring it another state.
The existences of the routes are vital as the rig may have
to automatically restore itself to certain states from any
other state by executing the commands or action
associated with each edge in reverse. There may be two

pairs of states that have only one directed edge, but these
should allow traversal from one side of the graph to
another. A single edge between two nodes represents a
one-way transition. This may be due mechanical
constructions such as valves that operate in one-way. But
being a semi-autonomous system, the rig must be able to
reach to a state preceding the single edge transition i.e.
there must be an alternate path.

For every pair of adjacent state (s, s') in the rig, there is a
failed state fyy for it connected to only s. The failed state
represents the situation when a command fails and the rig
enters a state that is basically an undesired state. It
represents only the failure of its connected valid state s to
reach s'. Thus, the aim of the rig in the fail state is to move
to a valid state automatically which is always the
corresponding connected valid state. The probability of
success from each failed state to the success state is always
considered 1. If it is unable to restore itself to its valid state
then the rig is considered broken. There can be no specific
command associated with the edges on fi.

There are nodes that represent the goal states. Goal state
may be determined by a number of ways - the node with
the highest degree or the most visited node during training.
But the best way is to collect the goal states from the
makers explicitly. These states signify the achievement of
a target i.e. learning objective in the experiment. Goal
states or task can be a single state in the MDP or there can
be multiple in which case the MDP includes multiple
rewards strategies (R;). This will generate multiple policies
for each reward strategy. Each reward strategy R; allocates
the maximum wtility to the goal state i. Correspondingly,
the a policy exists for each goal state i as = m;, 7, ... 7.
each reward strategy R; or m; gives most importance to the

goal state i € G.

Another important aspect of the MDP is its quality as
MDP is trained by its maker. The makers are not expected to
cover all possible states and transitions during training. For
this purpose, a number of edges may be added by the rig
itself depending upon conditions set by the maker. The
quality of a MDP after training then can be defined as:

__number of edges from Training Data

(2
number of edges added by the rig @

B. The MDP generating Algorithm

The MDP is generated from the training data that
explicitly contains the goal states. The makers can use the
following steps to generate the MDP:

1) When the experiment is run by the maker for training,
record each command and the corresponding state (x',)
that is reached when it finishes i.e. the values of the
ports along with the goal states. This recording provides
the training data set.

For each state transition, s; to s, recorded, add the states
and action as the directed edge (sy, s,) in the MDP.

Check whether there is any node that is not reachable
from any other node. If there is any such node, check
whether all the transitions can be bi-directional.

2)

3)

(1) If yes, for each pair of state that has one directed
edge, add another edge in the opposite direction

393

with the reversed command. The number of such
addition is noted to calculate the quality of the
training set.

(i) If no, then the training data is insufficient and more
data is need. The algorithm stops here.

For each edge (s, s') set probability 7(s, s') = 0.99.

For each edge (s, s'), add a fail state f,; with edge
T(s, fi) = 0.01 and T(f;,, s) = 1.

When an MDP is created for the first time, Step 4-5
assigns static values for the probabilities of transition. In
subsequent training sessions, the success rate of any
existing edge (s, s') may be recorded and the values for
probabilities in 7¢(s, s') and 715, f;s) can be updated.
Calculate the degree deg(s) of each state s € S. For each
reward strategy, R; € R

4)
5)

6)

(i) Initially assign for each edge (s, s’) in the MDP a
reward value Ry(s, s') = deg(s’)’.

(i1) Then the reward for goal state i, corresponding to R;,
Ri(s, i) = 2 x max (deg(s)%).

(i) For all fail states f; from state s, Ri(s, f;) = 0.

7) Once the MDP is constructed, the Value Iteration
Algorithm (VIA) is used to determine the best policies
(m;) for the MDP.

The VIA(r) starts with the value function V" (s) = 0 for
all state s € S. Then the following is repeated until for all s €
S, Vii+1y (8) - V{ (s) =0.001 i.e. it converges.

Viia(s) = max T(s,s)[R(s,s) + YV (D} (3)
for i =1, 2, ..., where, v is the decay rate. In each
iteration for each state s, the policy (m;) records the state s’ as
the best next state for which?';,;(s) is the highest. The VIA
itself is repeated for all rewards strategies R; € R to generate
corresponding policy plan for each goal state. The algorithm
generates the MDP and a set of optimal policy plans
corresponding to each goal state.

V. ANALYSIS

Step 1-5 creates the MDP according to the properties
discussed earlier and adds the fail states. Step 4 makes sure
that the probability of transition is never 1 for transitions
between valid states. Even if no failure is recorded, there is
always a chance of failure. Step 6 calculates the reward
matrix (R;) for each goal state in G. It ensures that each of
the edges leading to the goal state has the highest reward
value. Step 7 calculates the best reward possible i.e. value
function for each R;. Note there is no summation as in the
regular VIA [8] because every successful command or action
leads to only one valid state and fail states are not counted .

Different MCUs have different computational
capacities and power resources. The number of states
generated in the MDP may be very large and edges between
each state even larger. Processing the VIA to calculate the
best policy map takes the largest computational effort. This
algorithm has a decay rate (y) that may be altered to increase
or decrease the speed of the algorithm. Fig. 5 shows the
effect of changing y from 0.99 to 0.5. While the iterations

o
o
=3
=
oo
[

Number of Neighbors in it

%

o

S
=
[
oS

~Number of Iterations

o

S
[N
~
a

[N
~
=)

= N w B
o o
o o
,

N

a o

o wu

Nodes inm

o
S
I
.
«
@

0

Number of Iterations
N
3

Number of Neighborhood

y 099 09 09 08 08 075 07 065 06 055 05

Fig. 5. Relationship between decay factor and the accuracy of the policy.

reduces exponentially, the quality of the policy will drop at
certain point (in this case y = 0.65). Thus, the a suitable
value for y may be determined for a particular rig for a
given training data set. This will change respective to MCUs
and the experiments built around them and useful when the
policy needs to be recalculated quickly such as during an
experiment session.

A. Indicators in the MDP

The quality progress in the transition of the states is
measured with the following values :

1. d; and 4d - The primary indicator is the raw
distance (d) between the current state and the goal state. This
distance is the length of the shortest path in the
corresponding policy m; for current state i to goal state j. With
each new state of the rig, the change in value of d indicates
whether the learner has moved away from the goal state or
not. Ad < 0 when the rigs state moves towards a goals state
and vice versa.

2.
a;; = Length(P;;) / [Length(P;) + ny(if)] NE))

where Pj; is the shortest path in the MDP graph, between
current state 7 and the goal state j and n,(i,j) is the number of
pairs of adjacent nodes in the path Py for which are not
adjacent in the policy m. This value indicates the relative
distance so the rigs state forms the goal state. A value of 1
indicates that the rig can transit to the goal state and it is
right on track. A lower value indicates, that in order to reach
the goal state the rigs has to go through some suboptimal
paths in the policy which indicates it is off-track. Varying
probabilities of success in the MDP means that sometimes
the shortest transition may not always be the most preferable
option in 7.

3.

2 and 4o

tand At

1;; = Length(P;;) / Length(P;) . ..(5)

This indicates the weight of the immediate action of the
MDP. For a rig MDP that may have at least two directed
edges that does not have an opposite directed edge but still
maintaining a directed path between all states, this indicator
(At) shows any sudden change in the rig state that is very
faulty in terms of getting to the goal state. For instance, in
Fig 4 if the rig is in position A, then going to D takes is 1
step, but if there is one bad decision of moving to B, then the
feasible path length immediately increases suddenly. This
sudden change could indicate severe learner’s mistakes
particularly for one-way transitions of states. Note that only
when a learner makes a wrong choice and chooses a wrong
one-way path, then At > 0. For all other type of transitions

394

before and after that, At = 0. Thus it is very easy to detect
such a mistake.

The change in indicators may be used in multiple ways,
depending upon the system it is being used in, to obtain a
value representing all three changes. The rig can then
automatically decide whether it should intervene in the
agents control commands and how much it should govern
itself.

VL

This section discusses the application of the MDP in case
of RAL experiments.

USING THE MDP IN RAL

A. Using the indicators

While the indicators may be used in multiple ways to
evaluate the system and the agent's status during the
operation of the rig, in case of RAL a simple binary
evaluation is sufficient. The purpose of the intelligence in the
MCU using the MDP is to guide the learner automatically
and decide whether helping the learner is required or not.
Thus the evaluation result (x) can have only the values 'yes' if
the state change was profitable in some way or 'no'
otherwise., depending upon the rigs position in the MDP.
However to make the decision, the last few transitions must
be monitored and recorded accordingly.

Whenever a command is executed, the Algorithm
Evaluate(i) is run for the current state i. If the current state is
a goal state, then all variables are reset. There are three
variable to monitor the d, At and the total number of
transitions. The number of time d increases for all goal
states, number of time At # 0 for any goal state and the
number of transitions are recorded in ¢, » and p. If any of
these goes over a threshold r., g. or p. respectively without
reaching a goal state, then the users is in need of assistance
and x return 'yes'. The threshold p. is determined by the
distance to the closest goal state at the beginning of the
experiment session or when a goal state is reached. A
tolerance of € that maybe added to p. along with the values
of r. and q. are system settings put by the system
administrator or the maker changing the difficulty level of
getting any help for the learner.

Algorithm Evaluate(i) with global counter variables p, q, r
ifi €G then

p<0, g0, re0, pe<MiNjegyz;dyj
else
if 3 k €G, Aty # 0 then
q—q+1
if 4 j €G, Ad; < 0 then
rer+1
p—p+l1
if p>p.te or q>q. or r>r. then K« yes
else K < no
B. MDP Inputs

There are few variable components that need to be
defined or acquired from the makers to be able to create or
use the MDP properly. These are:

1. Initial state: As mentioned earlier, in the MDP there
exists a path between every pair of states. Thus the maker
can choose an initial state. The experimental rig will revert
back to the initial state at the start of each experimental
session by traversing through all the intermediate states.

2. Whether all transitions can be treated as bi-directional?

3. Whether state interpolation is allowed? The MDP
defines a boundary which is at the best partially known as
maker is not expected to cover all possible feasible state of
the rig in the training. It is in theory possible for the MCU to
transit to an intermediate state that lies on the path between
any two known states. However, such interpolation may not
be allowed at all if the rig is not completely free to operate
and may break down at certain states that are in between
known stable states. Allowing interpolation assumes bi-
directionality is allowed.

C. Rig Operation

The rig operates by first receiving the incoming
commands and then processing it. With the MDP
architecture, the rig is intelligent enough to make decisions
on its own whether the learner/agent is following a feasible
chain of control commands. The rig operation goes through
the following steps:

Step 1. At the beginning of each learner’s experiment
session, the rig reverts back to the initial position and the
values of d, 7 and initial p, are calculated.

For every new write instructions, the steps 2-7 are repeated.
Other instructions (read and wait) are executed immediately.

Step 2. When a write command w(P, V) is received in state
s; the corresponding expected state is calculated. It is
checked whether executing this command will lead to a
state (s;+;) such that, s;;; is valid and (s;, s;+;) exists in the
MDP. If it is not valid and interpolation is allowed s;.; is
checked if it can be interpolated.

For a state (s;41) to be an interpolated state, there must exist
at one other state s, € {S — G} such that,

e s, s, exists in MDP and

e the feature vector i.e. the values of all the n ports
must be exactly the same except only one port (say
n;) in s;, s;+;, s and the value for n; in s;;; should lie

between n; in s; and s, i.e.

sl < sii[m] < safni]

This ensures that the interpolated state is actually traversed
by the changing port, but not recorded. This may occur
when there are different parameters, like speed of the
servos (see Fig. 3), used while training from the one used
by the learner. If it is not valid and interpolation is not
allowed then s;; is undesired.

Step 3. If the new state is not undesired i.e. valid or
interpolated, then the command is executed. Otherwise the
command is rejected. After multiple rejections of write
commands, the rig can decide that the user needs support.

Step 4. The resultant state (s ’;+;) of the command execution
is matched with the expected state (s+;). If si+; Z ', then
the rig is in the failed state. In this situation, the rig tries to
recover back to the previous state s; by trying to write the

395

value to the ports as in s;.. If the rig cannot restore the
states of all ports to the earlier values, it is considered
broken and requires the makers intervention.

Step 5. Once a state is successfully changed, the values for
Ad and At are calculated. In the RAL scenario, the
probability of success of an action from any given state is
very high and generally equal for all transitions. So the
value of A3 is not useful in context of RAL. However, the
other two indicators, Ad and At are very important. The
value for k is then calculated with Evaluate() for the
resultant state. If x is ‘yes’, the learner is provided with
hints to the next feasible state towards the nearest goal
state. The nearest goal state j is the one for which the path
is the shortest in corresponding policy m; from the current
state for all active goal states.

Step 6. Once a goal state is achieved, it is considered done
and from the learner’s perspective there is lesser incentive
to re-approach that state. Thus, once a task state j is
reached, its corresponding values for 4d and At are not
considered for calculating x in Evaluate() i.e. removed
from G.

Step 7. If the current state s’ is interpolated from previous
state s, then add s’ to the MDP. At this point there is no
edge between s’ and s which could also be the case if s was
interpolated by the last command. In either case add edges
(s, s") and (s, s) and incorporate them with the fail states
f and fy into the MDP by following Step 4-6 of MDP
generating Algorithm (as in Section IV B) accordingly by
applying the steps on the new edges/states. Then re-
calculate the policies.

D. Example

The example considered to illustrate the use of MDPs is
the pendulum experiment mention earlier. This experiment
has three actuator i.e. the feature vector in each state contains
three values of the actuator (n = 3). The values returned are
integer numbers (if the servos rotates twice full circle, the
value is 720 degrees; if it rotates backwards then the value is
-720 degrees). The rig was trained with a sequence contains
(o = 79) transitions that generated 73 states in the MDP.
There are 4 goal states defined in the experiment - C7, C16,
C25 and C34. The learner starts with the state CO which is
the initial starting position. The learner can send commands
to the rig and leave the experiment in any random position at
the end of their session. The rig takes its state back to CO for
the next session. The probability of success of each
command to the rig is 0.99. This is a high value as there is
little probability of it failing and it is and it is equal for all
transitions as all the actuators have the same reliability. The
training allowed addition of bidirectional edges as all state
transitions (s;, s,) recorded can be done in reverse (s, 5;).

E. Results

Fig. 6 shows the final values of each state after the VIA
is run corresponding to the 4 goal states. For each of them
the goal state has got the highest value followed by the state
that is closest to it e.g. C7 is adjacent to C6, C8, C12 and
C13. The fail states also get high values, but as the failed
states are only connected one valid state (and the reward for
the transition from the valid to the fail state is 0) for all fail
state, the outgoing edge is chosen in the policy (m;). The

—a—Final value of tate (RC7)
Final value of state (RC16)
—e—Final Value of State (RC25)

—~—Final Value of State (RC34)

Rig States

Fig. 6. The final utilities or values of the states in each R; corresponding to the goals states C7, C16, C25, C34. For failed states only the highest value of
shown for all failed states for a valid state.

=
s 25 a
o - -
E o 20 el ~
c R o~ \ o~
o+ 15 el \ -~
- n o | e
o = 10 o~ \ e
g - -~ LA -
o 5 ' - ar
c W B N N N N A N o W N N S L P P
i i, s o i, it SRR e S
- o m W o N N g o T O~ Q M W oo N W o s M~ O Mmoo @ NN o T 2 M W@ N’ A s N~ O MW ;N m
a S8 88 308 IRRARBYIY YR iEBEECERREREREEESETISREAANRERT T
T o 2220V LY Y22l YYY VLYY YYy00000C000000000
S 2 S R AR NTTT T OO P OPD TS T TEEELEEEEEE oYY yvyvUvLyvLvYLveyYy
& 8 mny 0 9 C < 00 400 4o 0 d ; ; I L
Tlf22eyaisRi8ih8Raensnnaoa
N O A L Rig State
Fig. 7. The distance to the nearest goal state for each state. For failed states only the smallest value is show for each corresponding valid state.

values of all the fail state closely follow that of their
corresponding valid state, but are always lesser.

Fig 7 shows the distance form any state to the nearest
task state. As the probabilities of transition success are all
same and the transition are bi-directional, the values for At
and Ao always remains the same. So this experiment, the
value of At has no meaning and the evaluation (k) is solely
depended on the value of d. For e.g. 4d > 0 if the ball is
moved up many times beyond the reach of the hand lever as
in states C6 to CO and to C3. The distance will keep
increasing to all the goal states.

Note the significant increase in the distance for the states
from C50 to C73 in Fig 7. This is due to bad training as these
states were generated as part of the training data set. They
basically represent the maker generating transitions that are
not very effective towards reaching the goal. This is however
important for system like RAL for teaching purposes if the
maker want to make the usage of the rig as flexible as
possible.

F. Presenting the guidance

The exact methods of providing guidance to the learner is
out of scope of this paper, but once the decision to guide is
made and the path to the goal state established, the rig can
guide the users using any visual cue. For the MCU controlled
experimental rigs, the actions are each individual commands
allowed from the CI components. All actions may not be
defined for all states restricting the learner and implementing
the control policy. A catalog of learner-friendly zerms may
be defined for each command or MDP action w(P, V) by the
maker and stored against the corresponding edge (s, 5.
While presenting the guidance, the next steps can be
presented on the interface by using the corresponding ferms
of the action required to change from current state to the next
state in m; in the shortest path towards the nearest goal state ;.

VIL

This section discusses the advantage sand disadvantages
of the MDP process.

LIMITATIONS

396

A. Advantages

The proposed MDP based control architecture helps in
the following ways:

e The maker's inputs to the creation of control policies are

minimal. Makers do need to explicitly specify the limits
of changes in the system components. The MCUs can
identify the most ideal sequence of activities and act
accordingly.
With the MDP rig is intelligent enough to judge the
quality of the agents’ use of the rig. This could help in
making time-critical decisions when required. Also, the
rig is able to provide support to the agent if required on
what is the best control policy at the time.

In the RAL application, the systems allow for evaluating
the learner's performance. A higher number of instances
where the users make wrong decisions (Ad > 0 and At
0) can be recorded and a feedback may be provided on
the interaction. Moreover, it helps to identify whether the
users have completed the goals of the experiment at all.

All of this can be achieved without setting any specific
limits in the software for the rig or the control technology.
The rigs can all run the same software to create and parse the
MDP regardless of the experiments.

B. Limitations
The limitations of the MDP approach are as follows:

—_

.It requires training data. The experimental rig must be
used multiple times by the makers and testers to generate
a sufficiently large training data set that can encompass
all aspects of the experiment. This means that the rig
must be used to its operational and configurational limits
to ensure that the training data set as well as the
corresponding MDP can cover all possible states. This is
difficult to do perfectly as makers may not foresee all
possible uses of the rig, thus rendering certain inputs
from the users invalid with the respect to the MDP even
though they may not be unstable. In case of remote
laboratories, it is used for learning purposes and the

proper way to achieve the goals is as important as the
learning goals themselves. Thus, following the makers’
steps is acceptable when applying the MDPs to the RAL
scenario.

2.The goal states may be difficult to judge. In a poorly
designed rig, the actual events of the experiment result
may not be captured properly from a particular state. In
those cases, the effectiveness of the indicators reduces.
But, this can be resolved by adding a dedicated sensor
which will confirm the task events taking place. The
particular variable then can uniquely identify the task
state.

Recovering a rig is very difficult if multiple ports value
were changed in parallel in the previous command. But it
works fine, if only one port is changed in one atomic
command i.e. there is no parallel change in the ports.

The flexibility to match intermediate states can mitigate
the impact of improperly trained rigs to certain extent, but
the interpolating techniques needs to be improved and the
rigs, very well trained. However, with a large number of
users using the system as part of the training, the MDP can
be accurate.

One aspect of the goal states not addressed in the paper is
the possible temporal relation between them. In some
experiments it may be required to complete a set of tasks
before proceeding to others. This can be handled by
activating a new reward strategy at the given time once any
goal state is reached.

CONCLUSIONS

Experimental rig in remote access laboratories can be
represented as MDPs. These MDPs can store the states and
the transition information between them. The MDPs can
successfully be used to create the control policies as to what
are valid and unwanted states in the rig. The quality of the
policies will increase with time as more and more users use
them. Three system indicators have been proposed that can
evaluate the current state and correspondingly, the
performance of the learner with the rigs. Certain aspects in

397

the proposed architecture can be improved such as acquiring
training data, interpolating states and recovery form a failed
state.

REFERENCES
[1] Andrey Kolobov, Mausam, and Daniel S. Weld. A theory of goal-
oriented MDPs with dead ends. In Proceedings of the Conference
on Uncertainty in Artificial Intelligence (UAI’12), 2012.
C. Boutilier, T. Dean, and S. Hanks, “Decision-theoretic planning:
Structural assumptions and computational leverage,” J. Artif. Intell.
Res., vol. 11, pp. 1-94, 1999.
A. Maiti, A. A Kist, and A. D. Maxwell, "Real-Time Remote Access
Laboratory with Distributed and Modular Design," Industrial
Electronics, IEEE Transactions on, vol. 62, pp. 1-1, 2014.

(2]

(3]

[4] V.. Harward, et al., "The iLab shared architecture a web services
infrastructure to build communinities of Internet accessible

laboratories," Proceedings of the Ieee, vol. 96, pp. 931-950, Jun 2008.

S. Temizer, et. al, "Collision Avoidance for Unmanned Aircraft using
Markov Decision Processes", AIAA Guidance, Navigation, and
Control Conference 2 - 5 Aug. 2010, Toronto, Canada.

(3]

[6] J. Boger, J. Hoey, P. Poupart, C. Boutilier, et.al., "A planning system
based on Markov decision processes to guide people with dementia
through activities of daily living," Information Technology in

Biomedicine, IEEE Transactions on, vol. 10, pp. 323-333, 2006.

M. Oshita and T. Matsunaga, "Automatic Learning of Gesture
Recognition Model Using SOM and SVM," in Advances in Visual
Computing. vol. 6453, Springer Berlin Heidelberg, 2010, pp. 751-
759.

O. Madani, "Polynomial value iteration algorithms for detrerminstic
MDPs", Proc. of the 18th UAI, pp.311-318, 2002.

A. Maiti, A. D. Maxwell, A. A. Kist, and L. Orwin, "Joining the
Game and the Experiment in Peer-to-Peer Remote Laboratories for
STEM Education," in 2015 exp.at'15, Ponta Delgada, Portugal, 2015.

E. G. Guimaraes, E. Cardozo, D. H. Moraes and P. R. Coelho,
"Design and Implementation Issues for Modern Remote

Laboratories," IEEE Transactions on Learning Technologies, vol. 4,
pp. 149-161, 04/01 2011.

S. Adlakha, R. Madan, S. Lall, and A. Goldsmith, "Optimal control of
distributed Markov decision processes with network delays," in
Decision and Control, 2007 46th IEEE Conference on, 2007, pp.
3308-3314.

M. A. Wiering and E. D. de Jong, "Computing Optimal Stationary
Policies for Multi-Objective Markov Decision Processes," in ADPRL
2007. IEEE International Symp. on, 2007, pp. 158-165.

(7]

[10]

(1]

[12]

