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Abstract—Proper operation of antenna arrays requires contin-
uously monitoring their performances. When a fault occurs in an
antenna array, the radiation pattern changes and can significantly
deviate from the desired design performance specifications. In
this paper, the problem of fault detection in linear antenna arrays
is addressed within a statistical framework. Specifically, a statis-
tical fault detection method based on the generalized likelihood
ratio (GLR) principle is utilized for detecting potential faults in
linear antenna arrays. The proposed method relies on detecting
deviations in the radiation pattern of the monitored array with
respect to a reference (fault-free) one. To assess the abilities
of the GLR based fault detection method, three case studies
involving different types of faults have been performed. The
simulation results clearly illustrate the effectiveness of the GLR-
based fault detection method in monitoring the performance of
linear antenna arrays.

I. INTRODUCTION

The recent developments in wireless communication sys-

tems have greatly increased the demand for antenna arrays.

The occurrence of faults in one or more elements in an

antenna array changes the radiation pattern of the array,

which degrades the performance of the entire array [1]. Thus,

monitoring of antennas is essential for their proper and safe

operation. Specifically, faults in antenna array need to be

detected, isolated, and then removed before they affect the

performance of the wireless system [2]. Two types of faults

are usually encountered in antenna arrays: complete (or on-
off ) faults and partial fault [3], [4]. Antenna elements with

on-off faults do not radiate. This type of faults is widely

encountered in practice. On the other hand, partial faults

(which can be due to interferences and other factors) cause

degradation in the desired radiation pattern. Generally, faulty

array elements not only can distort the directivity of the

antenna pattern, but also the side lobes levels of the radiation

pattern [5], [6]. As a result, in the presence of fault(s), the

radiation pattern can significantly deviate from the desired

pattern indicating the presence of a new condition that is

significantly distinguishable from the desired faultless working

mode. Therefore, implementing fault detection techniques in

antenna arrays is becoming more and more important [6], [7].

This paper presents a statistical method for detecting the

presence of faults in a linear antenna array. This method

is based on the principle of the generalized likelihood ratio

(GLR) and is intended to reveal any drifts from the normal

behavior of the monitored antenna array. The remainder of the

paper is organized as follows. Section II outlines some basic

antenna array theory as it applies to this problem. Then, the

GLR test which is commonly used in composite hypothesis

testing is described in Section III. Then, a methodology for

fault detection in antenna arrays is described in Section IV, fol-

lowed by simulated examples that illustrate the performance of

the GLR hypothesis testing method are presented in Section V.

Finally, concluding remarks are presented in Section VI.

II. LINEAR ARRAY ANTENNA

Let us consider a ’fault-free’ linear antenna array having an

even number (2N) of isotropic elements. Assuming that the el-

ements are symmetrically placed and conjugate-symmetrically

excited about the center of the array, the normalized radiation

pattern of this array can be calculated using the following

expression [8]:

Fs(ϕ) =
f (ϕ)
Fsmax

N

∑
i=1

ai cos
(
kxi sin(ϕ)+ψi

)
, (1)

where f (ϕ) is the element pattern, ϕ is the angular direction;

ai and ψi are the current excitation amplitude and phase of the

ith array element located at the position given by xi, k = 2π
λ is

the wave number with a wavelength of λ , and the position xi
can be computed using the inter-element spacing as follows:

xi = (i− 1
2 )Δx, i = 1,N.

Failure(s) in antenna arrays can severely distort the actual

radiation pattern. As discussed earlier, two different kinds of

faults can be distinguished: on-off and partial faults. In arrays

with on-ff faults, the faulty elements do not radiate at all (i.e.,

fail completely), which is equivalent to assuming that their

relative excitations are zero. However, in array with partial

failures, the faulty elements don’t completely fail completely,

but radiate a fraction of its normal power. Partial faults my

be caused by noise, interferences, or other factors. As more

elements fail in the array, the pattern gets degraded further.

Thus, detecting the presence of faults in antenna arrays is

necessary to ensure their normal operation. A description of

the GLR test, which is used to achieve this objective, is

presented next.

III. GENERALIZED LIKELIHOOD RATIO TEST

The GLR test is an important statistical method that can be

used to solve composite hypotheses testing problems by maxi-

mizing the likelihood ratio function over all possible faults [9],
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[10], [11]. The GLR test is based on the Neyman-Pearson

theorem, which allows the maximization of the probability of

detection for a given value of the false alarm probability [10].

In binary hypothesis testing, when hypotheses are composite

or the corresponding data probability density functions (pdfs)

contain unknown parameters, the generalized likelihood ratio

(GLRT) test constitutes a popular means for deciding between

the two possibilities.

Consider the fault detection problem, where a measured

vector Y ∈ R
n follows one of the two Gaussian distributions:

N (0,σ2In) or N (θ �= 0,σ2In), where θ is the mean vector

(which is the value of the fault) and σ2 > 0 is the variance,

which is assumed to have a known value. The hypothesis

testing problem seeks to decide between two hypotheses, the

null hypothesis H0 and the alternative hypothesis H1 [12]:

{
H0 = {Y ∼N (0,σ2In)} (null hypothesis);

H1 = {Y ∼N (θ ,σ2In)}, (alternative hypothesis).
(2)

The GLR test is based on the evaluation of the generalized

likelihood ratio of Y , Λ(Y ), which is defined as the ratio

between the probability density function (pdf) of Y under

H1, and the pdf of Y under H0. The GLR test estimates

the unknown parameter, θ , using maximum likelihood esti-

mation by maximizing the generalized likelihood ratio Λ(Y )
as follows [12]:

Λ(Y ) = 2log

sup
θ∈Rn

fθ (Y )

fθ=0(Y )

=
1

σ2

{∥∥∥∥Y − θ̂
∥∥∥∥2

2

+

∥∥∥∥Y
∥∥∥∥2

2

}

=
1

σ2

{∥∥∥∥Y
∥∥∥∥2

2

}

where θ̂ = argmin
θ
‖Y − θ‖2

2 = Y is the maximum likeli-

hood estimate of θ , ‖ . ‖2 represents the Euclidean norm,

and fθ (Y ) = 1

(2π)
n
2 σn

exp
{
− 1

2σ2 ‖ Y −θ ‖2
2

}
is the probability

density function of Y . It is important to note that in the

above derivation, we maximized the likelihood function by

maximizing its natural logarithm due to the fact that the

logarithmic function is monotonic [12]. The GLR test makes

this decision between the null or alternative hypotheses by

comparing between Λ(Y ) and a given value of the threshold

h(α).

Λ(Y ) =
1

σ2

{∥∥∥∥Y
∥∥∥∥2

2

}
><

H0

H1
h(α). (3)

If Λ(Y ) is larger than h(α), the GLR test decides for H1,

otherwise H0 is assumed to be true. This means that knowing

the distribution of the decision function Λ(Y ) under the null

hypothesis H0 allows the design of a statistical test with

a desired false alarm rate, α , where the threshold h(α) is

selected to satisfy the following false alarm probability [12]:

P0

(
Λ(Y )≥ h(α)

)
= α (4)

where, P0(A) is the probability of an event A when Y is

distributed according to the null hypothesis H0. Since Y
is assumed to be normally distributed (see equation 2), the

statistic Λ follows a χ2 distribution with (n− 1) degrees

of freedom. This chi-square distribution is central under H0

and noncentral under H1 with a parameter of non-centrality

equal to: κθ = 1
σ2 ‖θ‖2

2. Also, the power function of δ can be

computed as follows [12]:

βδ = Pθ

(
δ (Y ) = H1

)
. (5)

Next, the GLR test described earlier will be used to detect

faults in linear antenna arrays.

IV. FAULT DETECTION IN LINEAR ANTENNA ARRAY USING

GLR TEST

In this section, the GLR test will be used to detect faults

in radiation pattern of linear antenna arrays. Once obtained, a

reference radiation pattern of the fault-free antenna array can

be used to detect unusual conditions, such as on-off and partial

faults. The differences or residuals between the reference

pattern and the actual pattern of the monitored array normally

has zero mean and a variance related the amount of noise

measurements. When a radiation pattern is faulty, the mean

of its associated residuals deviates from its nominal value,

which can be detected using GLR hypothesis testing. Fault

detection in linear antenna array using GLR hypothesis testing

involves the following steps: 1) the generation of residuals, 2)

the evaluation of these residuals using a GLR test.

Let e = [eϕ1
, . . . ,eϕ j , . . . ,eϕn ] be the residual vector, which

is defined as the difference between the reference radiation

pattern and the radiation pattern of the tested or monitored

array. In the absence of a fault, the residual vector equals,

e = Fd(ϕ)−Fs(ϕ) (6)

and in the presence of an additive fault vector, θ , the residual

vector equals,

e = Fd(ϕ)−Fs(ϕ) [+θ ]. (7)

The residual vector defined in equation (6) is assumed

to follow a Gaussian distribution. Thus, the fault detection

problem can be thought of as detecting the presence of an

additive bias vector, θ , in the residual vector, e, which can

be treated as a hypothesis testing problem, considering two

hypotheses: the null hypothesis H0, where e is fault-free and

the alternative hypothesis H1, where e contains a fault. The

formulation of this hypothesis testing problem can be written

as follows:{
H0 = {e∼N (0,σ2In)}, (null hypothesis);

H1 = {e∼N (θ ,σ2In), (alternative one).
(8)

An algorithm that outlines the proposed GLR fault detection

method in linear antenna arrays is summarized in Table I.
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TABLE I
ANTENNA ARRAY MONITORING USING A GLR FAULT DETECTION

ALGORITHM.

Step Action

1) Given:

• Training fault-free radiation pattern data (obtained from
a normally operating antenna array), and testing radiation
pattern data (obtained from an array possibly containing
faulty elements),

• A fixed false alarm probability, α ,

2) Synthesize the radiation pattern with the desired perfor-
mance,

3) Compute the residual vectors, e,
4) Compute the decision function Λ(e),
5) Compute the decision threshold h(α) for the GLR test,
6) Check for faults: if Λ(e)≥ h(α), then declare anomaly.

V. SIMULATED EXAMPLE

In this section, the performance of the GLR fault detection

algorithm will be assessed through three different cases studies

representing different faults. In the first case study, it is as-

sumed that the monitored linear array contains two completely

failing elements (case A). In the second case study, an antenna

array with partial failures is considered (case B). In third case

study, the radiation pattern of the monitored linear array is

corrupted by additive random Gaussian noise (case C).

The fault-free pattern for this example is generated by

simulating the radiation pattern of a uniformly spaced linear

array constituted with 12 rectangular microstrip antennas. The

radiation pattern f (ϕ) used in this simulations is the same

as the one described in [13], [14], [4]. This radiation pattern

is determined for a substrate with a permittivity of 2.2, a

thickness of 0.152cm, a square patch with a dimension of

1.89cm, and a frequency of 5GHz.

1) Case A: detection of complete failures: This first case

study is aimed to assess the ability of the GLR test to detect

the presence of on-off faults in the linear antenna array. We

consider that the array defective elements fail completely,

which is equivalent to assuming that their relative excitations

are zero. Two examples are presented here to illustrate the

ability of the GLR fault detection method to detect complete

faults in linear antenna arrays. In the first example, we have

considered a linear array with two completely failing element

at positions (-3 and 3) as shown in Figure 1. The radiation

pattern is represented using 180 samples between angles of -

90 and 90 degrees. To better represent randomness in practical

measurements, zero-mean Gaussian noise with a standard

deviations of σ = 0.005 is added to the simulated radiation

pattern. Figure 2 shows the reference radiation pattern of

fault-free antenna array obtained using the Minimax algorithm

(solid curve) and the faulty pattern (circle-dash curve). One

can clearly observe from Figure 2, that due to the failing

element, the radiation pattern deviated from the reference

pattern.

The GLR threshold value is found to be h(α) = 0.004 for a

false alarm probability of α = 5%. The GLR decision function
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Fig. 1. Example of a linear antenna array with two completely failing elements
at positions -3 and 3 (Case A, first example).
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Fig. 2. The reference radiation pattern of the fault-free array (solid curve) and
the radiation pattern of the monitored array with completely failing elements
at positions -3 and 3 (circle-dash curve), (Case A, first example).

for this case, which is plotted in Figure 3, clearly shows the

the violation of the confidence limits and thus the ability of

the GLR test to detect this type (on-off) faults.
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Fig. 3. The evolution of the GLR decision function in the presence of two
complete faults at positions -3 and 3 (Case A, first example).

In the second example, an array with two failing elements

at positions of -2 and 2 is considered (see Figure 4). Figure 5

shows the radiation patters of the fault-free and faulty arrays,

and Figure 9 shows the decision function for this example.

As in the first example, Figure 9 shows that the ability of the

GLR test to successfully detect these faults. Note, however,

that the deviation between the reference and faulty patterns is

a function of the position of the faulty elements in the array.
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Fig. 4. Example of a linear antenna array with two completely failing elements
at positions -2 and 2 (Case A, second example).
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Fig. 5. The reference radiation pattern of the fault-free array (solid curve) and
the radiation pattern of the monitored array with completely failing elements
at positions -2 and 2 (circle-dash curve), (Case A, second example).
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Fig. 6. The evolution of the GLR decision function in the presence of two
complete faults at positions -2 and 2 (Case A, second example).

2) Case B: detection of partial failures: The second case

is aimed to assess the ability of the GLR test to detect partial

failures, i.e., some elements are not completely failing. The

partially failing elements are positions -3 and 3 in the linear

array (see Figure 7). To simulate the performance of the

partially falling array, the excitations of the array are modified

to represent the assumed grade of failure. Here, it is assumed

that the excitations of the partially failing elements are half of

their normal values. Figure 8 shows the radiation patterns of

the fault-free array (solid curve) and the faulty array (circle-

dash curve). Again, the false alarm probability is chosen to be

5% for the GLR test, and the computed decision function is

plotted in Figure 9, which shows that the GLR fault detection

scheme is capable of detecting this type of partial faults.
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Fig. 7. Example of a linear antenna array with two elements partially failing
at positions -3 and 3 (Case B).
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Fig. 8. The reference radiation pattern of the fault-free array (solid curve)
and the radiation pattern of the monitored array with partially failing elements
at positions -3 and 3 (circle-dash curve), (Case B).
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Fig. 9. The evolution of the GLR decision function in the presence of two
element partially failing at positions -3 and 3 (Case B).

Note that, in the case of failure(s), the radiation pattern can

be restored with a minimal loss of quality (without replacing

the defective elements) by re-optimizing the excitations of

the antenna elements that did not fail. Several compensation

techniques have been developed in the literature, which include

machine learning optimization [15], conjugate gradient-based

algorithm [16], genetic algorithm [17], simulated annealing

technique [18], and many others.

To assess the detection performance of GLR detector, the

good detection ratio, which is defined as the percentage

of good detection on a certain number of realizations was

computed for different value of failure magnitude. To make
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statistically valid conclusions about the performances of this

detector, a Monte Carlo simulation using 5,000 realizations is

performed for each value of failure magnitude taken between

2% and 60%. The false alarm probability is chosen to be 5%

for the GLR test. The average of the 5000 of good detection

rate as function of failure magnitude is shown in Figure 10.
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Fig. 10. GLR detector good detection ratio.

3) Case C: detection of interfering signals: In this case

study, the ability of GLR test will be assessed through its

utilization to detect noise interfering in one or more direction

of the radiation pattern of a linear antenna array. Towards this

end, two examples are presented. In the first example, the

radiation pattern of the monitored linear array is corrupted

using random Gaussian noise having a standard deviation of

0.07 in the direction ϕ = [50◦ 70◦]. The false alarm probability

is chosen again to be 5%, and Figure 11, which plots the value

of the GLR decision function, shows that this fault is detected

by exceeding the threshold value without any false alarms.
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Fig. 11. The evolution of the GLR decision function in the presence of an
interfering signal in the direction ϕ = [50◦ 70◦], (Case C, first example).

In the second example, the diagnosis of the same array

is performed using interfering signals in the directions ϕ =
[−70◦ − 50◦]

⋃
[50◦ 70◦]. The simulation of the radiation

pattern representing these faults is performed by introducing

two different levels of noise: noise having a standard deviation

of 0.05 in the direction ϕ = [−70◦ −50◦] and noise having a

standard deviation of 0.1 in the direction ϕ = [50◦ 70◦]. Again,

the false alarm probability is chosen to be 5%, and Figure 12,

which plots the value of the GLR decision function, shows that

this fault is detected by exceeding the threshold value without

any false alarms.
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Fig. 12. The evolution of the GLR decision function in the presence of an
interfering signal in the directions ϕ = [−70◦ − 50◦]

⋃
[50◦ 70◦], (Case C,

second example).

The results of these examples show that the GLR hypothesis

testing based fault detection method is not only an effective

method for detecting the presence of interfering signals, but

also it can be used to determine the angle of the interfering

signal from which the location of the interference source can

be deduced. When such faults are encountered, the excitation

of array elements can be re-optimized to produce a pattern

with minimal loss of quality with respect to the desired one.

To guarantee a reliable performance of the array, noise signals

intervening in one or more direction of the radiation pattern

can be rejected by numerically finding a new set of excitations

of the perturbed array that optimizes some objective function.

VI. CONCLUSION

With increasing demand for reliability and safety in wire-

less communication systems, more attention has been given

recently by researchers to the problem of fault detection in

antenna arrays. The presence of faults changes the radiation

pattern of the synthesized array and degrades its performance.

In this paper, the problem of fault detection in linear antenna

array is addressed from a statistical point of view. Specifically,

a fault detection scheme based on the GLR test is proposed

to achieve this objective. The proposed method detects faults

based on change in the radiation pattern from desired one

through three case studies involving 1) complete (on-off)

faults, 2) partial faults, and 3) interfering signals. The results

showed the effectiveness of the GLR test in detecting these

types of faults in a linear antenna array. It is worthwhile to

note that the developed methodology can also be be extended

to monitor the performances of planar antenna arrays.
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