
Multi-document Extractive Summarization Using
Window-based Sentence Representation

Yong Zhang
School of Electrical and

Electronic Engineering

Nanyang Technological University

Singapore

Email: yzhang067@e.ntu.edu.sg

Meng Joo Er
School of Electrical and

Electronic Engineering

Nanyang Technological University

Singapore

Email: emjer@ntu.edu.sg

Rui Zhao
School of Electrical and

Electronic Engineering

Nanyang Technological University

Singapore

Email: rzhao001@e.ntu.edu.sg

Abstract—Multi-document summarization has gained pop-
ularity in many real world applications because significant
information can be obtained within a short time. Extractive
summarization aims to generate a summary of a document
or a set of documents by ranking sentences and the ranking
results rely heavily on the quality of sentence features. However,
almost all previous algorithms require hand-crafted features
for sentence representation. In this paper, we leverage on word
embedding to represent sentences so as to avoid the intensive
labor of feature engineering. We propose a new technique,
namely window-based sentence representation (WSR), to obtain
the features of sentences using pre-trained word vectors. The
method is developed based on the Extreme Learning Machine
(ELM). Our proposed framework does not require any prior
knowledge and thus can be applied to various document
summarization tasks with different languages, written styles
and so on. We evaluate our proposed method on the DUC 2006
and 2007 datasets. This proposed method achieves superior
performance compared with state-of-the-arts document sum-
marization algorithms with significantly faster learning speed.

I. INTRODUCTION

Automatic text summarization has been widely re-
searched in recent years with the explosive growth of
accessible information due to the rapid development of
Internet and computing technology. It can mainly be divided
into two categories, namely abstractive summarization and
extractive summarization. The abstractive summarization
methods involve sentence compression and reformulation
which resemble human summarizers, but the linguistic pro-
cessing procedure is so complicated that it is not easy to
be implemented [1]–[3]. However, the extractive methods
directly extract the most informative sentences in a document
to form the final summary. Due to its simplicity, most works
done in this area fall in the extraction-based category.

Extractive document summarization methods roughly fall
into three main categories [4], [5]: 1) Methods based on
sentence positions and article structure, 2) Unsupervised
methods, 3) Supervised methods. For the first category,
important sentences, such as those in introductory or con-
cluding part, will be selected to fit into the summary. One
famous method (LEAD) is proposed in [6] which simply

extracts the leading sentences to summarize a document.
However, such methods can only be applied to strictly
structured documents like newswire articles. On the other
hand, unsupervised methods rank sentences by salience
scores which are estimated based on statistical and lin-
guistic features and extract the top ones to constitute the
summary. Maximal Marginal Relevance (MMR) [7] is a
well-known unsupervised method which obtains a trade-off
between relevance and redundancy of sentences. The MMR
framework is cast as an integer linear programming (ILP) in
[8] to find the global optimal solution. Graph-based ranking
methods play a significant role in unsupervised document
summarization in recent years, such as the LexRank [9]
and the TextRank [10]. They first build a graph of sentence
similarities and then calculate the importance of a sentence
by inspecting its links to all other sentences in the graph
recursively. Some other unsupervised extraction-based doc-
ument summarization methods include the Latent semantic
analysis (LSA) [11], the Markov random walk (MRW) [12]
and the submodularity-based methods [13]. In contrast to
unsupervised methods, supervised approaches utilize a set of
training documents together with their corresponding hand-
crafted summaries to train a binary classifier which is used
to predict whether a sentence should be included in the
summary or not. In [14], a probabilistic approach termed
conditional random field (CRF) is proposed to rank full
sentences while researchers in [15], [16] train their models
based on n-gram regression. Recently, some researchers
[17], [18] measure the salience of both sentences and n-
grams. The author of [17] takes advantage of support vector
regression (SVR) and the approach in [18] is developed
based on the recursive neural networks (RNN).

Almost all the aforementioned methods depend on hand-
crafted features to represent sentences which result in in-
tensive human labor. In this paper, we leverage on the
word embedding technique to represent sentences. Word
embedding has drawn great attention in recent years because
it can capture both semantic and syntactic information.
The idea of word embedding has a very long history but
has become popular since Bengio et al.’s works [19], [20]
in which each word is represented by a vector and the
concatenation of several previous word vectors is employed
to predict the next word using a neural networks language

2015 IEEE Symposium Series on Computational Intelligence

978-1-4799-7560-0/15 $31.00 © 2015 IEEE

DOI 10.1109/SSCI.2015.67

404

model. Since then, a lot of researchers have explored the
salient features of the vector representation of words [21]–
[25] using neural networks. These models can map the words
into a vector space where words with similar semantics lie
close to each other, i.e., vector(”American”) is closer to
vector(”France”) than to vector(”Bread”).

Research beyond word level to explore phrase-level and
sentence-level representation [25]–[29] has also been carried
out. Socher et al. [28] uses a parse tree to combine word
vectors to represent a sentence. The method can capture
the sentiment of a sentence effectively, but the training
procedure is very complicated. A much simpler method
is to summarize all the word vectors in a sentence to
obtain the representation of the sentence. However, this
method will lose the word order just like conventional bag-
of-words method. In this paper, we propose a new tech-
nique termed window-based sentence representation (WSR)
to represent sentences which can be implemented as easily
as the summarization method while preserving word order
information. We employ the Extreme Learning Machine
(ELM) of [30] to train our model. The training speed is
hundreds or thousands of times faster compared with the
parse tree method and deep neural networks. We evalu-
ate our method on two summarization benchmark datasets
DUC2006 and DUC2007. The proposed method achieves
significantly superior performance compared with state-of-
the-arts document summarization algorithms within a much
shorter time.

This paper is organized as follows: Section II gives a
brief review of related works. In Section III, the proposed
algorithm is described in details. The performance of the
proposed method is compared with other learning algorithms
in Section IV. Conclusions are drawn in Section V.

II. OVERVIEW OF RELATED WORKS

The two most related methods, namely word embedding
and extreme learning machine (ELM) are briefly discussed
in this section.

A. Word Embedding

Word embedding is also called word vector or distributed
word representation, which has a long history. The idea of
distributed word representations was first proposed in [31],
[32] and other early works including [33], [34]. Recently,
neural networks language models have been proposed for
predicting probability distribution over the next word given
some preceding words [19], [20]. In their framework, a
feedforward neural network with a linear projection layer
and a nonlinear hidden layer was used to learn jointly
the word vector representation and a statistical language
model. Another popular architecture of neural networks
language model was proposed by Milkov et al. [24], [25].
They developed their methods in the context of recurrent
neural networks and proposed two efficient word represen-
tation estimation models, namely Continuous Bag-of-Words
(CBOW) model and Skip-gram model, both being among the
most widely used distributed word representation methods
nowadays.

Fig. 1. ELM network structure.

Word embedding has been applied to many natural
language processing applications such as name entity recog-
nition [21], word sense disambiguation [23], parsing [28],
tagging [35] and machine translation [36] and it has been
demonstrated that they are very efficient in capturing se-
mantic and syntactic information within texts. Going beyond
word-level representation, a lot of efforts have been devoted
to exploring how to represent phrases and sentences using
vectors [25]–[29]. Socher et al. [37]–[40] mainly leverage on
recursive neural networks with a tree structure to combine
word vectors and their works are shown to work well
for sentence-level representation. However, their model can
hardly be extended beyond single sentences. Most recently,
Le et al. [41] developed a method termed Paragraph Vector
which can not only represent phrases and sentences but also
be extended to the document level.

B. ELM

The ELM and its variants have been widely used due to
their salient features such as tuning free and extreme fast
learning speed. The relationship and differences between
ELM and other related works can be found in a recent
published work [42]. The ELM was first proposed by Huang
et al. [30] for a single-hidden-layer feedforward neural
network (SLFN) with randomly chosen input weights and
hidden nodes and analytically determined output weights.
The structure of the original ELM is shown in Fig. 1.

Let us suppose that there are K observations (xk, tk)
K
k=1

with x ∈ R
1×n and t ∈ R

1×m. If a SLFN with L
hidden nodes can approximate the data with zero error, the
following equation holds:

L∑
l=1

βlG(xk;al, bl) = tk, k = 1, . . . ,K (1)

where βl are the output weights and G(x;a, b) is the
activation function where a, b are the parameters of hidden
nodes. The term G(xk;al, bl) represents the output of the
lth hidden node with respect to the kth input data. The
activation function can be both additive function and RBF
function. For the additive function, the term al is the weight
vector connecting the input layer to the lth hidden node
and the term bl is the bias of the lth hidden node. For the
RBF function, the terms al and bl are the center and impact

405

factor of the lth hidden node respectively. Equation (1) can
be written in the following compact form:

Hβ = T (2)

where

H =

⎡
⎢⎣

G(x1,a1, b1) · · · G(x1,aL, bL)

...
...

...

G(xK ,a1, b1) · · · G(xK ,aL, bL)

⎤
⎥⎦

β = [β1 · · · βL]
T

and T = [t1 · · · tK]
T

The term H is called the hidden layer output matrix
of the network, T is the target matrix and β is the output
weight matrix. The parameters of the hidden nodes (al, bl)
are randomly generated, and the only parameter needed
to be calculated is the output matrix β, which can be
analytically determined using the least squares estimate
(LSE) as follows:

β = H†T (3)

where H† is the Moore-Penrose generalized inverse of the
matrix H which can be calculated through the orthogonal
projection method, orthogonalization method and singular
value decomposition (SVD) [43].

It should be highlighted that the number of hidden
neurons is the only parameter to be specified in the ELM
as opposed to other learning algorithms which usually have
a lot of parameters to be tuned [44]. Another remark of the
ELM is that the activation function for additive nodes can
be any bounded non-constant piece-wise continuous function
and the activation function for RBF nodes can be any integral
piece-wise continuous function. Since the original ELM,
many variants have been proposed and applied to all kinds
of applications. The recent developments and future trend of
ELM algorithm can be found in [45]

III. WINDOW-BASED SENTENCE REPRESENTATION FOR

MULTI-DOCUMENT SUMMARIZATION

Extractive summarization is defined as the selection
process of salient sentences in a corpus of documents to
generate a brief summary which can best describe the sub-
ject. We denote the document corpus as C = {D1, D2, ...},
in which Di is the ith document in the corpus. Each
document consists of a set of sentences. We include all
the sentences in the corpus to form the candidate set
CS = {s1, s2, ..., sn}, where si ∈ R

d is the vector
representation of the ith sentence in the corpus. The term
n is the number of distinct sentences in the corpus while d
is the dimension of the sentence vector. The determination
of the sentence representation has never been a trivial task.
Most conventional methods require hand-crafted features
which result in intensive human labor. Our proposed method
leverages on pre-trained the word embedding technique to

obtain sentence representations. Next, we employ the ELM
to assign salience scores to sentences in the candidate set.
After assignment of salience scores, the sentences can be
ranked so that the sentences in the candidate set with high
scores will be selected as summary sentences. The selected
sentences form the summary set SS = {s∗1, s∗2, ..., s∗k}.
Note that k << n and SS ⊂ CS.

A. Preprocessing

Our proposed method is a supervised method. But ready-
made salience scores are not available for training data.
Therefore, we first pre-process the documents to obtain a
salience score for each sentence. The document sets are
given together with their reference summaries. We adopt the
widely-accepted automatic summarization evaluation metric,
ROUGE, to measure the salience. As ROUGE-1 (R1) and
ROUGE-2 (R2) most agree with human judgment among all
the ROUGE scores [46], we calculate each sentence’s score
as follows:

score = α(R1 +R2) (4)

We set the coefficient α = 0.5 for equal weighting of the
two scores. The terms R1 and R2 are obtained by compar-
ing each sentence in multi-documents with corresponding
reference summaries.

The other problem is to determine input features of the
ELM model, i.e., obtain sentence representations. This is
the focal point of our proposed method. With the aid of
pre-trained word vectors, we can denote a sentence as si =
{w1,w2, ...,wl}, in which wi is the word embedding of the
ith word in the sentence and l is the length of the sentence.
An intuitive and simple method to represent the sentence is
to summarize all the word vectors as follows:

s =
l∑

i=1

wi (5)

However, this method loses the word order information
in the sentence. In order to address the problem, we pro-
pose a window-based sentence representation (WSR) method
which is able to preserve the order information. We represent
a word taking into its context words instead of simply
using its own word vector. The new word representation
is denoted as the concatenation of word vectors within a
context window. Supposing the window size is m, the new
word representation, vi, is given by

vi = [wT
i−m−1

2

, ...,wT
i , ...,w

T
i+m−1

2

]T ∈ R
md (6)

where the term m should be assigned an odd number. For
those words at the first or last positions, zero vectors are
padded to guarantee the context window size. With the new
representations of words, we can obtain the representation
of a sentence as follows:

s =

l∑
i=1

vi (7)

406

This method is still very simple and easy to implement,
but it is able to preserve some order information compared
with the summarization method. In order to demonstrate
the effectiveness of the context window, we compare our
method with the summarization method in the experiment
section. The summarization method is termed summation
sentence representation (SSR) in this paper.

B. Training

After the preprocessing procedure, we use the training
documents to train the ELM model. We use RBF kernel
in the ELM model, and the centers and impact factors of
the kernel are all randomly generated. The only parameter
needed to be tuned is the number of hidden neurons. It has
been proved that the single-hidden-layer neural network is
a universal function approximator as long as the number of
hidden neurons is big enough. As the input feature number
is md, which is not a very large number, the number of
hidden layer nodes can be selected slightly larger than md.
The detail training procedure can be found in Section II-B.
The objective function of the model is formulated as follows
[47]:

min

n∑
i=1

‖score(si)− h(si)β‖22 + λ ‖β‖22 (8)

where score(si) is the true score of the ith sentence obtained
in the preprocesing process, h(si) is the corresponding
hidden-layer output and β is the output weight matrix. The
term λ is a user defined parameter constraining the value of
β. Equation (8) can also be written in a compact form:

min ‖Y −Hβ‖22 + λ ‖β‖22 (9)

where H = [h(s1), · · · ,h(sn)]T is the hidden layer
output matrix for all the sentences while Y =
[score(s1), · · · , score(sn)]T is the output score vector.

This equation minimizes both training error and norm
of output weights because both small training error and
small norm of weights contribute to the improvement of
generalization performance according to Bartlett’s theory
[48]. The output matrix β can be analytically determined
using the following equation [47]:

β = (HTH+ λI)−1HTY (10)

As there are few parameters to tune, the training process
is very fast. This is a strong advantage over other conven-
tional machine learning models.

C. Testing

For the testing documents, features of all the sentences
are calculated just like in the training documents. Next,
they will be used as the input to the trained ELM model
to obtain their salience scores. Afterwards, sentences in
each multi-document cluster can be ranked according to
their salience scores. Since a good summary should be

not only informative but also non-redundant, we employ a
sentence selection method in [49] to select from the ranked
sentences. The selection method queries the sentence with
the highest salience score and adds it to the summary if
the similarity of the sentence with all the sentences already
existing in the summary does not exceed a threshold. This
sentence selection procedure is especially necessary for
multi-document summarization because sentences extracted
from different documents in one topic can be very similar.
The selection process repeats until the length limit of the
final summary is met.

IV. PERFORMANCE EVALUATION

A. Datasets

The benchmark datasets from the Document Understand-
ing Conferences (DUC1) are used to evaluate our proposed
document summarization method. The datasets are English
news articles. In this paper, we evaluate the performance
of multi-document summarization on DUC 2006 and 2007
datasets. When evaluating on the DUC 2006 dataset, we train
our model on DUC 2004 and 2007 datasets. Simultaneously,
DUC 2004 and 2006 datasets are used to train the model for
evaluation on the DUC 2007 dataset. The characteristics of
the three-year datasets are given in Table I. The table also
contains the length limit of automatic summary for each
dataset. The reference summaries for each set of documents
are given together with the testing documents.

B. Evaluation Metrics

For the evaluation of summarization performance, we
employ the widely used ROUGE2 toolkit [50]. ROUGE has
become the standard evaluation metric for DUC since 2004.
Rouge assesses the quality of an automatic summary by
counting the overlapping units such as n-gram, common
word pairs and longest common sub-sequences between the
automatic summary and a set of reference summaries. The
n-gram ROUGE metric (ROUGE-N) can be computed as
follows:

ROUGE −N =∑
S∈{RefSum}

∑
n−gram∈S Countmatch(n− gram)∑

S∈{RefSum}
∑

n−gram∈S Count(n− gram)
(11)

where n stands for the length of the n-gram, Count(n −
gram) is the number of n-grams in the set of reference
summaries and Countmatch(n−gram) refers to the number
of n-grams co-occurring in a system generated summary
and the set of reference summaries. Among all the ROUGE
scores, ROUGE-1 (unigram) and ROUGE-2 (bigram) have
been demonstrated to most agree with human judgment
[46]. Rouge-SU4 is also a very popular metric because it
conveys the readability of a candidate summary. Therefore,
ROUGE-1, ROUGE-2 and Rouge-SU4 scores are reported
in our evaluation study. We set the length parameter ”-l 250”.

1http://duc.nist.gov
2ROUGE-1.5.5 with options: -n 2 -x -m -2 4 -u -c 95 -r 1000 -f A -p

0.5 -t 0 -d

407

TABLE I. CHARACTERISTICS OF DATA SETS

Year Clusters Documents/Cluster Length Limit

2004 50 10 250 words

2006 50 25 250 words

2007 45 25 250 words

Rouge generates precision, recall and F-measure metrics. We
employ F-measure, which is a combination of precision and
recall metrics, in our experiment to compare the performance
of different algorithms.

C. Parameter Settings

The embeddings of words used in our experiments are
initialized using Skip-gram neural networks method pro-
posed by Mikolve et al. [24] which is available in word2vec
tool3. The model is trained on a part of Google News dataset
which has about 100 billion words. The dimension of each
word vector is 300. The word vectors are already available
and can be directly downloaded from the word2vec tool
website. Therefore, it is not necessary to spend a great
amount of time to train and obtain word vectors. For the
setting of ELM, the only parameter needed to be determined
is the number of hidden neurons, which we set as 1000 in
this paper. The python package on the ELM website4 is em-
ployed for our experiment. The threshold value of sentence
selection for multi-document summarization is set as 0.4 and
the context window size is set as 3. These parameters are
determined using cross-validation. The experiments are done
on a 2.0GHz PC computer.

D. Comparative Studies

We compare our proposed method with several state-
of-the-arts document summarization techniques which are
briefly described as follows:

Random: Selects sentences randomly from the candidate
set.

Lead [6]: First sorts all the documents chronologically and
then extracts the lead sentence from each document to form
the summary.

LSA [11]: Applies the singular value decomposition (SVD)
on the term frequency matrix and then selects sentences with
highest eigenvalues.

DSDR [51]: Uses sparse coding to represent each sentence
as a nonnegative linear combination of the summary sen-
tences.

Table II and Table III are the overall performance com-
parison results of our proposed method WSR against other
state-of-the-arts algorithms. It is obvious that the proposed
method WSR outperforms all the other algorithms signif-
icantly. Among all the algorithms, LSA gives the poorest
performance on both datasets. LSA exploits SVD on term-
frequency matrix and supposes that sentences with highest
eigenvalues are most informative sentences in a document
corpus. The experiment results suggest that such hypothesis
may not be true for human understanding. The table also

3https://code.google.com/p/word2vec
4http://www.ntu.edu.sg/home/egbhuang/

TABLE II. SYSTEM COMPARISON RESULTS ON DUC2006

System ROUGE-1 ROUGE-2 ROUGE-SU4

Random 0.28047 0.04613 0.08785

Lead 0.30758 0.04836 0.08652

LSA 0.24415 0.03022 0.07099

DSDR 0.32034 0.04585 0.09804

SSR 0.32804 0.04151 0.09725

WSR 0.34416 0.05178 0.10954

TABLE III. SYSTEM COMPARISON RESULTS ON DUC2007

System ROUGE-1 ROUGE-2 ROUGE-SU4

Random 0.30199 0.04628 0.08763

Lead 0.31188 0.0576 0.10201

LSA 0.25977 0.04062 0.08338

DSDR 0.32641 0.04876 0.10245

SSR 0.35571 0.05623 0.1158

WSR 0.37394 0.06961 0.12776

shows that Lead performs a little better than the Random
method, which may be because that article writers like to
put summary sentences at the beginning of the documents.
DSDR achieves the best performance on ROUGE-1 score
except the two word embedding-based methods. It proves
that sparse coding helps to find informative sentences out of
documents. The two word-embedding-based methods, SSR
and WSR, show the best performance, proving that word
embedding is effective in capturing semantic and syntactic
information. Comparing WSR with SSR, we can conclude
that the incorporation of a context window indeed helps
document summarization. This is because WSR preserves
word order information compared with SSR.

In addition, our method is very efficient with a very fast
learning speed. The average running time of DSDR on one
document set is more than 4000s while the time of WSR is
only about 8s. Our algorithm is more than 500 times faster
than DSDR. This results from the ELM’s salient tuning-free
features. Besides, the biggest advantage of our method is
that it does not need hand-crafted features. The pre-trained
word embedding has saved us an enormous amount of time
and effort, enabling us to avoid the intensive human labor
of feature engineering.

V. CONCLUSIONS

In this paper, a new technique termed window-based
sentence representation (WSR) has been successfully de-
veloped to obtain the features of sentences based on pre-
trained word vectors. The use of word embedding enables
us to avoid the intensive human labor of feature engi-
neering. We employ a context window to preserve word
order information in sentences. The model is realized by
the ELM. Our proposed framework does not require any
prior knowledge and thus can be applied to various docu-
ment summarization tasks with different languages, written
styles and so on. We evaluate our proposed method on
the DUC 2006 and 2007 datasets. This proposed method
achieves superior performance compared with state-of-the-
arts document summarization algorithms with significantly
faster learning speed.

408

ACKNOWLEDGMENT

The authors would like to acknowledge the funding
support from the Ministry of Education, Singapore (Tier 1
AcRF, RG30/14).

REFERENCES

[1] H. Daumé III and D. Marcu, “A noisy-channel model for document
compression,” in Proceedings of the 40th Annual Meeting on Associ-
ation for Computational Linguistics. Association for Computational
Linguistics, 2002, pp. 449–456.

[2] J. Turner and E. Charniak, “Supervised and unsupervised learning for
sentence compression,” in Proceedings of the 43rd Annual Meeting
on Association for Computational Linguistics. Association for
Computational Linguistics, 2005, pp. 290–297.

[3] A. F. Martins and N. A. Smith, “Summarization with a joint model
for sentence extraction and compression,” in Proceedings of the
Workshop on Integer Linear Programming for Natural Langauge
Processing. Association for Computational Linguistics, 2009, pp.
1–9.

[4] I. Mani and M. T. Maybury, Advances in automatic text summariza-
tion. MIT Press, 1999, vol. 293.

[5] K.-Y. Chen, S.-H. Liu, B. Chen, H.-M. Wang, W.-L. Hsu, and H.-H.
Chen, “A recurrent neural network language modeling framework for
extractive speech summarization,” in Multimedia and Expo (ICME),
2014 IEEE International Conference on. IEEE, 2014, pp. 1–6.

[6] M. Wasson, “Using leading text for news summaries: Evaluation
results and implications for commercial summarization applications,”
in Proceedings of the 36th Annual Meeting of the Association for
Computational Linguistics and 17th International Conference on
Computational Linguistics-Volume 2. Association for Computational
Linguistics, 1998, pp. 1364–1368.

[7] J. Carbonell and J. Goldstein, “The use of mmr, diversity-based
reranking for reordering documents and producing summaries,” in
Proceedings of the 21st annual international ACM SIGIR conference
on Research and development in information retrieval. ACM, 1998,
pp. 335–336.

[8] R. McDonald, A study of global inference algorithms in multi-
document summarization. Springer, 2007.

[9] G. Erkan and D. R. Radev, “Lexrank: graph-based lexical centrality
as salience in text summarization,” Journal of Artificial Intelligence
Research, pp. 457–479, 2004.

[10] R. Mihalcea and P. Tarau, “Textrank: Bringing order into texts.”
Association for Computational Linguistics, 2004.

[11] Y. Gong and X. Liu, “Generic text summarization using relevance
measure and latent semantic analysis,” in Proceedings of the 24th
annual international ACM SIGIR conference on Research and de-
velopment in information retrieval. ACM, 2001, pp. 19–25.

[12] X. Wan and J. Yang, “Multi-document summarization using cluster-
based link analysis,” in Proceedings of the 31st annual international
ACM SIGIR conference on Research and development in information
retrieval. ACM, 2008, pp. 299–306.

[13] H. Lin and J. Bilmes, “A class of submodular functions for document
summarization,” in Proceedings of the 49th Annual Meeting of
the Association for Computational Linguistics: Human Language
Technologies-Volume 1. Association for Computational Linguistics,
2011, pp. 510–520.

[14] M. Galley, “A skip-chain conditional random field for ranking
meeting utterances by importance,” in Proceedings of the 2006
Conference on Empirical Methods in Natural Language Processing.
Association for Computational Linguistics, 2006, pp. 364–372.

[15] C. Li, X. Qian, and Y. Liu, “Using supervised bigram-based ilp for
extractive summarization.” in ACL (1). Citeseer, 2013, pp. 1004–
1013.

[16] K. Hong and A. Nenkova, “Improving the estimation of word
importance for news multi-document summarization,” in Proceedings
of EACL, 2014.

[17] Y. Hu and X. Wan, “Ppsgen: learning to generate presentation
slides for academic papers,” in Proceedings of the Twenty-Third
international joint conference on Artificial Intelligence. AAAI Press,
2013, pp. 2099–2105.

[18] Z. Cao, F. Wei, L. Dong, S. Li, and M. Zhou, “Ranking with
recursive neural networks and its application to multi-document
summarization,” in Proceedings of the 2015 AAAI Conference on
Artificial Intelligence. Association for the Advancement of Artificial
Intelligence, 2015.

[19] Y. Bengio, R. Ducharme, P. Vincent, and C. Janvin, “A neural
probabilistic language model,” The Journal of Machine Learning
Research, vol. 3, pp. 1137–1155, 2003.

[20] Y. Bengio, H. Schwenk, J.-S. Senécal, F. Morin, and J.-L. Gauvain,
“Neural probabilistic language models,” in Innovations in Machine
Learning. Springer, 2006, pp. 137–186.

[21] R. Collobert and J. Weston, “A unified architecture for natural
language processing: Deep neural networks with multitask learning,”
in Proceedings of the 25th international conference on Machine
learning. ACM, 2008, pp. 160–167.

[22] A. Mnih and G. E. Hinton, “A scalable hierarchical distributed
language model,” in Advances in neural information processing
systems, 2009, pp. 1081–1088.

[23] J. Turian, L. Ratinov, and Y. Bengio, “Word representations: a simple
and general method for semi-supervised learning,” in Proceedings
of the 48th annual meeting of the association for computational
linguistics. Association for Computational Linguistics, 2010, pp.
384–394.

[24] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient esti-
mation of word representations in vector space,” arXiv preprint
arXiv:1301.3781, 2013.

[25] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
“Distributed representations of words and phrases and their compo-
sitionality,” in Advances in neural information processing systems,
2013, pp. 3111–3119.

[26] F. M. Zanzotto, I. Korkontzelos, F. Fallucchi, and S. Manandhar, “Es-
timating linear models for compositional distributional semantics,” in
Proceedings of the 23rd International Conference on Computational
Linguistics. Association for Computational Linguistics, 2010, pp.
1263–1271.

[27] A. Yessenalina and C. Cardie, “Compositional matrix-space models
for sentiment analysis,” in Proceedings of the Conference on Em-
pirical Methods in Natural Language Processing. Association for
Computational Linguistics, 2011, pp. 172–182.

[28] R. Socher, C. C. Lin, C. Manning, and A. Y. Ng, “Parsing natural
scenes and natural language with recursive neural networks,” in Pro-
ceedings of the 28th international conference on machine learning
(ICML-11), 2011, pp. 129–136.

[29] E. Grefenstette, G. Dinu, Y.-Z. Zhang, M. Sadrzadeh, and M. Ba-
roni, “Multi-step regression learning for compositional distributional
semantics,” arXiv preprint arXiv:1301.6939, 2013.

[30] G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew, “Extreme learning machine:
theory and applications,” Neurocomputing, vol. 70, no. 1, pp. 489–
501, 2006.

[31] R. J. Williams, D. E. Rumelhart, and G. E. Hinton, “Learning
representations by back-propagating errors,” Nature, pp. 323–533,
1986.

[32] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning
representations by back-propagating errors,” Cognitive modeling,
vol. 5, p. 3, 1988.

[33] J. B. Pollack, “Recursive distributed representations,” Artificial In-
telligence, vol. 46, no. 1, pp. 77–105, 1990.

[34] J. L. Elman, “Distributed representations, simple recurrent networks,
and grammatical structure,” Machine learning, vol. 7, no. 2-3, pp.
195–225, 1991.

[35] E. H. Huang, R. Socher, C. D. Manning, and A. Y. Ng, “Improving
word representations via global context and multiple word proto-
types,” in Proceedings of the 50th Annual Meeting of the Association
for Computational Linguistics: Long Papers-Volume 1. Association
for Computational Linguistics, 2012, pp. 873–882.

[36] W. Y. Zou, R. Socher, D. M. Cer, and C. D. Manning, “Bilingual

409

word embeddings for phrase-based machine translation.” in EMNLP,
2013, pp. 1393–1398.

[37] R. Socher, E. H. Huang, J. Pennin, C. D. Manning, and A. Y.
Ng, “Dynamic pooling and unfolding recursive autoencoders for
paraphrase detection,” in Advances in Neural Information Processing
Systems, 2011, pp. 801–809.

[38] R. Socher, J. Pennington, E. H. Huang, A. Y. Ng, and C. D. Manning,
“Semi-supervised recursive autoencoders for predicting sentiment
distributions,” in Proceedings of the Conference on Empirical Meth-
ods in Natural Language Processing. Association for Computational
Linguistics, 2011, pp. 151–161.

[39] R. Socher, D. Chen, C. D. Manning, and A. Ng, “Reasoning with
neural tensor networks for knowledge base completion,” in Advances
in Neural Information Processing Systems, 2013, pp. 926–934.

[40] R. Socher, A. Perelygin, J. Y. Wu, J. Chuang, C. D. Manning,
A. Y. Ng, and C. Potts, “Recursive deep models for semantic
compositionality over a sentiment treebank,” in Proceedings of the
conference on empirical methods in natural language processing
(EMNLP), vol. 1631. Citeseer, 2013, p. 1642.

[41] Q. V. Le and T. Mikolov, “Distributed representations of sentences
and documents,” arXiv preprint arXiv:1405.4053, 2014.

[42] G.-B. Huang, “What are extreme learning machines? filling the gap
between frank rosenblatts dream and john von neumanns puzzle,”
Cognitive Computation, vol. 7, no. 3, pp. 263–278, 2015.

[43] C. R. Rao and S. K. Mitra, Generalized inverse of matrices and its
applications. Wiley New York, 1971, vol. 7.

[44] N.-Y. Liang, G.-B. Huang, P. Saratchandran, and N. Sundararajan, “A
fast and accurate online sequential learning algorithm for feedforward
networks,” Neural Networks, IEEE Transactions on, vol. 17, no. 6,

pp. 1411–1423, 2006.

[45] G. Huang, G.-B. Huang, S. Song, and K. You, “Trends in extreme
learning machines: A review,” Neural Networks, vol. 61, pp. 32–48,
2015.

[46] K. Owczarzak, J. M. Conroy, H. T. Dang, and A. Nenkova, “An
assessment of the accuracy of automatic evaluation in summa-
rization,” in Proceedings of Workshop on Evaluation Metrics and
System Comparison for Automatic Summarization. Association for
Computational Linguistics, 2012, pp. 1–9.

[47] G.-B. Huang, H. Zhou, X. Ding, and R. Zhang, “Extreme learning
machine for regression and multiclass classification,” Systems, Man,
and Cybernetics, Part B: Cybernetics, IEEE Transactions on, vol. 42,
no. 2, pp. 513–529, 2012.

[48] P. L. Bartlett, “The sample complexity of pattern classification with
neural networks: the size of the weights is more important than the
size of the network,” Information Theory, IEEE Transactions on,
vol. 44, no. 2, pp. 525–536, 1998.

[49] Y. Li and S. Li, “Query-focused multi-document summarization:
Combining a topic model with graph-based semi-supervised learn-
ing,” in Proceedings of COLING 2014, the 25th International Con-
ference on Computational Linguistics: Technical Papers, 2014, p.
11971207.

[50] C.-Y. Lin, “Rouge: A package for automatic evaluation of sum-
maries,” in Text Summarization Branches Out: Proceedings of the
ACL-04 Workshop, 2004, pp. 74–81.

[51] Z. He, C. Chen, J. Bu, C. Wang, L. Zhang, D. Cai, and X. He,
“Document summarization based on data reconstruction.” in AAAI,
2012.

410

