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Abstract— The paper proposed a model using real time 
driving front video recording to detect driver drowsiness. The 
video recordings were fed into the TRW’s simulator to obtain the 
lane-related signals. Time domain features and frequency 
domain features were extracted from the lane-related signals to 
characterize the difference of alert state and drowsiness state. 
Both support vector machine and neural network were used to 
detect the drowsiness. Real world driving data from multiple 
objects were collected for the performance evaluation. Both face 
view video recordings and front view video recordings were 
made. The lane related signals were extracted by feeding the 
front view video recordings into the TRW simulator. 
Experimental results on real world driving recordings illustrated 
that the proposed method can detect the drowsiness with an 
accuracy over 90%. Both inner-driver and cross-driver testing 
results were provided. It also show that TRW simulator can 
generate reliable lane related signals if high quality video 
sequences are provided. 

I. INTRODUCTION  
According to the National Sleep Foundation’s 2005 Sleep 

in America poll, 60% of adult drivers – about 168 million 
people – say they have driven a vehicle while feeling drowsy in 
the past year, and more than one-third, (37% or 103 million 
people), have actually fallen asleep at the wheel. In fact, of 
those who have nodded off, 13% say they have done so at least 
once a month. Four percent – approximately eleven million 
drivers – admit they have had an accident or near accident 
because they dozed off or were too tired to drive.  

The National Highway Traffic Safety Administration 
conservatively estimates that 100,000 police-reported crashes 
are the direct result of driver fatigue each year. This results in 
an estimated 1,550 deaths, 71,000 injuries, and $12.5 billion in 
monetary losses [1].  

Inattentive driving is a growing problem and drowsiness 
detection has become the research focus in these years. The 
study of drowsiness detection can provide the wealth of 
information for active safety features even autonomy driving in 
the future. Various systems have been developed to prevent 
driver falling asleep during driving [2-4]. Some of these are 
based on physiological signal from driver, which involve the 

monitoring of activity in the brain, the heart and/or the eyes, 
like ECG, EEG, eye closure duration [5-10]. PERCLOS 
(percentage of time the eyes are more than 80% closed) is 
known as a very effective parameter in the drowsiness 
detection [11-14]. 

In order to collect these signals, the driver needs to wear 
high-end physiological signal sensors to get accurate signals, 
which is difficult during real time driving environment and is 
cost-expensive. Thus, non-intrusion method, such as computer 
vision-based method is a desirable option.  

Due to the fact that, real world driving data with drowsiness 
is very difficult to obtain, simulation methodologies (with 
simulated driving environment) applied to training and testing 
in the field of drowsiness detection were widely used. A set of 
3 screens with re-configurable positions can provide different 
angles of vision of drivers. The screen shows different 
scenarios to monitor the testing road [15, 16]. Monitoring is 
good simulation method but it is hard in commercial use and 
also the examining scenario is a simplified version of the actual 
situation [17]. There is few work which uses real word driving 
data. Fabian and Bin proposed new features for detection 
drowsiness for real world driving [18]. They analyzed the 
correlation between lane related features and Karolinska 
Sleepiness Scale (KSS). However, the classification error for 
three classes (drowsiness, alert, and questionable) is quite 
large.  

In this paper, a drowsiness detection method using real 
driving data was proposed. Two cameras, one for front view 
and another for face view, were used to capture the video 
signals. The video signals from the front view were used to 
extract the drowsiness-related features. And the video signals 
from the face view were used to label the ground truth of 
drowsiness. Instead of designing new signal detection methods 
from the front camera signals, the videos were feed into the 
TRW simulator to generate the signals, such as the vehicle 
position, heading, lane position, lane detection quality, etc. The 
proposed method extracted time and frequency domains 
statistical features from the lateral distance signal and used 
neural network and support vector machine to detect the 
drowsiness. 
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Section II will describe the acquisition system - 
Transportable Instrumentation Package (TIP) equipment as 
well as the label of ground truth. The detail signal description 
will show on Section III. Section IV will introduce the 
methodology of drossiness detection, the general algorithms 
and technics based on machine learning algorithm. After that, 
the experimental results are shown in Section V. Finally the 
conclusion and future work are presented in Section VI. 

II. DATA ACQUISITION SYSTEM AND GROUND TRUTH  
The purpose of this section is to show a portable extendable 

and robust data acquisition system and to explain the 
methodology carried out to label the recording video and 
analysis task to evaluate drowsiness in professional drivers. 

A. Transportable Instrumentation Package (TIP) data 
acquisition system 
TIP System is a portable data collection system that is easy 

in hardware installation and configuration in driver’s car [19]. 
It is portable, extendable and robust. The system is built up 
with multi-channel synchronization equipment from Race 
Technology including video cameras, Controller Area Network 
(CAN) message and physiological signal. Fig.1 shows the TIP 
system in-vehicle device structure and configuration. In our 
experiment, we only used the multi-channel camera to generate 
front video and driver’s face video for labeling. All the real 
driving data was collected by the TIP system. After each 
recording, the videos from the front view camera and the face 
view camera were synchronized. The videos from the face 
view camera were used to label the ground truth of driver’s 
drowsiness states, and the videos from the front view camera 
were used for drowsiness-related signal extraction.  

 

 

Fig. 1. TIP System in-vehicle Device Structure and Configuration 

 

Fig. 2. Video Simulator System 

 

Fig. 3. Visualization of system output 

B. Extraction Signals using TRW Simulator 
The videos from the front view camera provide rich 

information of the road, vehicle, and the environment. For the 
application of drowsiness detection, the vehicle and road 
related signals are our primary concern. Various computer 
vision-based methods have been proposed to extract these 
signals from the video, such as the trajectory [12]. In this 
paper, TRW’s simulator was used to achieve this purpose. The 
reason of using TRW’s simulator is that this paper is also 
intended to evaluate if TRW’s simulator can generate reliable 
signals from given videos for the application of drowsiness 
detection. 

Fig. 2 shows signal extraction system, which consists of 
TRW simulator, laptop (to control the simulator, and to receive 
the extracted signals from the simulator), power supply, 
monitor, etc. The system is able to analysis the lane markers 
and lane positions via image processing techniques provided 
by EyeQClient software [20]. The message (signals) received 
by the laptop is recorded and decoded by Vehicle Spy Software 
[21]. Fig. 3 shows an example of visualization outputs. In the 
visualization screen, there are many signals and indicators. 
Table I lists part of the available signals and indicators. The 
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final signals, e.g., lateral distance, will be calculated from the 
signals listed in Table 1. 

TABLE I.  ENVIRONMENTAL SIGNAL-TRW SIMULATOR OUPUTS 

LDW output Description Unit Value range 

Curvature Lane Curvature 1/m -0.0065572 ~ 0.0065571 
Curve_deriv Lane Curvature 

derivative 
1/m2 -0.00131072 ~ 0.00131071 

Heading Lane Heading 
angle 

Radia
ns 

-0.16384 ~ 0.16384 

Confidence Lane detection 
confidence 

score 

Enum 0 ~ invalid , 1 ~ valid (only 
if one of the lane has high 

quality) 
left_type Left lane type N/A 0 ~ dashed, 1~ solid, 2 ~ 

undecided, 3 ~ road edge, 4 
~ double/triple lane mark, 5 

~ Botts’dots, 6 ~ invalid 
left_quality Left lane 

detection quality 
N/A 0,1 ~ low quality            

2,3~high quality 
left_model_de

gree 
Left lane model 

degree 
N/A 0 ~ parabolic,  1 ~ linear, 2 

~ 3rd degree polynomial 
left_pos Left lane lateral 

position 
   m -10.24 ~ 10.24 

left_view_rang
e 

Maximal 
physical view 
range of left 
lane mark 

1/256 
m 

0 ~ 127.996 m 

right_type Right lane type N/A 0 ~ dashed, 1~ solid, 2 ~ 
undecided, 3 ~ road edge, 4 
~ double/triple lane mark, 5 

~ Botts’dots, 6 ~ invalid 
right_quality Right lane 

detection quality 
N/A 0,1 ~ low quality            

2,3~high quality 
right_model_d

egree 
Right lane 

model degree 
N/A 0 ~ parabolic,  1 ~ linear, 2 

~ 3rd degree polynomial 
right_pos (C) Right lane 

lateral position 
m -10.24 ~ 10.24 

right_view_ran
ge 

Maximal 
physical view 
range of right 

lane mark 

1/256 
m 

0 ~ 127.996 m 

 

C. Drowsiness ground truth  
Two methods were considered when labeling the ground 

truth. One is Karolinska Sleepiness Scale (KSS) level provided 
by the driver. The test drivers estimated their level of 
sleepiness according to the KSS, which has been proven, has 
high correlation to driving performance. The KSS level was 
generated by every 5 minutes based on questionnaire after 
driving. Another is labeling results (manually) from video 
sequence by our volunteers. During the labeling, the volunteers 
were asked to watch the videos (frame-by-frame) from the face 
camera, and to find any drowsiness events, such as eye-closing, 
yawning, nodding, etc. The timestamps of every drowsiness 
were recorded by our own labeling program. Also the labeling 
results were double checked by other volunteers.  

The fatigue level is calculated by the number of seconds 
fatigue events, like nodding, eye closeness, yawning, happened 
in 1 minute. Table II shows the rules for ground truth labeling. 

III. METHOD AND ARCHITECTURE OF THE SYSTEM  
In this section, data cleaning, feature extraction techniques, 

selected signals and statistical features will be elaborated. 
Then, the drowsiness detection system using either neural 
network or  

TABLE I.  LABEL EVENT DESCRIPTION 

Event  - Driver Category 
Yawning Fatigue 

Eye closing Fatigue 
Nodding Fatigue 

Head rotation(left/right) while 
changing lanes 

Normal 

Gaze movement(left/right) while 
changing lanes 

Normal 

Head rotation (up/down/left/right) Active distraction 
Gaze movement 

(up/down/left/right) 
Active distraction 

Body movement (Grab things, 
picking up phone, turning on/off 

radio, etc.) 

Active distraction 

Talk with passenger/Talk to the 
phone/Texting 

Inattention 

Event  - Front view  
Lane change Inattention 

Approaching vehicle in front  

support vector machine is given. The following section 
describes the procedure of the proposed drowsiness detection 
method.  

A. Signal description and data cleaning 
The decoded message from the simulator provides lane 

position, lane curvature, and lane curvature derivative, which 
will be used to calculate the lateral distance. The lateral 
distance is computed via (1) according to the manual of TRW’s 
simulator, 

 3 2
lateral c posD d Z C Z H Z L= × + × + × +  (1) 

Where C represents the lane curvature, cd  is the derivative 

of lane curvature, H  is lane heading angle, and posL  is the 
left/right lane position. The lane position is with regard to the 
lane center, from the midpoint of the driven lane to the 
longitudinal centerline of the vehicle. Using a right-handed 
coordinate system, distance to the right of the midpoint is 
positive and to the left is negative. Z  is the distance between 
lateral distance calculation point and the camera position. We 
fixed Z to 40 here.  

It should be mentioned that the output signals’ quality 
depends on the video quality. That is to say, for low quality 
video, the lane boundaries cannot be detected correctly. Thus, 
before feature extraction, preprocessing methods must be 
applied to the signals (lateral distance) to clean and filter the 
outliers or missing data. Fig. 4 shows the steps of data 
cleaning for the system. 
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Fig. 4. Data cleaning process flow chart 

• Diagnostic signal filter 

 Based on the LKA common CAN protocol, there are 6 
diagnostics indicator, including blur images , low sun, 
partial blockage, partial transparent, out of calibration 
and auto fix status. Those 6 filters are provided by the 
software using image processing methods, and it 
provided three status including passed, failed and 
invalid. We only used the video data with the 
“passed” status to remove the low quality video 
frames because of the light, weather or other 
environmental issues which may result in unreliable 
detection of trajectory.  

• Lane detection quality filters  

There are 6 types of lane detected in the system. 
Applying the lane type filter, only dashed or solid lane 
is remained.  Other lane types will be filtered out, like 
road edge, undecided, double /triple lane and so on. 
From the image processing perspective, based on the 
detection accuracy of the line, the quality is provided 
by the software ranging from 0 to 4, corresponding to 
the lane detection quality of low to high. For lane 
detection quality equals to 0, the detected lane 
information is not reliable. In our experiments, the 
signal points with lane detection quality higher than 1 
were kept.   

• Lane change filter 

Normal lane change, merge, exit, etc., have a large 
effect on the lateral distance. In order to eliminate 
these effect, data points of 5s before and 5s after lane 
crossing point (LCP) were removed. The LCP 
represents the point where the vehicle crosses the 
border, and is manually labeled by our volunteers. Fig. 
5 shows an example of LCP. Also, other events, which 
may affect the calculation of lateral distance were also 
removed, such as merge, exit, entry, etc. 

 

Fig. 5. Lane Crossing Point 

• Outlier remove 

Regarding to the outliers, we identified them according 
to the normal ranges recommended by the TRW’s 
manual. The outliers were simply removed and 

interpolated back using linear method, if the number of 
successive outliers is low. 

Fig. 6 shows an example of data cleaning result. The figure 
on the top is the decoded lane position signal without any 
processing. After applying the above filters, we are able to 
filter out the valid segment for the experiment. Fig. 6 shows the 
derivate of lateral distance diff

lateralD  (at the bottom). 

 

Fig. 6. Example Results of data cleaning and filter processing 

B. Feature extraction 
1) Time domain Features 

The first type of feature is extracted from the time domain 
signals, e.g., lateral distance. Before feature extraction, the 
signal is divided into windows with the window size of ws  and 

step size of steps , and the mean normalization is applied to 
each window as follows, 

 
1 ( )

wi s
i i
w lateral

j iw

D j
s

μ
+

=

= �   (2) 

 
i i i
lateral lateral wD D μ= −   (3) 

where i
lateralD  represent the lateral distance of the thi  window. 

Within each window after mean normalization, five statistical 
features were extracted as follows. Fig. 7 shows an example of 
the moving window-based feature extraction method. 

• LANEAVG(i): Average of absolute value of 
i
lateralD  

• LANESTD(i): Standard deviation of i
lateralD  

• LANEMAX(i): max value of i
lateralD  

• LANESKEW(i): skewness of  i
lateralD        
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• LANEKURT(i): kurtosis of  i
lateralD        

 

Fig. 7. Statistics feature calculation demonstration 

2) Frequency domain features 

By noticing that lane trajectory for drowsiness driving is a 
pseudo-periodic signal. Therefore, frequency analysis can be 
used to explore any event occurs in frequency domain. Discrete 
wavelet analysis is one of the most popular method as it has 
higher temporal resolution compared to discrete Fourier 
analysis. In this paper, 3-level wavelet analysis is used to 
decompose the time domain signal into multi-scales frequency 
signals.  

Given a signal s of length N. The first step produces, 
starting from s, two sets of coefficients: approximation 
coefficients CA1, and detail coefficients CD1. These vectors are 
obtained by convolving s with the low-pass filter Lo_D for 
approximation, and with the high-pass filter Hi_D for detail, 
followed by dyadic decimation (down sampling) [22]. The next 
step splits the approximation coefficients cA1 in two parts using 
the same scheme, replacing s by cA1, and producing cA2 and 
cD2, and so on. The wavelet decomposition of the signal s 
analyzed at level j has the following structure: [cAj, cDj, ..., 
cD1] shown in Fig. 8. 

After the frequency signals are available, five statistical 
features described in Section III-B-1) are extracted from them. 
The frequency features combing with the time domain features 
were used as the input of the classifier described in the next 
section. 

 

Fig. 8. decomposition structure 

C.  Classification model 
To detect the drowsiness by given feature vectors, two 

popular classification methods were evaluated in this paper. 
One is Support Vector Machine (SVM) for binary class 
classification with Gaussian RBF and kernel function due to its 
good performance in various applications. The other 

classification algorithm is multi-layer artificial Neural Network 
(NN). The structure of neural network is shown in Fig. 9. 

D. Real time prediction and testing 
In order to evaluate the performance of the proposed 

method on real time prediction and classification, a different 
video (different from the training sets) was used. To detect the 
drowsiness level at time t, the feature vectors extraction from 
the time period of [ , ]st t t−  were feed into the system, where 
ts represents window size in seconds for feature extraction. The 
output of the system represents the drowsiness level of the 
driver at time t. Two stages were involved in determining 
whether the driver is drowsy or not in each period, e.g., 30s. 
Fig. 10 shows the example of the stages, and the summary of 
these two stages are given as follows, 

• Stage1: For each time stamp t, extract the feature 
vectors from the previous ts seconds, e.g., 30s, and feed 
the feature vectors into the system to obtain the initial 
predictions at every 1s.   

• Stage2: For every ts s (e.g., 30s), majority voting is 
applied to the initial predictions. The voting result 
represents the final output of the prediction. 

 

 

Fig. 9. Neural network architecture  

 

Fig. 10. Two stages real time prediction  

IV. EXPERIMENTAL RESULTS 
In order to evaluate the performance of the proposed 

method, 65 real-world driving data recordings from 15 subjects 
were collected using our TIP system. The average lengths of 
driving is around 30 minutes. Most of driving data is collected 
on highway.  

 The ages of subjects are from 20 to 65. All of the drivers 
had more than two year driving experience and with 
professional driving skill. There are 33 complete and valid data 
recordings for 9 subjects. The signals used for feature 
extraction has the sampling frequency of 10Hz.  
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According to the labeling results and the self-claim of the 
drivers, only two drivers showing period of drowsiness. The 
driving data is labeled with predefined driver state events, 
based on workload-stress measure and also evaluated by 
questionnaire based on KSS score.  Table III shows the data 
sets used in our experiments. 

Two measurements were used to evaluate the performance 
of the proposed method: True Positive Rate (TPR), which 
means the rate of the drowsiness is correctly detected as 
drowsiness, and True Negative Rate (TNR), which means the 
rate of the alert is correctly detected as alert. The experimental 
results with different classification methods are presented in 
the following sections. Accuracy (rate correctly classified) is 
also used to represent its overall performance. 

TABLE III    DATA DESCRIPTION FOR EXPERIMENT 

Driver ID Date length Fatigue or not 
ID0 02/13/2014AM 32min Not drowsy 

ID13 08/06/2014PM 35min Not drowsy 
ID5 12/05/2013 33 min Drowsy 

ID5 03/13/2014 39min Not drowsy 

 

A. Determing the optimal window size 
Drowsiness state usually last for a period, from seconds to 

minutes. To characterize the drowsiness level, a larger window 
size of feature extraction is required. However, large window 
size will result in false negatives if the drowsiness only lasts 
for a very short period (less than the window size). In this 
section, the optimal window size which results in the best 
performance is determined.  Fig. 11 shows the classification 
performance using SVM with various window sizes range from 
100 (10s) to 300 (30s) on driver ID5. It can be observed that 
when the window size increases, both the TPR and TNR 
increase. The optimal performance is obtained when the 
window size is 300. Therefore, window size of 30s is used in 
all the experiments in the following sections. 

 

Fig. 11. Classification performance with different window sizes  

B.  SVM model using one driver recordings 
The dataset used here is one driver (ID5) driving video at 

two different days. One is very drowsy driving and the other is 
alert driving. There are total 8809 drowsiness data points and 
6649 non drowsy data points. We randomly pick 2/3 of all of 
data points as training data and the other 1/3 data points as 
testing data. The prediction rate achieves 99% in this 

experiment and confusion matrix is shown in TABLE IV. The 
result for same driver is quite high from the result. 

C. SVM model using multiple drivers recordings 
We applied the support vector machine algorithm to 

multiple drivers to detect driver drowsiness. The videos in the 
system are from 3 drivers including one drowsy video from 
ID5 and 3 non-drowsy videos from ID5, ID0 and ID13. The 
data points are randomly divided to three folders. We used 2/3 
of data to train the system and the other 1/3 are used to test. 
The testing data are not used in training. To compare the result, 
we did 3 fold cross validation and the result is shown in 
TABLE V, VI and VII. The prediction rate is around 90%. 

TABLE IV   ONE DRIVER PREDICTION RESULT (ID5) 

TABLE V  CONFUSION MATRIX OF SVM CLASSIFICATION (1ST 
CROSS VALIDATION) 

Accuracy: 90.32%   

                 Prediction 
Truth 

Drowsy Alert 

Dowsy 2515 21 
Alert 738 9501 

 TABLE VI  CONFUSION MATRIX OF SVM CLASSIFICATION (2RD 
CROSS VALIDATION) 

Accuracy: 90.48%   
                 Prediction 

Truth 
Drowsy Alert 

Drowsy 2516 20 
Alert 707 9521 

TABLE VII CONFUSION MATRIX OF SVM CLASSIFICATION (3RD 
CROSS VALIDATION) 

Accuracy: 90.41%   
                 Prediction 

Truth 
Drowsy Alert 

Drowsy 2514 22 
Alert 707 9514 

D. Neural network model using multiple drivers recordings  
The training and testing data set is the same as the Section 

IV-C in TABLE V-VII but with neural network classification. 
The result for the detection rate is much higher than support 
vector machine. The results are shown in TABLE VIII, IX, X. 
According to the 3 fold validation results, 2 set of 3 testing 
rates can achieve 98% detection rate, another one is around 
92.66%. But we can clearly see artificial neural network has 
better classification in drowsiness detection. 

TABLE VIII  CONFUSION MATRIX OF NN CLASSIFICATION (1ST CROSS 
VALIDATION) 

Accuracy: 98.44%   

                 Prediction 
Truth 

Drowsy Alert 

                 Prediction 
Truth 

Drowsy Alert 

Drowsy 2607 9 
Alert 11 1725 
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Drowsy 2466 70 
Alert 117 9360 

 

TABLE IX  CONFUSION MATRIX OF NN CLASSIFICATION (2RD CROSS 
VALIDATION) 

Accuracy: 98.52%   

                 Prediction 
Truth 

Drowsy Alert 

Drowsy 2499 87 
Alert 91 9385 

TABLE X  CONFUSION MATRIX OF NN CLASSIFICATION (3RD CROSS 
VALIDATION) 

Accuracy: 92.66%   
                 Prediction 

Truth 
Drowsy Alert 

Drowsy 1685 31 
Alert 851 9446 

E. Real time prediction based on  neural network 
The real time prediction model is based on neural network 

and to detect whether the driver is drowsy or not. 4 videos from 
3 different drivers including 1 drowsy video 3 non-drowsy 
videos shown in TABLE III were used to train the model. The 
testing dataset contains two videos, one is drowsy the other is 
non-drowsy. One thing should be mentioned is that for the 
drowsy video claimed by the driver, our volunteers cannot 
make the decision whether the driver is drowsy or not by 
visually checking the video of face camera. 

TABLE XI  REAL TIME PREDICTION TESTING DATASET 

Driver ID Date length Fatigue or not 
ID13 08/04/2014PM 32min Not drowsy 
ID0 02/19/2014 48 min Driver claims drowsy 

 

For the ID13 video, each segment is 30s with totally 63 
segments. There are 53 segments out of 63 is predicted correct, 
which is non drowsy. 3 segments are low quality data, so it is 
questionable status, so the TNR is 53/60 = 88.3%.  

But for the ID0 video, from driver’s self-evaluation 
questionnaire, the driver claims the drowsy status as relatively 
drowsy, but our volunteers did not observed clear drowsy 
period from face video. There are 97 segments in total in this 
video, 26 are predicted as drowsy, and 31 segments are 
predicted as not drowsy. Due to the video quality, 40 segments 
are questionable result. Thus, the TPR of ID0 is 26.8%, which 
is pretty low.  

The low TPR for ID0 may due to the following reasons: 1) 
The video quality is quite bad. 40 out of 97 segments are 
questionable due to the quality issue (too much sunshine). So 
the TRW’s simulator cannot generate reliable detection of the 
lateral distance. 2) The drive experienced an early drowsiness 
state. However, the driver can still keep the vehicle very well. 
Therefore, there is no obvious clue of lane derivation.  

F. Discussion 
In our experiments, only the highway data (with the same 

lane widths) was used, because the lateral distance is sensitive 
to the lane width. Different highways and local road may have 
different widths. So, if the training and testing data come from 
roads with different widths, the proposed scheme may have 
high detection errors. And, in real application, it is very import 
to filter out the outliers due to normal turning, merge, exit, 
entry, etc. Another challenge is the how to design robust 
computer vision algorithm to detect the lane-related signals, 
especially for low quality video recorded at night or under bad 
weather condition. According to the experimental results, 
TRW’s simulator can generate accurate signals if the video 
quality is sufficiently high. And lateral distance is a good 
candidate signal for drowsiness detection.  

V. CONCLUSION AND FUTURE WORK 
In this study, computer vision based feature with real world 

driving data were used to detect drowsiness. There is a huge 
potential use of this study in terms of driving safety or driving 
behavior analysis. We implement the data mining technique 
and also compared the classification methods, not only focus 
on the time domain but also applied frequency domain wavelet 
decomposition vector features to solve the problem. 

However, in the lack of sufficient drowsiness data in real 
world driving, comprehensive experiments is not always 
available. The initial experimental results illustrate that the 
proposed method has very good performance on detection of 
the drowsiness. In order to detect the early state of drowsiness, 
physiological signals may be integrated. Further work includes 
collecting more drowsiness data of real word driving and 
improving the performance of the proposed method by 
incorporating more signals and features. 
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