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Abstract—The ubiquitous presence of smartphones provides
a new platform on which to implement sensor networks for
Intelligent Transport Systems (ITS) applications. Smartphone-
based driving behavior monitoring has applications in the in-
surance industry, fleet management, driver training, and for law
enforcement. In this paper we propose a Maximum Likelihood
(ML) classifier to identify and classify the recklessness of driving
maneuvers using the embedded sensors and GPS receiver of
a smartphone. We compare the developed approach to the
commonly used Dynamic Time Warping (DTW) based method.
The solutions are both suitable for real-time applications, such
as driver assistance and safety systems. An endpoint detection
algorithm is used on filtered accelerometer and gyroscope data
to find the start- and endpoints of driving events. The events are
isolated with the endpoint detection algorithm are then classified
using the DTW algorithm and an ML classifier. Results show
that the ML classifier outperforms the DTW approach.

I. INTRODUCTION

Worldwide, more than a million deaths are caused by road
accidents per year [1]. The World Health Organization predicts
that road fatalities will rise to become the fifth leading cause of
death by 2030 [1]. Research done in the United States shows
that, in more than 50% of fatal road accidents, unsafe driving
behaviors were involved [2]. Road accidents are caused by a
variety of factors, but aggressive driving behavior is one of
the major causes.

In the last decade, various companies have been developing
solutions to monitor a vehicle and its driver’s behavior [3]-
[6]. However, these solutions are expensive and intended for
fleet management, and there is little incentive for individuals
to buy them. However, the increasingly ubiquitous presence
of smartphones — with their variety of sensors — presents the
possibility to easily implement vehicle monitoring systems on
a large scale.

Most modern smartphones have a variety of embedded
sensors — typically an accelerometer, gyroscope, microphone,
camera and Global Positioning System (GPS) as well as light-
, proximity- and magnetic sensors. This variety of sensors
makes many sensing applications possible. An example of
such an application is gesture recognition, which is used
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to answer a call when bringing the phone to one’s ear, or
paging through a document by the wave of a hand [7], [8].
Vehicle monitoring is an attractive sensing application for
smartphones. For instance, drivers can be monitored to make
them aware of their potentially dangerous driving behavior.

The existing works do not enable a fair comparison of the
approaches, since the technologies used (mobile phones, sen-
sors, software) and test conditions (maneuvers, drivers, roads)
are different. This paper evaluates the performance of the ML
classifier by comparing it to the commonly used dynamic
time warping (DTW) algorithm with a heuristic method for
classification . The evaluation uses a common dataset which
is benchmarked against human experience of a common set
of different maneuvers performed by different drivers. The
performance of the innovatively implemented ML classifier
can therefore be quantitatively compared to the commonly
used DTW algorithm and heuristic classifier combination.

The remainder of this paper is organized as follows: Section
II presents the current state of the art of smartphone-based
monitoring systems; Section III describes the design of two
proposed driving maneuver recognition systems; Section IV
covers the approach to testing as well as the comparison of
the two systems’ results after testing; and Section V presents
the concluding remarks.

II. STATE OF THE ART

In this section, a brief overview is given of the current
literature on smartphone-based monitoring systems used in
vehicles. The techniques and sensors used in the more recent
projects are listed in Table I, and expanded upon in [9].

The literature distinguishes between driving maneuver
recognition and driving behavior classification. A system could
detect various maneuvers, but not necessarily infer anything
from them, whereas another system may be able to classify
a driver’s behavior from detected driving maneuvers. These
different systems demonstrate the variety of driving behavior
classifications that can be made. A person’s normal driving
style can be classified as safe or risky, fuel-efficient or inef-
ficient, skilled or unskilled — and recommendations can be
given accordingly to improve their driving.
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SUMMARY OF TECHNIQUES AND SENSORS USED BY SMARTPHONE-BASED

TABLE 1

VEHICLE MONITORING SYSTEMS.
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Johnson and Trivedi [12] developed one of the first complete
driver behavior monitoring systems on a smartphone. Their
system can detect and classify a number of aggressive and
non-aggressive driving maneuvers when placed in a vehicle,
by only using the internal accelerometer, gyroscope, magne-
tometer and GPS of a smartphone. Although the system can
identify aggressive driving maneuvers, it does not draw any
conclusions about the aggressiveness level.

Eren et al. [13] also implemented a smartphone-based
driving maneuver detection system similar to Johnson and
Trivedi’s [12] approach. However, they expanded the system
by adding a driving style characterization feature that labels
a person’s driving style as either safe or unsafe with a
given probability. Dai et al. [11] developed a smartphone-
based system that specifically detects drunk driving. This is
achieved by detecting and positively identifying a combination
of dangerous driving maneuvers associated with drunk driving.
Fazeen et al. [14] implemented a driver assistance system
entirely on a smartphone. The system records and analyses var-
ious driver behaviors and external road conditions, and advises
a driver on dangerous vehicle maneuvers using simple thresh-
olding. Mohan et al. [10] developed a comprehensive road and
traffic monitoring system, named Nericell, which also employs
smartphone sensors to detect certain driving maneuvers and
road conditions. Wahlstrom et al. [16] defined a dangerous cor-
nering event relative to the thresholds where slipping or vehicle
rollover are theoretically likely to occur. GPS measurements
were filtered and processed to extract the tangential velocity,
rotational velocity and tangential acceleration of the vehicle
being monitored. From these variables, the instantaneous ratio
between the horizontal and vertical forces on the vehicle
can be calculated and compared to the ratio at the no-slip
threshold. A fraction of the no-slip threshold at which a corner
is deemed to be reckless was chosen empirically. In a second

Fig. 1. Smartphone and vehicle coordinate system.

paper, Wahlstrm et al. [17] uses tangential velocity, tangential
acceleration and turn radius instead of rotational velocity. The
turn radius is estimated using a circle fitting technique to
fit circles to position measurements. Castignani et al. [19]
uses smartphone-based accelerometer, magnetometer and GPS
sensors to identify and rate the riskiness of driving events. This
is done by defining fuzzy logic sets for each parameter after a
calibration phase in a specific vehicle. The relevant parameters
chosen are the standard deviation of the Jerk(derivative of
accelerometer measurement), mean yaw rate (using orientation
sensors) as well as the speed and bearing variations (from
GPS measurements). Vehicle-specific calibration is proposed,
as different vehicles have unique driving characteristics.

A. Contribution of this paper

Existing work presents methods for recognizing driver be-
havior using algorithmic approaches (such as simple threshold-
ing or dynamic time warping (DTW)) or heuristic approaches.
This paper covers the design and implementation of a suitable
supervised machine learning classifier, namely the Maximum
Likelihood (ML) classifier, to identify and classify driving
maneuvers as aggressive or safe. The performance of the
two approaches are compared in identifying maneuvers and
classifying the severity thereof. The paper also presents an
evaluation of combinations features that could be used to
identify reckless driving.

III. SYSTEM DESIGN

This section describes the detail design of the algorithmic
DTW-based approach and the ML approach, which are used
to identify driving maneuvers and classify them as either
aggressive or not. Although DTW is used by various existing
literature, its design is also detailed here to enable a compari-
son between the two approaches. The hardware setup used to
collect driving data with which the system was developed and
tested is also described.

The vehicle’s axes are denoted as z’, 3’ and 2z’ in the
directions as shown in Figure 1. The smartphone’s axes are
denoted as x pointing towards the right and y to the top
from the phone’s front, while z points out orthogonal to
the page. The system assumes the smartphone’s axes are
aligned with the vehicle’s axes, since existing work addresses
this re-alignment [20]. Readings from the accelerometer’s
three axes (z,y,z) are denoted as a,, a, and a.. Readings
from the gyroscope’s three axes are denoted as w,, w, and
w,. Accelerometer readings are expressed in terms of the
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acceleration from gravity, g (9.8 m/s2), and gyroscope readings
in terms of rotation rate (rad/s).

A. Hardware setup

A Samsung Galaxy S3 smartphone was used for driving
data collection. A simple data logger Android application was
developed that samples the accelerometer and gyroscope at
20 Hz, in accordance with [12]. Although a higher sampling
rate is possible, it increases power consumption, and 20 Hz
was considered fast enough for the proposed system. The
application saves the sensor samples and GPS data to an
SQLite database. In order to validate the smartphone’s data,
an Arduino board was used to also log data from a dedicated
GPS and inertial measurement unit (IMU) to an SD card.

B. Aggressive driving model

Aggressive driving is considered as deliberate behavior by
a driver to perform any maneuver in such a manner that
increases the risk of a road accident. The aggressive driving
model we used is based on the angle of a turn, the lateral force
exerted on the vehicle and it’s speed through the turn [21].

The gyroscope, accelerometer and GPS of a smartphone is
used accordingly to obtain the required information. Figure
2 presents a block diagram of the overall system used in
the comparison. The system is designed to detect lateral
maneuvers, or more specifically turns, and classify them as
taken normally or aggressively. The diagram shows the three
inputs of the system and their relation to the vehicle, namely
the vehicle’s lateral force of acceleration, a,, rotation rate
around its vertical axis, w,, and its forward velocity, v. Using
only these three inputs, the system must be able to detect and
classify a turn based on previously provided hand-annotated
training data. Taking in filtered data, the endpoint detection
block outputs signal vectors to the turn classifier.

C. Endpoint Detection

In order to detect maneuvers to be classified, the start and
end of driving events are determined by using the endpoint

detection algorithm. For lateral maneuvers, a simple moving
average (SMA) of w, is continuously calculated over 40
samples. The beginning of a lateral event is detected if
the SMA goes above a set threshold. The previous 40 and
succeeding samples of w, are concatenated until the SMA
falls below the threshold, signifying the end of the event. The
samples of a, are also saved during the same time window.
An event is dismissed if it is less than 2.5 or more than 15
seconds long. This is to keep the system from hanging on
potentially erroneous or noisy data. The length boundaries
were established empirically to detect most valid events.

D. Recognition algorithms

The DTW and ML methods are detailed and developed in
this section. The first method uses DTW to compare detected
events to driving maneuver templates, and then uses the results
in a simple heuristic to classify the maneuver as safe or
reckless. The aim is to reproduce on equal footing the DTW
approaches found in existing literature. The second method
uses supervised learning to train an ML classifier to label
driving maneuvers. The ML classifier was chosen as it was
found to be the most suitable supervised learning classifier for
the recognition of aggressive driving. Figure 2 shows a block
diagram of the system. The DTW and ML approaches are
implemented as the turn classifiers and compared in this paper
in the system. The accelerometer output is band-pass filtered
to remove sensor noise and the gravitational force vector,
as its direction changes slowly when the vehicle’s roll and
pitch changes while driving. The gyroscope output is low-pass
filtered to remove noise. The filtering and endpoint detection
used for both DTW and ML are shown in Figure 3.

1) Dynamic Time Warping: The DTW approach is based
on the work of Johnson and Trivedi [12], and Eren et al. [13].

When a valid driving event has been detected, the signals
recorded during the event are compared to a set of templates
using the dynamic time warping (DTW) algorithm [22]. DTW
finds an optimal alignment between two time-dependent se-
quences with different lengths. The template with the lowest
minimum-distance warp path to the detected event is the
closest match.

h
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Fig. 4. Subdiagram of the DTW classification approach.
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The acceleration and rotation rate templates are discrete
Gaussian signals with fixed lengths that were created from
collected driving data with multiple drivers. The w, templates
indicate the angle of a turn. It allows the system to classify the
severity of a left or right bend (i.e not the action of turning,
but measuring the physical curvature of the road) from 1 to 3,
based on the closest matching w, template — with 1 indicating
an easy bend, 2 a medium bend and 3 a sharp bend. Similarly
there are six a, templates with increasing amplitudes.

A heuristic method is used to label any recognized turn as
taken normally or aggressively, based on the vehicle’s speed
(obtained from the GPS) and matching a, and w, template.
From experimental results it was evident that two conditions
need to be satisfied to classify a turn as aggressive:

1. v>50(3—h)
2. E>4VEk>(h+2)

where v is the vehicle’s speed in km/h, h is the bend
severity (1-3) (measured by the gyroscope) and k is the lateral
acceleration defined by the template number (1-6) of a,.

2) Maximum Likelihood: Maximum likelihood (ML) esti-
mation is an algorithm that estimates (or learns) the parameters
of a statistical model. The set of parameters 6 under which
the data {x;}!_, are most likely is equal to the product
of the likelihood functions at each individual data point x;.
The likelihood function P(x;|0) is obtained by assessing the
probability density function at x,;. The maximum likelihood
estimate of the parameters therefore is
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where argmaxg f[6] returns the value of € that maximises the
argument f[6].

After the parameters 0 of a model have been determined,
they can be used for binary classification of new data. For
this purpose, a training data set with selected features and
class labels was pre-processed from collected driving data. It
was used for supervised learning of two separate maximum
likelihood classifiers. The first classifier is trained to label the
severity of a bend. The second classifier is trained to label a
turn as taken normally or aggressively. The trained classifiers
can be used to label driving manoeuvres immediately after
they are detected in a real-time system. Figure 5 shows a flow
diagram of the maximum likelihood classification method.

To reduce the computational load caused by performing
maximum likelihood classification, feature extraction is first
performed on the angular velocity (w) and lateral acceleration
(a;) signals of an event detected by the endpoint detection.
Coefficients of fifth order curve fitting to w, were used for
bend severity classification , with outputs of h = 1,2,3.
As an example, figure 7 shows the results of fitting Sth-
order polynomial curves to the accelerometer and gyroscope’s
signals of detected turns. Examples of a severity 2 and 3 bend,
each taken both normally and aggressively, are given. The
fitted curves generally match the signals quite well and can
be considered as a good representation.

Various combinations of selected features were tested to
find the best representation of normally versus aggressively
taken turns. The list of tested features taken from both the
accelerometer and gyroscope signals are:

o Polynomial curve fitting coefficients.

¢ Minimum, average and maximum amplitudes.

e Minimum peak to maximum peak amplitude.

o Signal energy.

« Fundamental frequency and its magnitude.

« Integral of gyroscope signal as estimation of rotation.

Also consider that, between the normally and aggressively
taken turns, there is a notable difference in the peak accelera-
tion, but not in the peak rotation rate. Amplitude features from
the accelerometer signal are therefore usable, but not from the
gyroscope signal. Signal energy is defined as

2

where 7' is the duration of the signal and N the number
of samples. From Figure 7 it can also be seen that the
accelerometer signal energy is more for an aggressive turn
than a normal turn by looking at the peak amplitude.

The list of tested features taken from both the accelerometer
and gyroscope signals are extracted from event data, and these
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Fig. 7. Curve fitting to the accelerometer and gyroscope

features are also normalized using the minimum and maximum
values from the training data set, as shown in equation 3.
, 2 — min(z)

=7 3
max(x) — min(z) )
The vehicle’s GPS speed is also used as an additional input. A
representational feature vector is then given as input to the two
classifiers for bend severity and driving style classification.

IV. EXPERIMENTAL SETUP

Six individuals were asked to drive a pre-determined route
while subjective labelling of their turns were performed by
hand. A route of 15 km was chosen that has varying bends
and up- and downhill parts. The route necessitates drivers
to manage their speed as straighter sections are followed by
several sharp bends. A map of the route is shown in Figure
6. All the distinct bends were annotated by hand on a map
with a severity of 1, 2 or 3 — this was done for testing, and
for training of the ML approach, and will be needed in the
eventual installation. The route has 55 identified bends — 28
right and 27 left bends.

Preliminary data was recorded with the smartphone, dedi-
cated IMU and u-blox GNSS receiver in a fixed position and
orientation in the vehicle. The smartphone’s and IMU’s axes
were aligned to the vehicle’s axes. A standard front-wheel
drive sedan was used. The preliminary data was needed to test
the accuracy of the smartphone’s sensors and the reliability of
the Android application. The u-blox’s data was specifically
used to validate the accuracy of a high-pass filter in removing
the gravitational acceleration vector from accelerometer data.
It was also used for sanity testing during the system develop-
ment. The six participants each drove the route once or twice
for the training and test data set. They each drove in their
own vehicle to ensure familiarity and a normal driving style.
A form with all the identified bends in sequential order was
used for each run. Route notes were used to label how the
driver took each bend: normally or aggressively. Although the

i i
10 12 14 0

12
Time (s)

Time (s)

signals for specific bends taken normally and aggressively.

labelling was done subjectively, it was kept consistent for each
driver.

The raw data was post-processed and valid data was suc-
cessfully extracted and labelled for 387 bends. Overall, the
endpoint detection algorithm successfully detected 95% of
the left and right bends. The data was split in a 66%/33%
ratio for training and test data respectively. The training data
set was used to create gyroscope and accelerometer signal
templates for the three bend severities taken both normally
and aggressively. Twelve templates were thus created from
the gyroscope and accelerometer data in total.

V. RESULTS

The test data set was used to obtain the results given in
Table III. For the driver labeled as the most aggressive from
observation, the classifier achieved a FN and FP rate of 80%
and 10.5%, respectively.

With 24 out of 129 turns in the test set being aggressive, the
turn labelling heuristic achieved a FN and FP rate of 62.5%
and 4.8%, respectively. Although the FN rate is high, a lower
FP rate is desirable. It is biased to label a driver as aggressive
based on falsely identified aggressive maneuvers. The heuristic
was empirically tuned to obtain the least false positives, at the
expense of missing true positives (TP).

3) Supervised Machine Learning: Table II shows the per-
formance measures obtained by using different combinations
of features for aggressive maneuver classification. For the sake
of simplicity, minimum, average and maximum amplitudes
are not used, as it was found that peak-to-peak amplitude,
on its own, always resulted in better performance than any
combination of amplitude features. The results also show that,
as expected, the fundamental frequency magnitude is a better
feature than the fundamental frequency itself. Given these
results, the peak-to-peak amplitude a,(pr—pk), energy Ea,,
and fy magnitude of the accelerometer signal, as well as the
fo magnitude of the gyroscope signal, the GPS speed v, and
output of the bend severity classifier h, are selected as the best
feature set.
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TABLE II
PERFORMANCE MEASURES (%) OF DIFFERENT COMBINATIONS OF FEATURE SETS FOR AGGRESSIVE TURN CLASSIFICATION.

Precision | Recall | Specificity | Accuracy ag Ea, | vfrom | h | fomag | foof az | fo mag | foof w. | Area of
pk—pk GPS h of ag of w, Wy
75 50 96 88 X X X X X
80 50 97 88 X X X X X X
86 50 98 89 X X X X X X
75 50 96 88 X X X X X X
79 46 97 88 X X X X X X
56 42 92 83 X X X X X
70 67 93 88 X X X X
TABLE III TABLE IV
DYNAMIC TIME WARPING CLASSIFICATION RESULTS. MAXIMUM LIKELIHOOD CLASSIFIER RESULTS.
Bend severity classification: Bend severity classification:
Accuracy =83.7% Accuracy =91.5%
Aggressive maneuver classification: Aggressive maneuver classification:
Precision = 64.3% Precision =77.8%
Recall =37.5% TP FP = 9 5 Recall = 58.3% TP FP = 14 4
Specifity — =95.2% FN | TN 15 | 100 Specificity =96.2% FN | TN 10 | 101
Accuracy = 84.5% Accuracy =89.1%

Table IV shows the results of the ML classifier on the test
data set. The ML bend severity and aggressive maneuver clas-
sifiers obtained an accuracy of 91.5% and 89.1%, respectively.
That is 7.8% and 5.2% higher than the DTW based classifier’s
accuracy. The ML aggressive maneuver classifier obtained a
recall of 58.3% and specificity of 96.2%. The ML classifier’s
recall, is comparatively a significant improvement over that
of the DTW based classifier. More importantly though, the
precision of the ML classifier is substantially better than the
DTW classifier’s, 77.8% compared to 64.3% for the DTW
classifier.

The results for the most aggressive driver are 40% and
10.5% for the FN and FP rate, respectively. The ML classifier
obtains half the FN rate of the DTW classifier, while maintain-
ing the same FP rate, which is a significant improvement. It
is evident from these results that the ML classifier is superior
to the DTW algorithm at classifying aggressive maneuvers.
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VII. CONCLUSIONS

This paper presents and compares two driving maneuver
recognition and classification systems that are suitable for im-
plementation on a smartphone. The recognition algorithms can
both successfully detect turns of varying severity using either
dynamic time warping or a maximum likelihood classifier. The
systems can also label each recognized turn as taken normally
or aggressively by the driver. The systems are both expandable
to recognize a variety of maneuvers. The maximum likelihood
classifier, however, showed significantly better results than that
of the DTW algoritm. The system could be used to monitor
a driver and provide driving safety related feedback to the

driver or provide actuarially relevant feedback to an insurance
company to be used as a metric for premium adjustment.
The prevalence of smartphones also allows such a system to
be easily and cost-effectively deployed on a large scale. In
future work the system can be expanded to recognize further
maneuvers, such as harsh breaking, rapid accelerations and
swerving. Much work can also be done on improving the
energy efficiency of the system.
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