
A Three-Step Vehicle Detection Framework for
Range Estimation Using a Single Camera

Ritesh Kanjee

Optronic Sensor Systems

Defence, Peace, Safety and Security

Council for Sci. & Ind. Research

ritesh.kanjee@icloud.com

Asheer K. Bachoo

Research Associate Tsotsos Lab

Lassonde School of Engineering

York University

abachoo@gmail.co.za

Johnson Carroll

Engineering and the Built Environment

University of Johannesburg

jcarroll@uj.ac.za

Abstract—This paper proposes and validates a real-time on-
road vehicle detection system, which uses a single camera for
the purpose of intelligent driver assistance. A three-step vehicle
detection framework is presented to detect and track the target
vehicle within an image. In the first step, probable vehicle
locations are hypothesized using pattern recognition. The vehicle
candidates are then verified in the hypothesis verification step. In
this step, lane detection is used to filter vehicle candidates that are
not within the lane region of interest. In the final step tracking
and online learning are implemented to optimize the detection
algorithm during misdetection and temporary occlusion. Good
detection performance and accuracy was observed in highway
driving environments with minimal shadows.

I. INTRODUCTION

Vehicle detection for a vision-based driver assistance system

requires the analysis of video images using image processing

algorithms to isolate and track moving vehicles in the video

sequence. Monocular vision based vehicle detection systems

are particularly interesting for their low cost and for the high-

fidelity information they give about the driver environment.

In this paper, we present the vehicle detection as a gener-

alised three-step vehicle detection framework to detect, verify

and track a lead vehicle within an image sequence. Various

vehicle detection studies are described and relate to the frame-

work in Section II, then the authors’ own implementation is

presented in the subsequent sections. The headway region is

calculated from these image coordinates in conjunction with

lane detection geometry. After the vehicle detection process,

the lead vehicle’s range is then calculated using the geometry

of the lane detected in the previous step, and a Kalman filter

is then used to attenuate the jitter from the range signal.

Section III discusses the image processing algorithms and

implementation of the three-step vehicle detection framework.

Thereafter, experimental results of the implemented framework

are shown in Section IV. Finally, in Section V, the results are

summarized and conclusions are drawn.

II. THE THREE-STEP DETECTION FRAMEWORK

Most studies on vision-based vehicle detection address one

or more of the following three steps, which form the basis of

the following generalised vehicle detection framework:

1) Hypothesis Generation (HG) - Targets that may be

vehicles are identified within the image,

2) Hypothesis Verification (HV) - Potential vehicles are

classified and non-vehicle objects are eliminated,

3) Algorithm Optimisation (AO) - The HG and HV steps

are improved through optimisation techniques, such as

tracking the relevant vehicles’ coordinates from frame

to frame.

Each step may consist of various combination of algorithms

which ultimately achieves similar outputs (i.e. find/detect

vehicle hypotheses, verify and isolate vehicle hypotheses,

track/monitor vehicle hypotheses). Once the appropriate lead

vehicle has been detected, the distance between vehicles is

estimated so that appropriate driver assistance actions can be

taken.

A. Hypothesis Generation

Sun et al. reviews on-road vehicle detection studies and

groups them into three main Hypothesis Generation (HG)

techniques: knowledge-based, stereo-based and motion-based

[1]. For the purposes of this study, only the monocular

methods are relevant, and the literature is notably dominated

by knowledge-/feature-based methods. In particular, shadow,

wheel and vertical edge information can be used to define

basic features for initial object hypotheses [2]–[5]. Using

shadows as an initial HG step seems problematic since the

vehicle’s shadow positions may change depending on sun-

light inclination, as well being influenced by other shadows.

However, this flaw is compensated for by combining with

other HG or HV steps such as edge detection and symmetry.

Han et al. [6] uses a method of detecting edges using Haar-

like features, and proves better than the Sobel edge filter

method prescribe by Duan et al. [7]. Other knowledge-based

HG methods include gradient-based methods and Adaboost

classification [8]–[10]. Sivaraman et al. also reviews and

summarises the main monocular vision-based vehicle detection

algorithms [11]. As noted in [1], appearance-based detection

is widely used over motion-based detection methods; as of

[11], the most prominent appearance-based algorithms used for

vehicle HG are Histogram of Gradients (HOG) features, Haar-

like features, Speeded-Up Robust Features (SURF) and Gabor
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features. Most of these algorithms are used to hypothesize

strong edge and symmetry features of the vehicle [11].

B. Hypothesis Verification

Classical HV methods for vehicle detection frequently

utilise symmetry (as most vehicles are symmetrical) [1], poten-

tially in combination with other image features such as Haar-

like edge features [6]. However, symmetry is reliable only

under certain target vehicle orientation conditions [6]. Another

classical method defines a region of interest (ROI) based on

characteristics of the detection scenario. Any potential vehicles

outside the ROI are eliminated as either non-vehicles or non-

target vehicles.

Learning algorithms, such as support vector machines [7],

[12], [13] and Adaboost/genetic algorithms [8]–[10] can also

be used to separate potential vehicles into either “vehicle” or

“non-vehicle” classes. Such HV algorithms depend on pre-

sorted training sets to then automatically classify potential

vehicles, and are often computationally intense. In other recent

studies, Histograms of Oriented Gradients (HOG) and Pyramid

of Histograms of Oriented Gradients (PHOG) features are used

for vehicle HV [14]–[16].

C. Algorithm Optimisation Techniques

The aim of the third step is to initially eliminate non-

detections that could occur when the HG module fails, and

secondly to be able to identify the same vehicle over time

[8]. A successful tracking algorithm can define a new ROI

for each potential vehicle according to the object’s speed and

recent position using knowledge-based, as well as template-

based methods [7], [17], [18]. Alternately, the previously

estimated vehicle’s position can be stored and maintained for

a fixed period before declaring that the vehicle track is lost,

allowing for partial occlusions [19]. Such tracking methods

can also be used simultaneously on multiple objects [7], and

the characteristics of motion can be incorporated into the HV

methods [20]. Such strategies can be used in conjunction with

algorithms traditionally utilised for object tracking, such as

the Kalman Filter (KF), extended KF, particle filtering, optical

flow and feature-based tracking [11].

D. Range Estimation

Single camera vehicle range estimation is most commonly

implemented by triangulation using perspective and road ge-

ometry. Stein et al. obtain longitudinal range by using the

known camera height and the point of contact of a lead

vehicle to calculate the clearance range [21]. Nakamura et
al. propose an algorithm that uses both horizontal and vertical

triangulation, reducing errors due to the vehicle pitch [22].

III. THREE-STEP VEHICLE DETECTION IMPLEMENTED

The presented design (see Figure 1) initiates by capturing

an image from a camera. A three-step vehicle detection

framework is used to detect the appropriate target vehicle

in the image. The first step (HG) uses pattern matching to

generate a set of candidate vehicles within the image.

Figure 1. Flowchart of the vehicle detection algorithm design.

The second step is to identify which of these candidate

objects are in fact vehicles on the road. This is accomplished

by filtering the image to search for only the candidate object

within the bounds of the lane markings. Vehicles or candidate

objects that are not in the same lane as the ACC vehicle are

discarded. This ensures that the detector targets the vehicle

directly in front of it and eliminates multiple targets. There-

after, a decision tree evaluates the candidates based on prior

knowledge of the location of the vehicle candidate within the

image.

The final step of the vehicle detection framework is the

algorithm optimisation process. This step consists of Adaptive

Image Cropping (AIC), video sequence tracking and online

learning. AIC involves speeding up the performance of the

algorithm by limiting the search area to the region of the

detected vehicle, similar to the method described by Sotelo

et al. [19]. A tracking method, adapted from the same study,

is used to avoid losing track of the vehicle due to misdetection

or partial occlusion. Online learning is used to optimise the

detection in the hypothesis generation stage by cropping a

positive vehicle match from the input video feed and using that

cropped image as part of the template database. This method

is similar to the method to Betke et al. [20].

Thereafter, from the detected vehicle’s image coordinates,

range can be estimated using perspective and geometry. The

range estimation algorithm uses a triangulation method as

described previously, but the width of the lane where the

vehicle meets the road is used instead of the width or height

of the vehicle [20]–[22]. This helps eliminate the error due to

variation in a vehicle’s height or width.
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A. Hypothesis Generation

1) Brightness Control: Before vehicle pattern matching

is performed, the light intensity of the image has to be

normalised to compensate for the brightness variation that is

caused by various daylight lighting conditions [6]. A Look-

Up Table (LUT) transformation was used for normalising the

brightness of each image in the video sequence.

2) Vehicle Pattern Matching: Pattern matching provides

a definitive and a relatively robust method of detecting a

specific object in a scene, such as vehicles. Pattern or template

matching works by searching for a portion of the image that

resembles a predefined template corresponding to the desired

vehicle. The normalised cross correlation (NCC) is the most

common way to determine if a portion of the image matches

the template [20], [23].

r =

pTi

∑
x,y

Rn(x, y)Ti(x, y)− (
∑
x,y

Rn(x, y))(
∑
x,y

Ti(x, y))

√
pTi

∑
x,y

Rn(x, y)2 − (
∑
x,y

Rn(x, y))2

× 1√
pTi

∑
x,y

Ti(x, y)2 − (
∑
x,y

Ti(x, y))2
,

(1)

where pTi
is number of pixels in the template image Ti that

have non-zero brightness values and x, y are image template

location [20]. The NCC is dimensionless, and |r| ≤ 1.

Template Ti and region Rn and are perfectly correlated if

r = 1; in practice, a threshold is chosen to determine whether

a match is positive, minimum match score (MMS).

With a pattern matching approach, a database of possible vi-

sual patterns of vehicles are created to seek similarity between

a segment of the actual video frame and a database image, or

template [24]. The templates of the lead vehicle are captured

at various scales and orientations, under various environmental

conditions. Approximately 14 to 20 templates were used. A

larger database of templates may result in a robust system

(depending on the quality of templates, assuming translational

motion and minor amounts of rotation in some cases), but this

comes at a hardware and performance cost trade-off. Each sub-

image in the video frame is matched with each template, so

more templates may result in longer processing. On the other

hand, the number of templates can be reduced by decreasing

the MMS. However, reducing the MMS increases the risk of

false detections.

The pattern matching detection method returns the (x, y)

coordinates of the candidate vehicles within the image, as well

as the bounding box enclosing each template. However, our

implementation uses the detected vehicle’s (x, y) coordinates

in conjunction with the lane width to determine range. In order

to enable pattern matching without massive template databases

and sufficiently fast processing, additional methods can be

used to reduce false detections. For this study, false positives

are filtered using a combination of lane detection and tracking.

These techniques are discussed in the following sections.

B. Hypothesis Verification

1) Lane Detection: A lane detection algorithm was imple-

mented to verify if the vehicle match is within the same lane as

the following vehicle. This is particularly important if multiple

vehicles are detected, and also increases execution speed for

the vehicle template matching. The resultant lines that are

estimated from lane detection are used to define a ROI to

ignore vehicle matches that are not within the same lane as

the following vehicle. The lane detection algorithm works by

first implementing an edge detection filter which accentuates

the lane markings and thus makes it easier to detect the lanes.

Another pattern matching algorithm was used to detect lane

markings, and the bounding box of the matches was used to

fit straight line segments. Once the segments were detected, a

running average was used to reduce jitter and the lines were

extended to approximately identify the entire lane.

2) Decision Tree: A decision tree is another HV method

to eliminate false positives and verify target vehicles [25]. A

decision tree is basically a set of rules or assumptions about the

vehicle for which tests are performed to verify the correctness

of a hypothesis. In our system, template matches are discarded

if they overlap the edge of the lane or the extreme bottom or

top of the image, as these positions are considered unlikely

for a desired target vehicle.

C. Algorithm Optimization (AO)

1) Adaptive Image Cropping (AIC): Given the hardware

constraints, a method was required to increase the update

frequency of the vision based range sensor. A required update

frequency (capture and processing frame rate) of the distance

sensor should be 10 Hz or more [26]. The combination HV/HG

algorithm described so far ranged between 6 and 12 Hz [27],

which was insufficient for the application of the ACC. To

improve processing speed, an ROI was implemented using the

last known location and size of the target. If the target is not

detected within the ROI, the algorithm gradually increases the

ROI until the target is detected again. After implementing this

adaptive image cropping (AIC) process, the update frequency

increased from 6 - 12Hz to 20 - 50Hz depending on the size

of the ROI [27].

2) Tracking: Tracking is another AO method, and the

algorithm implemented relies on the very basic method of

tracking by detection. Once a candidate has been verified,

a tracking process is created within a video sequence. Upon

verification, the previously estimated vehicle’s position and

bounding box coordinates are stored and maintained between

5 to 10 consecutive iterations. If in the event of misdetection or

occlusion, if the vehicle was not detected within the predefined

number of iterations, the vehicle is declared as lost, after which

the system alerts the driver that the target is lost.

Alternative tracking methods such as the Kalman filter,

particle filter or other similar adaptive filters could be used

to improve the algorithm’s ability to update and predict the

longitudinal position of the car [28], [29]. However, as the

following sections show, the performance of the combined

system proved largely sufficient.

444



3) Online Learning: Online learning of the targets is ini-

tiated once the verified targets are being tracked in the video

sequence. If the detected target shows consistency in terms

of image coordinates and bounding box size through a series

of frames, then a template of the currently tracked vehicle is

cropped and stored in the temporary template database. This

database resets if the target is lost for a prolonged period of

time. The temporary database overwrites itself once its buffer

overflows to avoid scanning through too many templates,

which could result in slower processing. Empirical tests show

that using the most recent cropped image of the target vehicle

results in the detector being more robust.

D. Range Estimation

An experiment was conducted for obtaining the relationship

between the lane width size, at the point where the vehicle

meets the road, to the longitudinal distance. An analytical

solution involved using the number of pixels between the two

lane lines along with the focal length f to obtain the angle

that the lane width subtends. Then, as shown in Figure 2, the

distance to the vehicle can be calculated as follows:

Figure 2. Distance estimation of the lane width, at the point where the
vehicle meets the road, using trigonometry [27].

d =
fx2

x1
. (2)

where:

• d is distance from camera to target

• x1 is lane width size projected onto the camera CCD

• x2 is approximate size of the lane width, typically be-

tween 3.4 to 3.7 meters on highways

• α is angle that the bounding box subtends

• f is the focal length of the camera

E. Range Smoothing

A Discrete Kalman Filter (DKF) was used to attenuate the

jitter in range signal and to track the longitudinal position of

the vehicle. Before the DKF was implemented, the hypothesis

that the vision-based range signal is normally distributed was

confirmed by Shapiro-Wilk test. The model derived by Shaik

et al. is used for range estimation as in [30]. The state variables

are the true range and speed of the vehicle over time. A

white additive Gaussian random noise vector is assumed for

covariance matrix [30].

IV. VEHICLE DETECTION AND RANGE ESTIMATION

RESULTS

The performance of the detection algorithm is quantified by

the following metrics [31]:

• True Positive Rate (TPR)

• False Detection Rate (FDR)

• Average False Positives per frame (FP/Frame)

• Average True Positives per frame (TP/Frame)

• False Positives per vehicle (FP/Object)

TPR is the percentage of the non-occluded vehicle in the

cameras FOV that are detected. This quality measures recall

and localisation. Since the vehicle detector only detects one

target at a time, the TPR will either be 100 % or 0 %,

depending on whether the same lane lead vehicle is detected

or not. The ideal TPR should be 100 %. The TPR is calculated

as follows:

TPR =
detected vehicles

total number of vehicles
(3)

where total number of vehicles can either be 0 or 1.

However, since dividing by 0 is undefined, the test will consist

only of frames that contain a vehicle.

The FDR is the percentage of detections that were not

true vehicles, and so the ideal FDR should be 0 %. This

percentage of erroneous detection is a measure of precision

and localisation, which is defined by

FDR =
false postives

detected vehicles + false positives
. (4)

FP/Frame describes how susceptible a detector is to false

positives and gives an informative measure of the credibility of

the system. It measures localisation, scalability and robustness.

The ideal FP/Frame is 0. It is determined by

FP/Frame =
false postives

total number of frames processed
. (5)

Another measure of robustness is to use the FP/Object

metric. This metric describes how many false positives are

observed on average. The ideal FP/Object is 0, and the

equation is

FP/Object =
false postives

true vehicles
. (6)

The final metric is also a measure of robustness and de-

scribes how many true vehicles are recognised on average.

The average TP/Frame is defined as

TP/Frame =
true postives

total number of frames processed
, (7)

and the ideal TP/Frame is 1.

The overall performance of the system is based on the

performance metrics mentioned above. It gives an informative
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assessment of the vehicle detection module’s performance

[31].

Nineteen datasets, which total approximately 23686 frames,

were obtained using the Samsung Galaxy S video camera. The

vehicle detection algorithm was executed on these datasets and

compared to the ground truth data. The break-down of driving

conditions for the 17 datasets are discussed in [27].

Table I
BREAK-DOWN OF DRIVING CONDITIONS FOR DATA SETS

Set Glare Distance Traffic Road Cut In Shadow
1 Sun Medium Low Straight No No
2 Sun Medium Low Straight No Yes
3 Sun Close Heavy Varied No Yes
4 Sun Varied Varied Varied No Yes
5 Glare Varied Varied Straight Yes Yes
6 Sun Medium Low Straight No Yes
7 Glare Varied Heavy Curved No Yes
8 Sun Varied Low Varied No Yes
9 Sun Varied Low Straight No No
10 Sun Medium Low Varied Yes No
11 Cloud Medium Low Curve Yes No
12 Cloud Medium Varied Straight Yes Yes
13 Cloud Varied Medium Straight No No
14 Glare Varied Low Straight No No
15 Sun Varied Low Straight Yes Yes
16 Cloud Medium Low Varied No No
17 Sun Medium Heavy Straight No Yes

The performance metrics were calculated and tabulated in

Table II.

Table II
VEHICLE DETECTION ACCURACY RESULTS SUMMARY

Dataset TPR FDR FP/Frame TP/Frame FP/Object
1 100 % 0 % 0.00 1.00 0.00
2 100 % 0 % 0.00 1.00 0.00
3 100 % 0 % 0.00 1.00 0.00
4 99.5 % 5 % 0.05 0.95 0.05
5 98.5 % 33 % 0.28 0.57 0.48
6 99.9 % 0 % 0.00 1.00 0.00
7 90.5 % 14 % 0.13 0.78 0.16
8 97.3 % 72 % 0.23 0.09 2.55
9 97.1 % 3 % 0.03 0.95 0.03

10 99.2 % 2 % 0.02 0.97 0.02
11 99.7 % 17 % 0.15 0.72 0.21
12 99.8 % 1 % 0.01 0.99 0.01
13 99.2 % 2% 0.02 0.98 0.02
14 100 % 52 % 0.48 0.44 1.10
15 97.5 % 24% 0.23 0.72 0.32
16 99.9 % 0% 0.00 1.00 0.00
17 47.3 % 0% 0.00 0.47 0.00
18 97.0 % 0% 0.00 0.99 0.00
19 96.3 % 0% 0.00 0.96 0.00

Average 95.9 % 11.8% 0.08 0.82 0.26

A. Analysis Results and Discussion

The detector yielded a relatively high TPR since the detector

only searches for one vehicle in the scene. A high TPR means

that the detector has good recall and localisation. The FDR

for most datasets were low, which means that the detector has

good precision and localisation. Dataset 8 and 14 had the worst

FDR, which could be as a result of the combination of curved

road and shadows. The average FP/Frame for the datasets

Table III
DETECTION RATES IN VARIOUS DRIVING SCENARIOS

Scenario Description Detection Rate

Low Traffic (Single Car) 80-95%

Medium Traffic 70-85%

Heavy Traffic 40-65%

Single Car, angled sun 81-96%

Single Car, overhead sun 80-95%

Single car, heavy glare 56-70%

Straight Road, low traffic 85-96%

Curved roads, low traffic 40-70%

is low, which suggest robustness, localisation and scalability.

Dataset 14 had the worse FP/Frame, which could be caused

by glaring sunlight on the sensor. The closer the TP/Frame

is to one, the better the robustness will be. Dataset 8 had

the worst TP/Frame of 0.09, which could be a result of the

curved roads as well because of poor lane markings. Finally

the overall FP/Object was adequately low, but with datasets 8

and 14 being the worst performing datasets. The FP/Object in

datasets 5, 11 and 15 were not as low as the other dataset, but

still adequate.

Datasets 17 to 19 are standard (benchmark) datasets. They

are also used by [31]. Dataset 1, used by Sivaraman et al.,
is the same as dataset 17 and their dataset 3 is the same as

dataset 18. The TPR in dataset 17 was very poor (47.3 %)

due to heavy shadows and dense traffic conditions compared

to the 95.0 % that was achieved by Sivaraman et al.’s Active-

Learning-based Vehicle-Recognition and Tracking (ALVeRT)

framework. The TP/Frame was also low at 0.47. The results

may appear to be better than the results displayed in [31] in

some cases. However, they implemented detection of multiple

vehicles as opposed to the single vehicle detection in this case.

The vehicle detection algorithms were tested on various

datasets. In the following analysis, data sets 1-17 were ob-

tained from camera footage driving the routes. Sections of

these datasets were then classified according to driving condi-

tions, as detailed in Table I.

Using various scenarios indicative of each type of driving

conditions, lead vehicles were manually identified in video

segments. This ground truth was then compared with the

pattern matching algorithm. Table III shows the preliminary

results that were obtained using a set of 20 templates of the

lower section of vehicles, which were extracted from training

sets. These results utilize lane detection to define a ROI, but

do not include the additional ROI restriction from tracking.

Note that the detection rate is not good when there is heavy

traffic, heavy glare, and curved roads. The inaccurate detection

under heavy traffic conditions can be dramatically improved

through the tracking algorithm described above, which would

eliminate many detections of vehicles that are not the primary

vehicle of interest. Curved roads produce poor results in

large part because the currently implemented lane detection

assumes straight lanes; this is an area for further improvement.

And finally, glare is a problem for all vision-based systems,
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and would inevitably affect any vision-based ACC system

(including a human driver).

B. Range Estimation Results

Table IV
CALIBRATED RESULTS FROM THE RANGE ESTIMATION ALGORITHM

Actual Distance with
Laser (m)

Calibrated Distance from
Image (m)

Error (metres)

3.80 3.811 -0.011
8.21 8.263 -0.053
13.19 13.162 0.028
16.12 16.225 -0.105
24.95 25.125 0.175
53.48 53.861 -0.175
72.08 72.039 0.0041
93.40 93.378 0.0022

Range estimation results (Table IV) show an errors lower

than 0.2 meters, assuming negligible error in vehicle and lane

estimation.

C. Kalman Filter Results

Figure 3. The original range results and the estimated range results using
the Kalman filter when the lead vehicle is present in the scene. The GT range
represents the ground truth range.

Figure 3 shows how the Kalman filter effectively smooths

the noise and reduces the jitter of the signal when a vehicle

is present in the image. The error spike in the original signal

is due to the initialisation of the vehicle detection algorithm.

The error covariance matrix R is the averaged variance of the

last 100 points. The graphs also show how close the results

are to the manually tagged ground truth range. The frame rate

of the vision-based sensor ranged between 20 to 50 frames

per second (fps) depending on the performance of the AIC

algorithm, discussed in Section III.
These results demonstrate that the half-vehicle pattern

matching and lane detection can successfully identify a lead

vehicle and can reasonably estimate the headway gap under

suitable conditions. However, the results also identify sev-

eral situations in which the vision-based detection algorithm

struggles. These particularly include situations with substantial

glare from the road and other vehicles, as well as heavy

traffic conditions and curved roads. While some variations on

the algorithm can improve performance under some of these

conditions, it is clear that any vision-based vehicle detection

system will need further development to provide the robustness

desired for an ACC system.
The current algorithm is not yet practical for common

roadway traffic on roads worldwide. The system would there-

fore have to be more robust to cater for driving conditions

influencing detection performance. Algorithms such as the

one used by Khammari et al. can be used to provide good

performance under complex urban environments with varying

lighting conditions [8].

V. CONCLUSION

This study demonstrates that a monocular vision-based

range finding system is feasible for adaptive cruise control

systems, and that pattern matching is a reasonable method to

explore for future system development. Though the pattern

matching algorithm does not work as well in all driving

scenarios, the nature of these scenarios makes them trouble-

some for most vision-based detection methods. This study also

emphasises the utility of the three stages of the vehicle de-

tection framework presented, which combined with a suitable

range detection algorithm can be effective with a variety of

underlying algorithms.
Future work can improve on multiple areas of this project.

As with any such system, increased performance of the

computing platform or of the nature of the algorithms would

allow for more robust performance. Of particular interest for

exploration are the incorporation of machine learning for

visual object detection and more advanced tracking algorithms.

Existing machine learning techniques, such as the Viola-Jones

framework may prove ideal for fast and efficient vehicle

detection. Complementing these detection methods, advanced

tracking algorithms can assist in maintaining appropriate speed

when detection of the appropriate target vehicle is made

difficult by situational or environmental effects.
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