
Information Warfare: Fighting Back Efficiently
Through the Matrix

Ramzi A. Haraty
Department of Computer Science and Mathematics

Lebanese American University
Beirut, Lebanon

rharaty@lau.edu.lb

Sanaa Kaddoura, Ahmed Zekri
Department of Mathematics and Computer Science

Beirut Arab University
Beirut, Lebanon

sana.kadoura@hotmail.com; ahmedzekri@yahoo.com

Abstract—Intrusion detection systems can detect a malicious
transaction in a database. However, sometimes this process takes
time and the detection occurs after the transaction commits.
Databases cannot take any action in this case and the damage will
spread to a certain part of the database. There are some methods to
recover the damaged part of the database. Nevertheless, any
recovery algorithm should be fast in order to decrease denial of
service time. In this paper, we present a new damage assessment
and recovery approach that recovers the database from malicious
transactions in the least possible time. The algorithm exploits the
data dependency approach to store the needed log file data in a
single matrix that will be later used during recovery.

I. INTRODUCTION
Any computer that is connected to a network is vulnerable to

malicious attack. The intrusion detection system can detect an
attack and there are a lot of efforts in this domain like in [1] and
[2]. Nevertheless, there is no guarantee that this detection will be
immediate. Any delay in the detection process will give time to
the attack to spread in the database. For this reason, there is
always a need for an efficient recovery algorithm.

Traditional recovery techniques such as [3], [4] and [5] can
recover a database in case of system failure. However, in case of
malicious attack, all the transactions that directly and indirectly
read from the malicious transaction should be undone and
redone.

In this paper, we assume that the intrusion detection system
provides our approach with the set of malicious transactions and
our approach should take care of the recovery. Because some
transactions may read data items written or updated by other
transactions, transaction inter-dependency will take place. Thus,
many transactions and data items will be indirectly affected by
the malicious transactions. In order to return the database to
consistency state, all these transactions will be rolled-back in the
least possible time. The more is the accuracy of the algorithm,
the less is the recovery time because only affected part of the
database will be under recovery and the benign part will be
available to other applications.

This research proposes a new approach for damage
assessment and recovery in databases. The approach is based on
matrices. We use a single matrix to store the dependency
between data items in order not to read the entire log file during
the damage assessment process. As a transaction commits, a new
row will be added to the matrix. The algorithm is efficient and
faster than other presented algorithms. Using only a single
matrix decreases the execution time of the damage assessment
process and it saves memory.

The next section we discuss the related work. Section 3
presents the proposed approach. Section 4 is a conclusion.

II. LITERATURE REVIEW
In some cases, the intrusion detection system cannot detect

the malicious transaction directly. This detection delay will
make the database exposed to malicious attack. For this reason,
damage assessment and recovery algorithms always needed.
Recovery approaches are categorized in two main categories:
transaction dependency and data dependency. Algorithms based
on transaction dependency take into consideration the data items
read by a transaction and were updated by another one. Data
dependency deals with the operations of the transaction. A data
item doesn’t necessary depend on the whole transaction; it may
be affected by only one operation of the transaction.

In [6], the proposed approach was based on matrices. The
dependencies between transactions were stored in dependency
matrix. The cells of the matrix hold values that give an evidence
of the transactions that one transaction are depending on. If one
transaction was depending on more than one other transaction, a
complementary array was needed to handle this case. The matrix
is static matrix which causes memory problem.

In [7], the authors suggested a new approach that is based on
matrices. However, it uses a single matrix without the need for
complementary array which saves memory and decreases
running time.

Some recovery algorithms were based on clustering. In [8],
the authors applied clustering algorithms on the log file in order
to segment it into clusters based on data dependency. The

2015 IEEE Symposium Series on Computational Intelligence

978-1-4799-7560-0/15 $31.00 © 2015 IEEE

DOI 10.1109/SSCI.2015.73

449

drawback of this algorithm was the growing size of the clusters.
In addition, dependent transactions may belong to different
clusters. The authors of [9] solved this issue by proposing the
sub clustering approach. Each cluster was then sub clustered
based on either the space occupied or the number of data items
in the cluster.

The authors of [10] suggested an algorithm that uses agents
in order to reduce the number of accesses to the log file. The
agents work in parallel to perform the damage assessment and
recovery which minimize the denial of service time.

In [11] the authors presented the column dependency
approach. The columns represent the attributes in the database.
The authors proved that as the number of malicious transactions
increase, the inconsistencies in the database will increase too.

The authors of [12] suggested an approach that uses two
components that works in parallel to perform the damage
assessment and recovery. They applied their approach on
distributed system where they keep a copy of the log file at each
site. Because the components work in parallel, the execution
time was reduced.

The authors of [13] suggested using transaction fusion in
recovery. They applied their algorithm on real time database
systems. Transaction fusion decreases the number of transaction
that will be recovered. This will decrease recovery time.

In [14], the authors suggested and approach that works at the
operating system level. It is based on transaction dependency
and is based on selective recovery that undoes only suspect
transactions.

The authors of [15] show some cases where traditional
transaction dependency approach cannot handle. They suggested
new inter-transaction dependencies: phantom dependency,
pseudo-identity dependency, domain integrity dependency and
reference integrity dependency. Their approach was
implemented and tested in [16] by using SQL rewriting. They
showed that exploiting the aforementioned inter dependencies
leads to more consistency in the database.

In [17], the authors suggested adding a new table called the
before image table. This table has the same structure as the other
tables in the database without any constraints and cannot be
accessed by users. The purpose of adding this table stores the
values of the deleted items in the database so that if they were
deleted by a malicious transaction, they can be restored. Also,
when an item is updated by malicious transaction, the old value
will be stored in the before image table to be used upon
recovery. However, the queries that are performed on the before
image table affects the efficiency of the algorithm in a negative
way.

The authors of [18] suggest that the recovery algorithms
should be application specific. The banking system was taken as
an example. There are two types of transactions in such system:
deposit and withdraw. Taking into consideration the semantics
of the each type of transactions, time can be saved.

The authors of [19] suggested an algorithm that is based on
the fuzzy logic. Fuzziness decreased the time of damage
assessment because there is no need for exact transaction
dependency. However, this approach is not reliable because it is
not accurate.

In [20], the approach was based on studying the actions done
by the users that access the database. All the users’ actions are
assumed to be malicious until the system proves that they are
clean. There is a certain amount of time that should pass to study
the users’ transactions. If the system could proves that it is clean,
the transaction will commit, and otherwise, it will be aborted.

III. THE PROPOSED MODEL
The algorithm is based on data dependency approach

because it is considered more accurate than transaction
dependency. Data dependency deals with the operations of the
transaction instead of dealing with the whole transaction. The
dependencies are stored in one matrix which saves memory and
reduces recovery time. This is one of the key advantages of the
proposed approach.

A. Assumptions
The proposed model is based on the following assumptions:

First, the algorithm will receive the set of malicious transactions
from an intrusion detection system. Second, the history is
rigorous serializable because serializability theory provides
correctness. Third, there is a sequential log file that saves all the
read/write operations of the committed transactions. This log file
is inaccessible by users and will be used upon recovery. Fourth,
the transactions have sequential IDs that are incremented on the
arrival of new transaction. This means that when transaction T2
commits then the only transaction that has committed before T2
is T1. Fifth, the order of the operations is the same as the history.
Finally, we assume that the transaction log stores all the
operations of the committed transactions and stores for each
write operation, the value of the data item before being updated.

B. Definitions
� Definition 1: A write operation wi[x] of a transaction Ti

is dependent on a read ri[y] operation of Ti, if wi[x] is
computed using the value obtained from ri[y] [21].

� Definition 2: A blind write is when a transaction Ti
writes data item x without reading the previous values of
x [22].

� Definition 3: A write operation wi[x] of a transaction is
dependent on a set of data items I, if x = f(I); i.e, the
values of data items in I are used in calculating the new
value of x. If x ≠ I, the operation is called a blind write.
In this case if the previous value of x (before this write
operation) is damaged and none of the data items in I are
damaged, then the value of x will be refreshed after this
write operation [21].

� Definition 4: A data value v1 is dependent on data value
v2 if the write operation that wrote v1 was dependent on a

450

read operation on v2. Note that v1 and v2 may be two
different versions of the same data item [23].

� Definition 5: A transaction management mechanism
guarantees rigorousness if guarantees strictness, and no
data item may be written until the transaction which
previously read either commits or abort [14].

� Definition 6: A transaction Tj is said to be dependent
upon another transaction Ti, if there exists a data item x
such that Ti is the last committed transaction to update x
before Tj reads x. The dependency relationship is denoted
by Ti �Tj. Since the schedule is assumed to be strictly
serializable, there will not be any active transaction
writing x between Ti updating x and Tj reading x [24].

� Definition 7: A write operation is called a valid write if
the value is written by a benign transaction and is
independent of any contaminated data [25].

C. The Damage Assessment Algorithm
The damage assessment algorithm is based on data

dependency approach. The idea of this approach is to connect
the data items together to show the dependency between them.
Then, the algorithm will detect the directly affected data item by
the malicious transaction. After that, the algorithm will be able
to find any data items that are reachable by the malicious data
items. Those data items are called affected data items. Data
items that are not reachable by affected data will be considered
clean and will be available to the user upon the recovery
process.

The algorithm needs only one data structure to store the
dependencies. A two-dimensional matrix will keep track of the
dependencies between the data items that can directly point out
the affected data items without any need to scan the whole
matrix or the log file. Using only one matrix makes no need for
any logical operations such as the work done in [26].

The matrix is dynamic structure that grows as the number of
committed transactions increase. Initially, the matrix is empty.
When a transaction commits, a row will be added to the matrix
to represent this transaction and the data that this transaction
used to write the new values of the data items are added as
columns. Also, when a data item is written by a transaction, a
new column will be added to the matrix to reserve an index for
this data item for later use. Although data dependencies are the
key of the algorithm, saving the transactions will help accurately
identify the affected data items. The columns in the matrix
represent the data items used in the operation to write a new
value. Each cell in the matrix holds the data item that was
written by a given transaction.

Another feature that increases the efficiency of the proposed
algorithm is adding two columns to the matrix which are the
number of data items in a row and the index of the first data
item. Because the matrix is sparse matrix, the algorithm will
move over a lot of empty cells in order to search for the data

items that were written by certain transaction. To save time, the
first column tells the algorithm how many data items it should
expect. In this case, when it reaches this number, the algorithm
will stop searching. The second column is the index of the first
data item in a row. For example, if the first data item was at
index 5, there is no need to scan the row from 1 to 4. The
algorithm starts at 5. This also saves the time of the damage
assessment process.

The blind write was also considered in the matrix so that
execution time will be decreased. Consider a data item that
becomes affected by malicious transaction Tx. Then, another
transaction Ty, where y > x and Ty is a clean transaction, blindly
written that data item, then, this data item will become clean. All
the transactions Tz where z>y, should not be scanned because
they will be updated by reading a clean data item. So, we add a
value of -1 in the cell that corresponds to the transaction Ty and
the data item that was blindly written. When the algorithm
encounters the -1 value, it stops working on this data item and
removes it from the affected data items list.

Fig. 2 shows the matrix that will be generated after the
commitment of the transactions of Fig. 1. In [26], the authors
used multiple matrices for damage assessment in order to
discover dependencies which require logical operations between
the matrices. However, in our approach the single matrix saves
damage assessment time.

Assume that T1 is the malicious transaction. T1 writes the
data item C. Thus, C is responsible for spreading the damage.
We will go directly to the column labeled C in the matrix to see
the data items that are reachable by C. In this column, B and E
are affected data items. Thus, B and E will spread the damage
more. However, C was used in writing B and E in transactions
T4 and T5. Since T4 commits after T1, then, the activity at T4
will be checked. There is no need to look at any transaction that
precedes T4 since damage spreading started at T4. Data item A
was written after reading B in T3 but it will not be considered
affected because T3 committed before T4. When T3 committed,
data item B was clean.

Considering the data item B, we will move on to the
Transactions Ti where i � 4, in column B to detect the data items
that were affected by B. In this case, we have D and Y. D and Y
will be added to the affected data items set. Considering the data
item E, we will move on the Transactions Ti where i � 5, in
column E to detect the data items that were affected by E. The
result should be X and D. However, E was blindly written before
being used in writing X and D because there is a -1 value at the
row of T6. Therefore, E became clean before being used in
transaction T7. Thus, X and D are clean because they were
written after refreshing the value of E. In this example, we ended
up having C, B, D and Y as affected data items that should be
recovered. The damage assessment algorithm is summarized in
Fig. 3. Assume that the dependency matrix is called M and there
is n-transactions. The column that corresponds to the number of
data items in the row has an index 0 and the column corresponds
to the index of first data items in the row has and index 1.

451

T1: C �� D
T3: A �� B + 1
T5: E �� C + 3
T7: X �� E + 5
T9: Y �� B

T2: D �� D + 2
T4: B �� C
T6: E �� 3
T8: D �� E + B

Fig. 1 Sample Transactions Set

Number
of data
items in
the row

Index of
first
data
item

C D A B E X
Y

T1 1 3 1
T2 1 3 2
T3 1 5 3
T4 1 2 4
T5 1 2 5
T6 1 6 -1
T7 1 6 6
T8 2 5 2 2
T9 1 5 7

Fig. 2 The Dependency Matrix

Receive a set of malicious transactions S
While there is unprocessed transaction in S
 Select the minimum unprocessed transaction id Ti in S
 //Identify the data items set D written by Ti
 n=M[i][1]
 m= M[i][0]

 for l=n to end of columns
 if m=0
 break
 if M[i][l] is not null
 add M[i][l]to D
 m--
 n++
 Add D to the affected set
 Associate with each data item the affecting transaction index i
 For each unprocessed data item in the affected set
 Find the index k for the item
 For j=m+1 to n //m is the transaction ID that affected k
 If M[j][k] = -1 /*the affected item is blindly written*/
 Remove k from the affected
 Move to another data item in the affected set
 Else If M[j][k] is not Null /* Null means empty cell */

 Add M[j][k] to the affected set
Fig. 3 The Damage Assessment Algorithm

D. The Recovery Algorithm
During recovery, any executing or new operation of a

transaction should be prevented from accessing malicious and
affected data items. Only affected operations of the transactions
will be re-executed. The other part of the database will be
available. The operations of malicious transactions will be
undone.

Receive the set of malicious and affected data items
For each affected data item
 Retrieve the operation from the log file
 Update the value by the old value before the operation
 Update the database
For each malicious data item
 Retrieve the operation from the log file
 Delete the operation
Fig. 4 The Recovery Algorithm

E. Check Points
The matrix may grow and the data inside it may become

obsolete. Thus, to save memory, the above algorithm requires
checkpoint to get rid of the matrix at a specific time interval
after which we suspect that the data is clean and the malicious
transactions were detected by the intrusion detection system.
This time interval should not be too short in order not to need to
go back to previous check points and re-read the log file. Also, it
should not be too long so that the size of the matrix and the log
file can be controlled. However, the intrusion detection system
may detect a malicious transaction after the check point. In this
case, the dependency matrix has to be reconstructed. It will be
time consuming if we re-read the log file and reconstruct the
matrix. To solve this issue, we will keep a compressed structure
of the dependency matrix that will help in reconstructing the
matrix without going back to the log file.

Since the matrix is a sparse matrix, the condensed storage
technique that will be used is Condensed Row Storage (CRS)
[27]. The CRS format makes no assumption about the sparsity
structure of the matrix and doesn’t store any unnecessary
element of the matrix. Assuming we have an M ×N sparse
matrix A = [aij], containing NZ non-zero elements, the CRS
format is constructed as follows:

� One dimensional vector AN holds all the non-zero values
of the matrix A.

� One dimensional vector AJ which has an equal length to
AN and holds the column number of each element
(starting from 1).

� One dimensional vector AI stores the locations in the AN
vector that start a row.

Thus, the CRS of the matrix in Fig. 2 will be:

AN = [C D A B E E X D D Y]

AJ = [2 2 3 4 4 1 5 3 5 3]

AI = [1 2 3 4 5 6 7 8 10]

 These vectors will only be used in case we needed to
reconstruct the matrix after a check point. Since we assume that
the log file is rigorous serializable, we will only build the matrix
starting from the malicious transaction. The transactions that
precede the malicious one don’t need to be recovered. The
vectors will be refreshed at each new check point to hold the
values of the new matrix.

Data items used
the transactions

452

 The CRS will only be built for one checkpoint backward. If
in rare cases the intrusion detection system detected an attacker
before the check point of the CRS (worst case scenario), then the
log file will be used and the dependency matrix will be re-built.

F. Example
Consider a database for health care management system. We

will only consider the process of keeping patients records in the
health care system. It contains information about:

� Doctor (DrID, DrName, DrSpecialization)

� Patient (PID, PName, PGender)

� Disease (DID, DName)

� PatientRecord (PID, DrID, DID)

� PatientBillItems (PBID, PID, Nitems, cost)

� PatientBill (BID, PID, Nitems*cost)

Consider the following insert transactions in the database:

� T1 = Doctor (‘1’, ‘Mike’, ‘Allergist’);

� T2 = Patient (‘5’, ‘Hana’, ‘F’);

� T3 = Disease (‘11’, ‘eye allergy’);

� T4 = PatientRecord (‘5’, ‘1’,11);

� T5 = PatientBillItems (3, 5, 6, 150)

� T6 = PatientBill (2, 5, 900)

The dependency matrix M will hold the dependencies of the
above committed transactions. The transactions T1 to T3 don’t
depend on any other transactions. They are insert transactions;
hence, they are blindly written and will be stored in the first
column of the matrix BW. T4 and T5 are insert transactions but
since they read values from other transactions and put them in
another table, the data items will be considered dependent. T4
reads from T1, T2 and T3. T5 reads from T2. T6 is an insert
transaction that reads from T5 and writes a new value.

 Consider the case where damage assessment algorithm
receives from the intrusion detection system that T5 is a
malicious transaction. T5 writes 3, 5, 6 and 150. After that T6
reads 5, 6 and 150 to write 5 and 900. Then, from the columns of
the matrix, the data item 5 and 900 are affected and will be
added to the affected data set. The operation of Nitems*cost in
T6 should be rolled back and re-executed. T5 operations must be
deleted.

 BW 5 1 11 6 150
T1 1
T1 Mike
T1 Allergist
T2 5
T2 Hana
T2 F
T3 11
T3 Eye allergy
T4 5 1 11
T5 3 5
T5 6
T5 150
T6 2
T6 5 900 900

Fig. 5 Sample Matrix

IV. CONCLUSION
This paper presents a new efficient algorithm for damage

assessment and recovery for databases. The algorithm is based
on data dependency. The dependencies are saved in a two
dimensional matrix that is updated as new transaction commits.
Using only a single matrix, the damage assessment time will be
decreased and saves memory. The affected data items will be
directly retrieved because they appear in the column of the data
written by the malicious transaction. All these properties
decreases processing time and in turns reduce denial of service
of the database management system. After implementing the
algorithm, it will be compared to the approaches that use
matrices.

ACKNOWLEDGEMENTS

This work was sponsored by the Lebanese American
University – Beirut, Lebanon.

REFERENCES
[1] T. F. Lunt. "A survey of intrusion detection techniques", Computers &
Security, vol. 12, no. 4, pp. 405–418, 1993.
[2] L. LaPadula. "State of the Art in Anomaly Detection and Reaction",
Technical Report, Center for Integrated Intelligence Systems, The Mitre
Corporation, Bedford, MA, July 1999.
[3] P. Bernstein, V. Hadzilacos, and N. Goodman, “Concurrency Control and
Recovery in Database Systems”, Addison-Wesley, Reading, MA, 1987.
[4] R. Elmasri and S. B. Navathe, “Fundamentals of Database Systems”, Second
Edition, Addison-Wesley, Menlo Park, CA, 1994.
[5] J. Gray and A. Reuter, “Transaction Processing: Concepts and Techniques”,
Morgan Kaufmann, San Mateo, CA, 1993.
[6] R. Haraty and M. Zbib. "A matrix-based damage assessment and recovery
algorithm", in Proc. Innovations for Community Services (I4CS), 14th
International Conference, 2014.
[7] S. Kaddoura, R. Haraty, A. Zekri, and M. Masud, "Tracking and Repairing
Damaged Healthcare Databases Using the Matrix", International Journal of
Distributed Sensor Networks, Article ID 914305, 2015 - in press.
[8] R. Haraty and A. Zeitunlian. "Damage assessment and recovery from
malicious transactions using data dependency for defensive information
warfare". ISESCO Science and Technology Vision, vol. 3, no. 4, 43-50, 2007.

453

[9] R. Haraty and H. Mohsen. "Efficient Damage Assessment and Recovery
Using Fast Mapping", in Proc. Second International conference of advanced
computer science and information technology (ACSIT), June 2014.
[10] K. Kurra, B. Panda, W. Li and Y. Hu. "An Agent Based Approach to
Perform Damage Assessment and Recovery Efficiently After a Cyber Attack to
Ensure E-Government Database Security", in Proc. 48th Hawaii International
Conference on System Sciences, Jan 2015.
[11] A. Chakraborty, A. Majumdar, S. Sural. "A column dependency based
approach for static and dynamic recovery of databases from malicious
transactions", International Journal of Information Security (ACM), vol. 9(1),
pp. 51 – 67, Jan. 2010.
[12] P. Liu and M. Yu, "Damage assessment and repair in attack resilient
distributed database systems", Computer Standards & Interfaces, vol. 33 (1), pp.
96–107, 2011.
[13] C. Chen, Q. Liu, Y. Liu and G. Shen, "A Recovery Approach for Real-Time
Database Based on Transaction Fusion", Lecture Notes in Electrical
Engineering, pp. 473–479, 2012.
[14] T. Kim, X. Wang, N. Zeldovich and M. Kaashoek. "Intrusion recovery
using selective re-execution", in Proc. the 9th USENIX Symposium on Operating
Systems Design and Implementation (OSDI '10), 2010.
[15] G. Fu, H. Zhu, and Y. Li. "A Robust Damaged Assessment Model for
Corrupted Database Systems", in Proc. 5th International Conference on
Information Systems Security, pp. 237-251, 2009.
[16] G. Fu, H. Zhang, X. Liu. "Efficient Damage Propagation Detection for
Compromised Database Systems". Journal of Network & Information
Security, vol. 4(1), pp. 1-13, 2013.
[17] M. Xie, H. Zhu, Y. Feng, G. Hu. “Tracking and repairing damaged
databases using before image table", in Proc. Japan-China Joint Workshop on
Frontier of Computer Science and Technology (IEEE), pp. 36 – 41, 2008.

[18] U. Rao and D. Patel. "Incorporation of Application Specific Information for
Recovery in Database from Malicious Transactions". Information Security
Journal: A Global Perspective, vol. 33(1), pp. 35 - 45, 2013.
[19] B. Panda and Y. Zuo. "Fuzzy dependency and its applications in damage
assessment and recovery", in Proc. the 2004 IEEE Workshop on Information
Assurance, 2004, pp. 350 – 357.
[20] D. Hua, Q. Xiaolin and Z. Guineng. "SQRM: An effective solution to
suspicious users in database", in Proc. The Third International Conference on
Advances in Databases, Knowledge, and Data Applications (DBKDA), 2011.
[21] B. Panda and S. Tripathy. “Data dependency based logging for defensive
information warfare”, in Proc. the 2000 ACM Symposium on Applied
Computing, 2000, pp. 361-365.
[22] X. Qin, J. Sun and J. Zheng. "Data dependency based recovery approaches
in survival database systems", In Proc. Computational Science -- ICCS 2007:
7th International Conference 2, 2007, pp. 1131-1138.
[23] S. Tripathy and B. Panda. "Post-Intrusion Recovery Using Data
Dependency Approach", in Proc. the 2001 IEEE Workshop on Information
Assurance and Security, 2001, pp. 156-160.
[24] B. Panda and R. Yalamanchili. "Transaction Fusion in the Wake of
Information Warfare", in Proc. the 2001 ACM Symposium on Applied
Computing, Special Track on Database Systems, 2001.
[25] B. Panda and J. Giordano, "Reconstructing the Database after Electronic
Attacks", in Proc. IFIP TC11 WG 11.3 Twelfth International Working
Conference on Database Security XII: Status and Prospect, pp. 143-156, 1999.
[26] B. Panda and J. Zhou. "Database damage assessment using a matrix based
approach: An intrusion response system", in Proc. the 7th International
Database Engineering and Applications Symposium (IDEAS 2003),2003, pp.
336 – 341.
[27] J. Dvorský J and M. Krátký. "Mutli-dimensional Sparse Matrix Storage",
DATESO 2004.

454

