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Abstract—Cyber physical computing infrastructures typically 
consist of a number of interconnected sites including both cyber 
and physical components. In this analysis we studied the various 
types and frequency of attacks that may be levied on smart grid 
cyber physical systems. Our information security analysis 
utilized a dynamic Agent Based Game Theoretic (ABGT) 
simulation. Such simulations can be verified using a closed form 
game theory analytic approach to explore larger scale, real world 
scenarios involving multiple attackers, defenders, and 
information assets. We concentrated our study on the electric 
sector failure scenarios from the NESCOR Working Group 
Study. We extracted four generic failure scenarios and grouped 
them into three specific threat categories (confidentiality, 
integrity, and availability) to the system. These specific failure 
scenarios serve as a demonstration of our simulation. The 
analysis using our ABGT simulation demonstrates how to model 
the electric sector functional domain using a set of rationalized 
game theoretic rules decomposed from the failure scenarios in 
terms of how those scenarios might impact the cyber physical 
infrastructure network with respect to CIA. 

 

I. INTRODUCTION 

A nation’s economic security rests upon a foundation of 
highly interdependent critical infrastructures. These 
infrastructures are those “systems and assets, whether physical 
or virtual, so vital to the United States that the incapacity or 

destruction of such systems and assets would have a 
debilitating impact on security, national economic security, 
national public health or safety, or any combination of those 
matters.” [1] Infrastructures cover a large number of sectors, 
including the national electric power grid, oil and natural gas 
production, transportation, and distribution networks, 
telecommunications and information systems, water systems, 
transportation networks, the banking and finance industry, the 
chemical industry, agriculture and food systems, and public 
health networks. Understanding the operational characteristics 
of and providing a sufficient level of security for these 
infrastructures requires a “system-of-systems” perspective, 
given their interdependencies [2]. 

The operation of infrastructures that provide cyber services, 
such as network connectivity and computing capacity, requires 
the continued functioning of: (i) cyber components such as 
computers, routers, and switches, and (ii) physical components 
such as fiber routes, cooling, and power systems. While these 
infrastructures are built to provide cyber services, their 
operation is “cyber-physical” in nature due to its dependence 
on both cyber and physical components. For example, the 
components may be degraded by factors such as incidental 
(weather related) power failures and device fatigue failures as 
well as deliberate cyber-attacks on computers and physical 
attacks on fiber routes. While cyber-attacks on computing 
systems and networks seem to get more public media attention, 
in many occasions the infrastructure degradations have been 
due to physical factors such as power blackouts and backhoe 
incidents on fiber routes. Indeed, these cyber infrastructures 
can be compromised by attacks on physical components such 
as heating, ventilation, and air conditioning (HVAC) systems, 
power-supply lines, and physical fiber connections; in 
particular, the latter two are typically routed through long 
stretches of unprotected areas, making them vulnerable to 
physical attacks. Consequently, the design and operation of 
these infrastructures must strike a balance between the cost of 
such degradations based on estimates and empirical data, in 
particular attacks, and the benefits of infrastructure 
reinforcements on the overall performance.  
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In this paper, we present game-theoretic models that 
capture the interactions between an attacker and a defender to 
support rigorous design and analysis of a class of cyber 
infrastructures that consists of network and computing 
components. These constitute a subclass of more general 
infrastructures such as monitoring and control networks for the 
energy grid, intelligent transportation systems, nuclear plants, 
and hydroelectric dams; in the latter, in particular, cyber-
attacks can degrade physical capabilities, in addition to 
physical attacks degrading the cyber capabilities. 

A. Definitions  
A smart grid is a modernized electrical grid that uses 

analog or digital information and communications technology 
to gather and act on information in an automated fashion to 
improve the efficiency, reliability, economics and 
sustainability of the production and distribution of electricity 
[3, 4]. Smart grid policy is organized in Europe as Smart Grid 
European Technology Platform [5], and as policy in the United 
States described in Title 42 of the U.S. Code [6]. 

In the context of cyber security, Title 44 of the U.S. Code 
[7] defines Information security as a means of protecting 
information and information systems from unauthorized 
access, use, disclosure, disruption, modification, or destruction 
in order to provide: 

� Confidentiality, which means preserving authorized 
restrictions on access and disclosure, including means 
for protecting personal privacy and proprietary 
information; 

� Integrity, which means guarding against improper 
information modification or destruction, and includes 
ensuring information nonrepudiation and authenticity; 
and 

� Availability, which means ensuring timely and reliable 
access to and use of information. 

B. Paper Organization 
In this paper, the need for security in the introduction and 

define the key components of security – confidentiality, 
integrity, and availability if first introduced. In Section II, the 
case for applying current known Agent Based Game Theoretic 
(ABGT) simulation approaches to the Smart Grid subject 
domain is presented. In Section III, we describe four selected 
generic failure scenarios that are concentrating on the general 
failure scenarios functional area within the electric sector. 

In Section IV, the experimental setup within the context of 
allowable states, actions, and the corresponding parameter 
modeling set necessary to execute the game is described. In 
Section V, experimental results from the simulation within the 
smart grid network via the model are presented. We initially 
address what constitutes a successful attack and then address 
the confidentiality, integrity and availability of the network. In 
the last section, we discuss conclusions and future work. 

II. PROBLEM DOMAIN DISCUSSION 

The motivation for this work, is highlighted by existing and 
emerging technologies that complement The Roadmap for 
Cybersecurity Research in context of survivability of time-

critical systems [8] and the President’s Comprehensive 
National Cybersecurity Initiative [9] with respect to extending 
cyber security into critical infrastructure domains. The 
Roadmap synthesizes expert input from the control systems 
community, including owners and operators, commercial 
vendors, national laboratories, industry associations, and 
government agencies, to outline a coherent plan for improving 
cyber security in the energy sector. The plan provides a 
supporting framework of goals and milestones for protecting 
control systems for the foreseeable future: By 2020, resilient 
energy delivery systems are designed, installed, operated, and 
maintained to survive a cyber-incident while sustaining critical 
functions. This is a bold vision that confronts the formidable 
technical, business, and institutional challenges that lie ahead 
in protecting critical energy control systems against 
increasingly sophisticated cyber-attacks [8]. The Cyberspace 
Policy Review, initiated by the White House, advised that “the 
Federal government should work with the private sector to 
define public private partnership roles and responsibilities for 
the defense of privately owned critical infrastructure and key 
resources.” Reference [10] recommended that as “the United 
States deploys new Smart Grid technology, the Federal 
government must ensure that security standards are developed 
and adopted to avoid creating unexpected opportunities for 
adversaries to penetrate these systems or conduct large-scale 
attacks.” The National Electric Sector Cybersecurity 
Organization Resource (NESCOR) Technical Working Group 
1 (TWG1) consisting of industry experts, asset owners, and 
academia has developed a set of cyber security failure 
scenarios and impact analyses for the electric sector. 
Information about potential cyber security failure scenarios is 
intended to be useful to utilities for risk assessment, planning, 
procurement, training, tabletop exercises and security testing 
[11]. A cyber security failure scenario is a realistic event in 
which the failure to maintain confidentiality, integrity, and/or 
availability of sector cyber assets creates a negative impact on 
the generation, transmission, and/or delivery of power. The 
failure scenarios, impacts, and mitigations were developed 
from the “bottom-up,” rather than a top-down assessment of 
potential cyber security events. The failure scenarios are 
organized in key functional categories, corresponding to the 
functional domains identified in the NIST Special Publication 
1108, NIST Framework and Roadmap for Smart Grid 
Interoperability Standards, Release 2.0 [12]: demand response 
and consumer energy efficiency, wide-area situational 
awareness, energy storage, electric transportation, network 
communications, advanced metering infrastructure, distribution 
grid management, and cybersecurity.  

The “Electric Sector Failure Scenarios and Impact 
Analyses” by the NESCOR Working Group Study [11], From 
the Section 5 electric sector representative failure scenarios 
[11], we extracted the four generic failure scenarios and 
grouped them into three specific threat categories 
(confidentiality, integrity, and availability) to the system. These 
specific failure scenarios serve as a demonstration of our 
simulation. 

A. Known Solutions and Current Approach 
The research and practicing community have been paying 

close attention to cyber security problems for more than two 
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decades. However, Shiva et al. [13] state and it is generally 
agreed that the problem is far from being solved. In fact, some 
would argue that it is getting worse. As our dependence on the 
cyber infrastructure grows more complex and more distributed, 
the systems that compose it become more prone to failures and 
exploitation [14]. Failures in complex, tightly coupled systems 
can only be mitigated by collective decision making and 
organizational learning [15]. This is one way to view this 
game-theoretical approach. 

The defender performs actions, which are governed by the 
probability of detecting that something is wrong or inconsistent 
with the normal state of operation within their enterprise (i.e., 
administrators may not actually recognize a zero day attack in 
progress). For our purposes, since the normal states are known, 
the simulation will try to limit the defender’s actions, which is 
a counter action to the most current action performed by the 
attacker. Before the defender performs any counter action, a 
detection action is required to confirm the type of attack. In the 
simulation, our time unit represents one minute. One thousand 
(1,000) simulations were executed with each simulation 
spanning 250 simulated minutes, similar to [16, 17]. 
Experimental results were aggregated into bins and averaged to 
arrive at the probabilities of attack success within a given time 
slot as in [16, 17]. Information security analysis can thus be 
performed using game theory implemented in dynamic 
simulations using agent based models (ABMs). Such 
simulations can be verified with the results from game theory 
analysis and further used to explore larger scale, real world 
scenarios involving multiple attackers, defenders, and 
information assets. The major contributions of the work 
described in this paper include: 

� A generalized approach to set up the rules of the game 
for our ABMs is flexible to accommodate arbitrary 
topologies and enterprise states. 

� The ability to explore the range of feasible behaviors 
and incorporate imperfect information is facilitated 
simply by creating new rules that emulate new 
emergent behaviors. In this way, the analysis can 
evaluate the effect of a zero day. In such cases the 
defender is unprepared to deal with or defend against 
the scenario. Fig. 1 provides a State Transition 
Diagram (STD) that analyzes the case where defenders 
are unable to take defensive actions. 

� The ability to assess the scalability of the defenders 
strategy addresses current limitations of stochastic 
game models. Such models only consider perfect 
information which assumes that: the defender is always 
able to detect attacks; the state transition probabilities 
are fixed before the game starts; the players’ actions 
are always synchronous; most models are not scalable 
with respect to the size/complexity of the system under 
study. 

III. HYPOTHESIS TESTING OF CATEGORIES 

Reference [11] organized the Smart Grid failure scenarios 
into six categories, which corresponds to the domains in [12] as 
1) Advanced Metering Infrastructure (AMI), 2) Distributed 
Energy Resources (DER), 3) Wide Area Monitoring, 

Protection, and Control (WAMPAC), 4) Electric 
Transportation (ET), 5) Demand Response (DR), and 6) 
Distribution Grid Management (DGM). In addition, there are 
failure scenarios in a seventh cross-cutting category identified 
as “Generic,” which includes failure scenarios that may impact 
the six original functional domains. We concentrated our 
analysis on the 4 failure scenarios which are generic [11].  

The model presented here is based on the following four 
scenarios groups that address the collective three threat 
categories of confidentiality, integrity and availability. Our 
hypothesis claims that an ABGT simulation can represent the 
attacker/defender dynamics to ascertain the probability of 
successful attacks. Furthermore, in this experiment we believed 
the aforementioned scenarios could lend insight by accounting 
for likely offensive/defensive posturing. The following four 
subsections detail the chosen scenarios from the Electric Sector 
Failure Scenarios and Impact Analyses by the NESCOR 
Working Group Study [11]. 

A. Generic.1 (G.1): Malicious and Non-malicious Insiders 
Pose Range of Threats 
Authorized personnel, who may be operators, engineering 

staff or administrators, become active threat agents with 
legitimate access to IT, field systems, and/or control networks. 

B. Generic.2 (G.2): Inadequate Network Segregation Enables 
Access for Threat Agents 
A threat agent compromises an asset that has access to the 

Internet via the “business” network. The asset on the business 
network also has access to a control system asset or network. 
The compromise of the business network asset provides a pivot 
point for the threat agent to gain control of a control system 
asset or network. 

C. Generic.3 (G.3): Portable Media Enables Access Despite 
Network Controls 
A threat agent introduces counterfeit firmware or software, 

a virus, or malware via removable media to obtain partial or 
total control of a device or networked system. 

D. Generic.4 (G.4): Supply Chain Attacks Weaken Trust in 
Equipment 
An adversary replaces a legitimate device with a 

maliciously altered device and introduces the device into the 
supply chain without directly compromising a manufacturing 
entity. This can be done by buying a legitimate device, buying 
or creating a malicious device and returning the malicious 
device in place of the legitimate device as an exchange. 
Alteration may be a modification or deletion of existing 
functions or addition of unexpected functions. 

IV. EXPERIMENTAL TEST PLAN 

Our ABGT models are based on previous works that have 
documented several attack scenarios [16-19]. The chosen case 
study was modeled from the failure scenarios identified as 
electric sector representative scenarios by domain [11].  

A. Baseline allowed states and actions 
Our distributed overall Smart Grid network is typical of the 

electric sector distribution configuration [15]. Our current 
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model utilizes the following states adapted from [6], 
specifically addressing the Generic.1 (G.1), Generic.2 (G.2), 
Generic.3 (G.3), and Generic.4 (G.4) scenarios. The allowable 
states, actions and parameterization are provided in the 
following sections. 

1) Allowable states 
Table 1 assigns an integer to each state. The state transition 

diagrams enumerate each unique state. Note, that states 2a, 3a, 
4.a, …, 13a represent the defenders actions. 

2) Actions 
An action is conducted by either an attacker or a defender, 

which causes the system to move from one state to another in a 
probabilistic manner with rewards (inaction is denoted Ø). All 
the allowable actions are provided in Table II and Table III. 

3) Parameter modeling sets for STDs 
The following section describes the intricacies of the STDs 

shown in Fig. 1. We label each transition with an action (see 
Tables II and Table III for the list of action labels), the 
probability of the transition, and the gain or cost in minutes of 
restorative effort incurred by the defender (or administrator). 
The X/Y/Z labels on the arcs indicate: X) Probability that the 
attacker chooses to attack, Y) Probability that the attack is 
successful and a Z) Reward for accomplishing that particular 
step (state transition). In a few cases (e.g., self-loop on state 2) 
we denote only the transition probability. For example, the 
self-loop of State 2 has P = 0.9375 = 1– (0.25*0.25) and the 
reward (R) is zero resulting in a label of “.9375/0”. For State 3 
the probability of staying in the current state is P=1-
(0.25*0.25+0.25*0.25+0.25*0.25) = 0.8125. 

In this scenario, the attacker gains no reward by remaining 
in state 2 (i.e., R=0). There are costs (negative values) and 
rewards (positive values) associated with the actions of the 
defender and attacker, respectively. The attacker’s actions have 
mostly rewards and such rewards are in terms of the amount of 
damage he does to the network. Each attacker/defender game 
lasts 200 simulated minutes, and the values of the reward 
represent time in the game. Plus (+) means the game advances 
by that much time (in minutes) and negative (-) delays by that 
much time (in minutes). The attacker’s actions gain (+) 
rewards and drive the game to completion to the attacker’s 
advantage. Another way to think of rewards is in terms of the 
amount of damage he does to the network. Obviously some 
costs are difficult to quantify but others that decommission an 
asset for example are not. We utilize the following reward 
strategy: +10 for standard advance time reward, +100 for 
attacker success, -20 for routine restorative effort, and -100 for 
a significant restorative effort time to the defender. The time 
units represent minutes as in [18]. 

State 1 (normal operations) to State 2 (G.1 scenario) 
represents the case where an authorized person becomes an 
active threat agent. State 2 to 3 occurs when a threat agent 
inflicts significant damage on system either intentionally or by 
mistake. The defender (State 2 to State 2a) detects the threat 
agent. For State 3 to 3a, the defender detects significant 
damage. State 2a to State 1 (normal operation) detects/records 
threat agent presence and returns to normal operation. From 

State 3a to State 1, the defender records threat agent damage 
activity and returns to State 1 (normal operation).  

From State 1 (normal operations) to State 4 (G.2 scenario) 
represents the case where a threat agent compromises an asset 
that has access to the Internet via the “business” network. State 
4 to State 5 occurs when a threat agent gains control of a 
control system asset or network. The defender (State 4 to 4a) 
detects a compromised asset. For State 5 to State 5a, the 
defender detects the threat agent has gained access. State 4a to 
State 1 (normal operation) detects/records the compromised 
asset and returns to normal operation. State 5a to State 1, the 
defender records the threat agent has gained access and returns 
to State 1 (normal operation).  

State 1 (normal operations) to State 6 (G.3 scenario) 
represents the case where a threat agent gains physical access 
to the system. State 6 to State 7 occurs where a threat agent 
introduces a threat via removable media. The defender (State 6 
to State 6a) detects the threat agent’s physical access. For State 
7 to 7a, the defender detects threat agent’s removable media 
activity. From State 6a to State 1 (normal operation) records 
threat agent activity and returns to normal operation. State 7a 
to 1, the defender records defender records the threat agent’s 
removable media activity and returns to State 1 (normal 
operation).  

State 1 (normal operations) to State 8 (G.4 scenario) 
represents the case where an adversary gains access with the 
intent to affect the Supply Chain. State 8 to State 9 occurs with 
an adversary replaces legitimate device. State 9 to State 10 
occurs when an adversary introduces a malicious device into 
supply chain. 

The defender (State 8 to 8a) detects the threat adversary. 
From State 9 to State 9a, the defender detects the threat 
adversary device replacement. From State 10 to State 10a, the 
defender detects that a malicious device has been introduced 
into the supply chain by the attacker. From State 8a to State 1 
(normal operation), the defender records the threat agent 
activity and returns to State 1 (normal operation). From State 
9a to State 1, the defender records the threat adversary device 
replacement and returns to State 1 (normal operation). From 
State 10a to State 1, the defender records the threat adversary 
malicious device in the supply chain and returns to State 1 
(normal operation). 

From States 3, 5, 7 and 10 to State 11, the threat agent 
exposes PII. From States 3, 5, 7 and 10 to State 12, the threat 
agent corrupts data. From States 3, 5, 7 and 10 to State 13, the 
threat agent causes large scale outages. From State 11 to State 
11a, the defender detects and repairs PII and from State 11a to 
State 1, the defender returns to normal operations monitoring. 
From State 12 to State 12a, the defender detects and repairs 
corrupted data and from State 12a to State 1, the defender 
returns to normal operations monitoring. From State 13 to State 
13a, the defender detects and repairs the larger scale outage 
and from State 13a to State 1, the defender returns to normal 
operations monitoring. 
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TABLE I.  STATES  

State State Label 

1 Normal Operations 

2 G.1 Active threat agents 

2a Threat agents detected 

3 
G.1 Significant damage on system inflicted either 
intentionally or by mistake 

3a Significant damage detected 

4 
G.2 Threat agent compromised an asset that has access to the 
Internet via the “business” network 

4a Compromised asset detected 

5 
G.2 Threat agent in control of a control system asset or 
network. 

5a Threat agent access detected 

6 G.3 Physical access gained 

6a Physical access detected 

7 G.3 Threat introduced via removable media by threat agent 

7a Threat agent activity detected 

8 G.4 Adversary threat agent access gained 

8a Adversary access detected 

9 G.4 Legitimate device replaced 

9a Adversary replacement detected 

10 
G.4 Malicious device introduced into supply chain by 
adversary 

10a Adversary introduction into supply chain detected 

11 PII exposed 

11a Exposed PII detected and repaired 

12 Data corrupted 

12a Corrupted data detected and repaired 

13 Large scale outage 

13a Large scale outage detected and repaired 

TABLE II.  STATE TRANSITIONS FOR GENERAL ATTACKS/DEFENSES  

General                                                                                       Attacker 

1�2 Authorized personnel become active threat agent 

2�3 
Threat agent inflicts significant damage on system either 
intentionally or by mistake 

1�4 
Threat agent compromises an asset that has access to the 
Internet via the “business” network 

4�5 
Threat agent gains control of a control system asset or 
network 

1�6 Threat agent gains physical access 

6�7 Threat agent introduces threat via removable media 

1�8 Adversary gains access 

8�9 Adversary replaces legitimate device 

9�10 Adversary introduces malicious device into supply chain 

General                                                                                      Defender 

2�2a Detect threat agent 

3�3a Detect significant damage 

4�4a Detect compromised asset 

5�5a Detect threat agent access 

6�6a Detect physical access 

7�7a Detect threat agent’s removable media 

8�8a Detect adversary 

9�9a Detect replaced device 

10�10a Detect malicious device in supply chain 

2a, 3a, 
4a, 5a, 
6a, 7a, 
8a, 9a, 

10a �1 

Return to normal operations monitoring 

TABLE III.  STATE TRANSITIONS FOR CONFIDENTIALITY, INTEGRITY AND 

AVAILABILITY  

Confidentiality                                                                           Attacker 

3, 5, 7, 10 �11 Threat agent exposes PII 

Confidentiality                                                                          Defender 

11�11a Detect and repair exposed PII 

11a�1 Return to Normal Operations monitoring 

Integrity                                                                                     Attacker 

3, 5, 7, 10 �12 Threat agent corrupts data 

Integrity                                                                                     Defender 

12�12a Detect and repair corrupted data 

12a�1 Return to Normal Operations monitoring 

Availability                                                                                Attacker 

3, 5, 7, 10 �13 Threat agent causes large scale outage 

Availability                                                                                Defender 

13�13a Detect and repair large scale outage 

13a�1 Return to Normal Operations monitoring 

 

 

V. EXPERIMENTAL RESULTS 

 

In this section we simulate the security of the enterprise 
network via the above model. We initially address what 
constitutes a successful attack and then address the 
confidentiality, integrity and availability of the enterprise 
network. 

A. Security Analysis – Probablity of a Successful Attack 
The probability of a successful attack is determined by the 

parameter modeling set as defined in Fig. 1. Fig. 2 illustrates 
the successful attacks in the enterprise network at each time 
interval (minutes), which is not cumulative. Fig. 3 shows the 
same data as a cumulative distribution indicating when the 
probability of successful attacks reaches 1 for the arrival rates 
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(0.12, 0.37, 0.63 and 0.88) respectively. This particular model 
illustrates that the attacker has a distinct advantage 
as the arrival rates of the attack increases. 

B. Confidentiality 
We define confidentiality as the absence of 

unauthorized disclosure of information (e.g., 
Personally Identifiable Information [PII]) [16, 17]. 
A measure of confidentiality is the probability that 
important data and information are not stolen or 
tampered. Confidentiality can be described as: 

C = 1 – P PII_exposed   (1) 

where P PII_exposed is the probability that the 
attacker succeeds in reaching the “PII_exposed” 
State 11 in Table 1. Figure 4 (top panel) illustrates 
the confidentiality variation over the period of 

time for “PII_exposed.” 

C. Integrity 
We define integrity as the absence of improper 

system alterations and/or data manipulation (i.e., 
preventing improper or unauthorized change) [16, 
17]. Furthermore, integrity can be measured as the 
probability that network services are not affected, 
altered or damaged. Integrity can therefore be 
described as: 

I = 1 – P Data Corrupted   (2) 

where P Data Corrupted denotes the probability 
that the attacker succeeds in corrupting data by 
reaching the “Data corrupted” State 12 in Table 1. 
Figure 4 (middle panel) illustrates the integrity 
variation over the period of time for 
“Data_corrupted.” Again the arrival rate (or attack 
intensity) has an effect on the dynamics of the 

probability of the data being corrupted. 

D. Availability 
We define availability as a system or 

infrastructure being available when needed; 
associated computing resources can be accessed 
by authorized users [16, 17]. Moreover, 
availability is the ability by authorized users or 
systems to access information resources as 
necessary. The lack of availability is demonstrated 
by increased probability of disturbance when, for 
example, smart grid services are 
degraded/impeded. We express availability as: 

A = 1 – PLarge_scale_otuage    (3) 

where PLarge_scale_otuage denotes the probability 
the attacker succeeds in causing disruptions 
leading to large scale outages in the worst case 
(State 13). Figure 4 (bottom panel) illustrates the 
availability dynamics in terms of large scale 
outages over time. 

Comparing and contrasting Fig. 1 with the 
results in Figure 2-4, with respect to 

 
Fig. 1. State Transition Diagram (STD): actions of the attacker only (no defender).  
Note: Outing arcs from States 3, 5, 7 and 10 to States 11, 12 and 13 are .25/.25/100. 

 
 

Fig. 3. The probability of successful attacks cumulatively in the enterprise network per 
system time. 

 
 

Fig. 2. The probability of successful attacks in the enterprise network per system time. 
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confidentiality, integrity, and availability yields some 
interesting results. The variability of data in Fig. 4 shows 
similar results as a nearly 40% decrease in all three 
models security entities. This can be explained as all four 
generic failure scenarios converge on State 11, 12, 13 
(Confidentiality, Integrity and Availability). 

VI. CONCLUSIONS AND FUTURE WORK 

The use of game theory is a natural way to organize 
this investigation and the simulation results present an 
enormous amount of important and interesting data for 
analyses. Game theory has been used in many other 
problem analyses involving attacker-defender interaction. 
This smart grid subject domain is similar because a 
hacker on the Internet may wish to attack a smart grid 
network and the administrator of the smart grid network 
has to defend against the various actions of the attacker. 
Attack and defense actions cause the smart grid network 
to probabilistically change state. The attacker can gain 
rewards that represent different levels of importance. A 
small reward can be gained for example from reducing 
the cost of electricity. The smaller disruptions can be 
(often are) used as a stepping-stone to larger much more 
significant compromises (e.g., data corruption, 
compromise of PII, large scale outages). Meanwhile, on 
the other side of the game, an administrator can suffer 
damages that result in system downtime, theft or 
alteration of customer data, or impact to the supply chain, 
that may takes much longer to repair. The attacker’s gain 
may or may not be of the same magnitude as the 
administrator’s cost. Our current ABGT simulation is 
ideal for capturing the dynamics of these interactions. 
When compared to data in our previous works [16, 17], it 
is evident that the approach can be expanded to 
incorporate all of the steps that are involved in describing 
realistic failure scenarios [11] (i.e., the 4 selected generic 
failure scenarios from the 113 total scenarios: 32 AMI, 
26 DER, 12 WAMPAC, 16 ET, 7 DR, and 16 DGM). 
Naturally, there can be more than one attacker per 
network and more than one administrator managing the 
network at the same time, which our model 
accommodates. It would appear that a multiplayer game 
model is more apt than the two player game model 
described here. Further, the current game makes no 
distinction as to the uniqueness in capability or identity 
of an attacker or for that matter a defender 
(administrator). In this model, we expanded our previous 
model to accommodate a team of attackers at different 
locations, and similarly for the defenders. In this way the 
two-player game model more closely reflect the real 
work and extend our analysis base of the AMI network 
security problem. We plan to incorporate the current 
findings as validated probability inputs to the 
econometric model described in [20-22]. In this way, we 
will be able to more realistically determine how much 
security is needed in the smart grid from both the utility’s 
and customer’s perspective. This is an important 
endeavor because in classical risk assessment 
approaches, the probabilities are usually guessed and not 
much guidance is provided on how to make the 

 
 

 
 

 
 

Fig. 4. Confidentiality ((PII_exposed), Integrity (Data_corrupted), and Availability 
(Large_scale_outage) attack impact on the Smart Grid enterprise network per 

system time. 
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probabilities accurate [23]. When coming up with probabilities, 
people are generally not well calibrated. Even though, this has 
been well documented for some time, we still need to better 
understand how sensitive these analyses are to changes in the 
modeling sets and to minor changes in the threat scenarios. 
Nonetheless, our ABGT simulations continue to addresses this 
very question because of its emphasis on collecting 
representative data to assist stakeholders in assessing the values 
of the outcomes of incidents rather than just collecting the 
likelihood or probability of various future incident scenarios 
that may not be stochastic. 
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