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Abstract—To blend growing amounts of renewable energy into 
utility grids requires accurate estimates of the power from those 
resources for both day ahead planning and real-time operations. 
This requires predicting the wind and solar resource on those 
timescales. Accurate prediction of these meteorological variables 
is a big data problem that requires a multitude of disparate data, 
multiple models that are each applicable to a specific time frame, 
and application of computational intelligence techniques to 
successfully blend all of the model and observational information 
in real-time and deliver it to the decision-makers at utilities and 
grid operators. Considering that the capacity of renewable energy 
continues to grow an additional challenge includes selecting and 
archiving data for continuous retraining of machine learning 
algorithms. 

I. INTRODUCTION 

Weather forecasting is one of the original computational 
challenges.  From the time that L.F. Richardson in 1922 
imagined a room of human “computers” numerically solving 
the primitive equations of fluid mechanics [1], meteorologists 
have been seeking to use big data and the best of numerical 
methods to improve forecasts. In fact the first problem on the 
first operational computer, the Electronic Numerical Integrator 
and Computer (ENIAC) at Aberdeen Proving Grounds in 1950 
was a filtered version of these equations set up by Jules 
Charney, John von Neumann, and R. Fjortoft [2]. Thus was 
born meteorologists’ love of computing and using and 
producing big data.  Since then, the details included in the 
numerical models, as well as the spatial and temporal resolution 
employed have grown rapidly, continuously challenging 
computing capability. At the same time the field has been quick 
to employ advanced statistical and computational intelligence 
methods. 

Current weather prediction efforts are an important real-
time challenge and many applications rely on its accuracy, 
including aviation safety, defense planning, energy applications 
and beyond. To meet those expectations, numerical weather 
prediction (NWP) models are run hourly at high resolution and 

include tens of millions of grid cells, include physics packages 
that solve their own series of equations.  These physics 
packages model or parameterize incoming and outgoing 
radiation, cloud physics, shallow and deep convection, 
boundary layer turbulence, land surface interaction with the 
fluid atmosphere, and more. 

The nonlinear dissipative fluid equations are chaotic, 
implying sensitivity to initial conditions. This fact leads to two 
specific methods to deal with this chaos in modeling 
atmospheric flow: assimilation and ensemble prediction. 
Assimilation involves blending observed data into the initial 
model state. These data are seldom located on the grid and are 
often of disparate nature, leveraging attempts to sample the 
horizontal and vertical extent of the atmosphere and the land 
and sea surface boundaries. Ensemble modeling embraces the 
chaotic nature of the flow and seeks to provide multiple 
possible realizations of the development of the weather event. 
Some centers use upward of 50 model ensemble members to 
form a probability density function (pdf) of the development of 
the weather. 

Finally, the best predictions blend as much data, models, 
and methods as possible via postprocessing to bring together 
information from multiple sources in order to improve the 
deterministic forecast as well as to quantify its uncertainty. Of 
course training these postprocessing methods requires a large 
amount of both model and observational data and will be 
discussed in more detail below. Some of the best methods 
involve rich data mining techniques that blend computational 
intelligence with knowledge of the physics and dynamics of the 
system. Such systems can be quite complex [3]. 

An example application that leverages all of these data 
issues is forecasting for variable renewable energy, namely 
wind and solar power. Accurate forecasting of wind and solar 
power is essential in order to reduce the levelized cost of 
renewable energy and effectively and efficiently integrate these 
variable energy sources into electric grid operations. Utilities 
and independent system operators (ISOs) rely on such forecasts 
to blend this variable yet valuable resource into the energy 
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system. They need to allocate their resources a day or more 
ahead and correct predictions of the inexpensive solar and wind 
fuel allows minimizing the marginal cost of energy while 
assuring sufficient power to meet the load. In real-time, grid 
operators must have very short-range forecasts (referred to as 
nowcasts) to meet energy demand and minimize the cost of 
running excessive reserves. Thus modern meteorologists 
forecast the wind speed expected at turbines and irradiance at 
solar panels. 

This paper lays out the issues for problems such as 
forecasting the weather for renewable energy. This is certainly 
a big data problem as discussed in Section 2. Section 3 provides 
a case study of the SunCast Solar Power Forecasting System 
designed by the National Center for Atmospheric Research 
(NCAR). The final section 4 discusses the issues and prospects 
for future applications. 

II. APPLIED WEATHER FORECASTING AS A BIG DATA 

CHALLENGE 

A. Data Volume 
Numerical Weather Prediction (NWP) is a big data issue, 

requiring some of the largest computations for real-time 
processing. NWP ingests large amounts of observational data for 
assimilating into the models and solves the nonlinear Navier-
Stokes equations on grids upwards of 100 million grid cells with 
time steps on the order of 20 s. This implies that on the order of 
18 billion of each model variable is handled hourly. Of course 
not all of that data is stored, with about 30 output variables being 
stored at 15 min increments and another 700 stored at hourly 
increments. 

B. Data Variety 
The data that are combined to provide a forecast typically 

include several different types of observations, some of which 
sample the surface variables at convenient locations that seldom 
correspond with the NWP grid points, while others depict the 
atmospheric vertical profile at particular locations. Yet other 
variables are sampled on a horizontal grid but with differing 
elevations, such as is true for satellite variables. Even where 
such observations are gridded, they may not be on the same type 
of map projection as are the NWP data. This all means that 
interpolation is a necessary step of any forecast process. Satellite 
irradiance values often depict the cloud top temperature. Since 
different clouds appear at differing atmospheric levels, these are 
indicative of cloud top height. Some satellite instruments, 
however, look through the clouds to determine properties of the 
atmosphere in vertical profiles. Yet other instruments, such as 
surface-based radars, scan the environment and provide 
reflectivity in terms of distance, angle, and azimuth of the beam. 
Thus, all of these differing types of data with differing types of 
grid systems must be coordinated in order to provide a sensible 
picture of the current weather before it is implemented into the 
forecasting system. The existence of standards and standardized 
formats for meteorological data, including metadata, 
significantly reduces the possibility of errors when processing 
disparate data. Unfortunately, no such standards exist at present 
for data collected at power plants. Standardization is essential 
for development of accurate, robust, and error free renewable 
energy forecasting systems.  

One common standardization issue is the time stamp on the 
observations. Although all observations and NWP data should 
include a time stamp and that it should be in universal time, that 
is not always the case. In particular, it is common for 
specialized observations to be listed in local time. For such 
observations, it is sometimes confusing whether or not there is 
a time change when moving from standard to daylight savings 
time or vice versa. 

Another issue is averaging time of observations. There are 
many small networks of specialized weather observations 
(mesonets). Although some of these are standardized, not all 
follow standardization on reporting details and averaging 
periods. For instance, one dataset that brings together 
observations from a variety of mesonets includes data with 
differing averaging periods, with hourly data including 
everything from averages of 10 Hz data for the full hour, for 15 
min, for 5 min, for 1 min, and even for an instantaneous value. 
Some observations are recorded at the top of the hour, while 
others are an average of the prior hour. It is not a simple process 
to standardize the values that are provided. In using such data, 
it is important to read the information available on details of 
each type of observation and to be aware of best methods to 
deal with disparity. 

C. Data Velocity 
Having large amounts of data arrive on disparate time scales 

creates a huge challenge to processing. For a full system to 
operate, one must prepare for different times of arrival for each 
NWP model and each source of observation. This means that as 
data arrives, it must be matched to its valid time and steps taken 
to account for any lags before blending it with data from other 
models, observations, or systems. 

D. Data Variablity 
The realities of receiving the different data types in real-

time implies that one must be prepared for any of the data 
sources to be delayed and have plans for graceful degradation 
of predictions when certain sources of data are not available in 
time to provide the real-time prediction. Because this is a 
frequent occurrence, fall-back routines are necessary for each 
type of data that may be missing. Because the machine learning 
algorithms are trained to optimize on having all of the data, it is 
necessary to also provide forecast model systems that assume 
missing data. Note that this process becomes even more 
complex when more than a single type of data is missing at the 
time that the forecast must be delivered. 

E. Data Veracity 
Data quality is a critical issue when training the 

computational intelligence models as well as in real-time. There 
are frequent issues with incorrect data that must be identified. 
For instance, there is a range of expected temperature values 
and when an observation is far from the expected range for the 
season and time of day at a location, it can be flagged for 
potential error. An additional check could be made on the 
previous value of temperature to see if the change in time is 
within reason. Note that for weather variables, however, one 
must take into account that occasionally rapid changes or 
anomalous values may be real. Temperature changes could 
occur rapidly upon frontal passage. There are occasional 
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extreme values of each weather variable. For instance, during 
times of flooding, precipitation observations could appear 
anomalous when in fact, they are correct for that unusual case. 
This implies that quality control algorithms must be carefully 
constructed to identify these possibilities. 

F. Data Complexity 
These issues of data volume, variety, velocity, variability, 

and veracity point to the difficulties of attempting to blend these 
data to provide accurate forecasts in real-time.  

For example, observations are used for at least three 
purposes in making the forecast: 1) training the computational 
intelligence algorithms, 2) identifying the current conditions to 
provide the necessary information for the current prediction, 
and 3) assimilation into the NWP models. After the prediction 
is made, data are again required for verification and validation. 
How to use the different sources of data well for each of these 
purposes without compromising the other uses is challenging.  

III. A CASE STUDY: NCAR’S SUNCAST SOLAR POWER 

FORECASTING SYSTEM 

An example of weather forecasting for a particular 
application is variable renewable energy wind and solar power, 
in particular.  As the penetration of renewables increases, it 
becomes more difficult to merge it optimally with more 
conventional energy sources. Utilities and independent system 
operators (ISOs) are addressing the issue by employing 
forecasts of that energy. Of course, the wind and solar 
irradiance available depends on the weather.  NCAR is working 
closely with utilities and ISOs to produce forecasts to meet their 
needs. Forecasts are necessary on very short and somewhat 
longer timescales. Grid operators require real-time situational 
awareness and best estimates for short-term changes to adapt 
the output of reserve units to accommodate more renewable 
generation or prepare for a rapid decrease in those sources. On 
a somewhat longer timescale, they make unit allocations a day 
ahead (or several days ahead for a weekend or holiday) that 
require knowledge of the output of the renewable resources. 

Here, we focus on solar power forecasting. NCAR leads a 
Public-Private-Academic Partnership funded by the US 
Department of Energy (DOE) to advance solar power 
forecasting. To do this, one must be able to forecast the aerosols 
and clouds accurately. Cloud forecasting, in particular, has 
proven challenging in the past and this project seeks to advance 
the state-of-the-science to improve irradiance forecasting. To 
this end, NCAR has stood up a full solar power forecasting 
system, SunCast, comprised of both short-range (nowcast) 
components as well as longer range NWP models (see Fig. 1).  

A. NWP Forecasts 
The NWP forecasts for SunCast include models run by the 

National Center for Environmental Prediction (NCEP) of the  

Figure 1. Diagram of data flow in the SunCast Solar Power 
Forecasting System. 

 

National Oceanographic and Atmospheric Administration 
(NOAA), other national centers, and our own WRF-Solar. 

These physics and statistically-based models are blended 
seamlessly and assigned optimal weights with the 
computational intelligence Dynamic Integrated Forecast 
System (DICast®) [4]. DICast is an automated forecast system 
designed to emulate the human forecast process. It examines 
current Numerical Weather Prediction (NWP) model data and 
generates forecasts based on empirical relationships developed 
from historical model data and observations. The multi-model 
solution is critical for reducing the forecast errors as the system. 
It uses a two step process: first it statistically corrects the bias 
dynamically of each input model in a process known as 
Dynamic Model Output Statistics (DMOS) [5], and second it 
optimally blends the models at each lead time. An advantage of 
DICast is that it is tuned to optimize the model blending using 
90 days of data as compared to other methods that tend to 
require a year or more of data for training.  

The current configuration of DICast used in SunCast uses 
seven NWP models (Fig. 2) and observations. The Global 
Forecast System (GFS), North American Model (NAM), Rapid 
Update model (RAP), and High Resolution Rapid Refresh 
(HRRR-NCEP) models are operational models run by NCEP, 
while the HRRR-ESRL is a research model developed at the 
Earth System Research Laboratory of NOAA and has shown 
excellent results in near term forecasting of precipitation and 
temperatures. The Global Environmental Mesoscale (GEM) 
model is run at Environment Canada. A new implementation of 
the Weather Research and Forecasting (WRF) model is being 
specifically designed to better predict solar irradiance: WRF-
Solar [6]. Thus data from each of these models must be brought 
in and blended in real time to produce forecasts hourly. 
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 Figure 2. Diagram of the DICast blending process. 

 

Each of these models has its own grid and timeframe as 
shown in Table 1 and described below. 

1) HRRR 

The High Resolution Rapid Refresh (HRRR) model is a 
relatively new National Center for Environmental Prediction 
(NCEP) model that covers the continental United States using 
a 3 km grid cell size and produces hourly 15 hour ahead 
forecasts every hour. A single forecast consisting of three-
dimensional fields amounts to 365 Mb, while corresponding 
two-dimensional fields representing surface conditions account 
for additional 84 Mb for a total of approximately 450 Mb. 

2)  RAP 

The Rapid Refresh (RAP) model version 2 preceded HRRR. 
It provided hourly forecast out to 18 hours every hour. Each 
RAP output file amounts to 55-60 Mb. 

3) GFS as a typical global model 

The Global Forecast System (GFS) is NCEP’s global 
model. GFS is run at 2.5, 1.0, and 0.5 degrees globally. The 
model forecasts are produced every 6 hours out to 384 hours. 
Recently additional 0.25 degree simulation was added out to 
168 hours. In our solar irradiance forecasting system 0.5 degree 
forecast is used 65-70 Mb. 

4)  Specialized runs such as WRF-Solar 

WRF-Solar is a new branch of the WRF model designed 
specifically for improved forecasting of solar irradiance. This 
version includes an improved radiative transfer scheme, new 
shallow cumulus scheme, and output tailored to the specific 
application. Initial and boundary conditions for the WRF-Solar 
forecasting system are provided by the RAP analysis. The 
irradiances (global horizontal irradiance - GHI, direct normal 
irradiance - DNI, and diffuse irradiance - DIF) are output every 
iteration, or every 20 seconds and one-minute averages are 
computed. 

 

 

Table 1. Details of several NWP model daily outputs. 
Model Forecast 

frequency 
Hours 
ahead 

Grid cell size Daily 
output 
size 
[GB] 

HRRR hourly 15 3 km 130  
NAM hourly 18 9 km 5.7 
GFS 6 hours 384 0.5 degrees 68 
GEM 12 hours 240 1 degree 4.3 
WRF-
Solar 

irradiances 
only: 20 sec 

30 3 km (CONUS) 
1 km  

(2 subdomains) 

4.2 

 

Table 2. Details of several nowcast model daily outputs. 
Model Forecast 

frequency 
Hours 
ahead 

Daily 
output 
size [MB] 

MADCast 15 minutes 6 2100  

CIRACast 15 minutes 6 1.4 

StatCast 15 minutes 3 13 

 

B. Nowcast System 
The Nowcast system is comprised of five models, each with 

its own sweet spot for producing a most accurate forecast  
(Table 2).  

1. WRF-Solar is run in Nowcasting mode at a coarser 
resolution over CONUS in order to produce hourly output. It 
predicts out to 6 hours with approximately a 1 hr latency to 
complete the run. 

2. The Multi-sensor Advection Diffusion foreCast 
(MADCast) system uses a the Multivariate Minimum Residual 
(MMR) scheme proposed by Auligné [7, 8] to assimilate 
satellite infrared radiance observations into the dynamic core of 
WRF, which then advects those observed clouds according to 
WRF dynamics. It also predicts out to 6 hours, but the latency 
is only about 10 min due to not employing the computationally 
expensive physics packages of WRF. 

3. CIRACast, designed by Colorado State University’s 
Cooperative Institute for Research in the Atmosphere (CIRA), 
leverages satellite-observed clouds and advects them with 
derived motion vector and model winds to estimate cloud 
coverage over the coming hours. Its latency depends on the time 
to process and ingest remotely the satellite and model wind 
data, typically around 15-30 min. 

4. StatCast is a regime-dependent neural network model 
that ingests surface irradiance measurements, nearby weather 
data, and satellite data to estimate the clearness index (the 
observed surface irradiance divided by that available at the top 
of the atmosphere at that location) for the following 3 hours. It 
runs in a matter of seconds. 

5. TSICast is designed by Brookhaven National 
Laboratory to observe current cloud cover with three total sky 
imager (TSI) cameras and deduce the height, base, location of 
the clouds in its line of sight, as well as the speed and direction 
of each cloud layer to predict where they will be in the next 15-
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30 min [9]. TSICast takes 2-3 min to fully process the data and 
provide a very short range prediction. 

These nowcasting methods leverage a variety of disparate 
observational data, statistical and computational intelligence 
methods, and physical understanding of the atmosphere to 
produce a “best practices” blended forecast.  The amount of 
data produced by the Nowcast system is provided in Table 2. 
The data amount is directly proportional to the number of sites 
for which the forecast is produced. The Nowcast system is 
currently optimized via an expert system, but dynamic methods 
will be applied in the future. Each of these models has been 
shown to provide value in the system. 

Observations used in the Nowcast system include 
irradiance, air temperature, and power output. The total amount 
of data received daily for all the sites for which forecasts is 
produced (14 Sacramento Municipal Utility District, 2 Xcel 
Energy, 9 SoCal Edison, and 25 Brookhaven National 
Laboratory) is approximately 35 MB. While the amount of data 
is modest, data quality and disparate data formats represent a 
processing challenge. 

C. Completing the Forecast 
The irradiance forecasts of the DICast and Nowcast system 

are combined and blended in the transition times (2 hrs - 6 hrs) 
to produce irradiance forecasts for every 15 min out to 3 hours 
then hourly out to 168 hours. The forecast variables are global 
horizontal irradiance (GHI), which is most useful for 
photovoltaic panel operations; Direct Normal Irradiance (DNI), 
which is the only component useful for concentrated solar 
plants; and Diffuse Irradiance (DIF) that relates the two. 

Utilities are not really interested in the meteorological 
irradiance values, but instead wish to have a power prediction. 
The SunCast system trains a model regression tree (Cubist) on 
the relationship between the measured irradiance value and the 
power measurement. Cubist requires historical data for training 
and testing, then applies the empirical relationship in real-time 
to the irradiance forecast to produce a power forecast. The 
power conversion algorithm is trained for each solar site to be 
predicted.  Although the training/testing procedure requires 
data, once trained, the algorithm runs in a matter of seconds. 

Finally many of the utilities involved in the partnership wish 
to have probabilistic forecasts. Although NCAR could choose 
to run ensembles or to postprocess the various methods to 
estimate a pdf, we choose the Analog Ensemble (AnEn) 
approach. The Analog Ensemble operates on the premise that if 
a forecast was made in the past under certain meteorological 
conditions analogous to today’s forecast, then the error in that 
historical forecast is likely to be similar to the error in today’s 
forecast. So if we can identify such analogs in those past 
forecasts, that enables us to do two things:  1) correct today’s 
forecast by the prior observed error, improving upon the best 
deterministic forecast, and 2) use the pdf of multiple analogs to 
provide an estimate of the uncertainty. This is a flow dependent 
uncertainty and has been shown to reproduce the forecast and 
its statistical reliably as well as or better than some of the best 
full ensembles of runs employed at the operational centers 
[10,11]. 

NCAR produces such probabilistic solar power forecasts in 
quasi-operational mode hourly and makes them available to the 
utility and ISO partners in the project. We are in the midst of a 
full assessment. Preliminary results indicate that each 
component improves upon baseline forecasts and that the 
SunCast system produces forecasts that are useable by the 
utility and ISO partners in integrating their solar resources into 
their energy mix. Evaluation plans include production cost 
modeling, which will estimate the monetary value of the 
forecasts and reserve analysis, which will study the changes in 
usage of the energy reserve units due to providing more 
confidence in the amount of solar energy available at each 
future time in the forecast. 

IV. SUMMARY AND LOOKING AHEAD 

Because renewable energy is becoming more prevalent, it 
comprises a higher percentage of the energy capacity. Thus, one 
needs to be able to forecast its expected value, variability, and 
uncertainty. To do that requires blending NWP data from 
multiple centers, specialized models tuned to the location, and 
data observations from that location. Observations are also 
necessary to build computational intelligence algorithms that 
optimize the forecast. This application necessitates handling 
data that is large in volume, using it in real-time at high velocity, 
of high variety, and may be of questionable veracity. The 
complexity of blending all of this information to provide a 
forecast in time to be useful is a complex big data problem. Here 
we have described one such system developed by NCAR and its 
collaborators. The issues involved in making the forecast are 
numerous. As we work to make such forecasts ever more 
accurate, various issues must be addressed.  

Modelers are always working to improve their forecasts. As 
computers become larger, we attempt to increase the resolution 
of the models. At some points, we hit limitations to our model 
resolution. For instance, as NWP models go to higher and higher 
resolution, we find that we are resolving processes that were 
previously parameterized. We are also modeling scales of the 
atmosphere that are different than where the model was 
constructed, and so the important physics may be a bit different. 
Although the NWP models are constructed to resolve large scale 
flow over large domains, large eddy simulations (LES) are 
appropriate for much finer scales. There is a “terra incognita” 
between about 1000 m and 100 m where the physics changes 
sufficiently that blending through those scales has been shown 
to be inappropriate [12]. 

We have seen that meteorologists run multiple realizations 
of the NWP models in recognition of the chaotic nature of the 
flow and sensitivity to initial conditions. As computers become 
bigger and faster, there is a tendency to want to run more 
ensemble members to better fill out the pdf of the forecast in 
order to make better predictions. It will be interesting to watch 
whether that approach is best, or whether the statistical learning 
methods that postprocess ensembles to fill out the pdf 
statistically are shown to compete well with large ensembles. 
The limiting case, of course, is exemplified in the analog 
ensemble method described above. 

The data mining techniques that blend the models and the 
observations are also becoming more complex. For instance, 
deep machine learning is demonstrating some success in 
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predictions in many fields. But such methods require yet more 
data. Again, it will be interesting to watch the balance between 
data volume and its smart usage develop over time. 

Machine learning techniques and analog ensembles critically 
depend on archived data for training and sampling purposes. 
Considering the volume of model output and observation data 
sets, a subset of essential variables must be selected and archived 
at appropriate frequency for future use.  

 Accurate renewable power forecasting critically depends on 
the amount and quality of various types of data. In addition to 
power production, the data regularly collected at power plant 
include atmospheric variables: g GHI or DNI, wind speed and 
direction, and temperature, as well as pressure and humidity. In 
order to effectively use the collected data, the dataset format 
should be standardized. Particular attention should be given to 
comprehensive meta data including information about the 
instruments used to collect the data, accurate location 
information where the data were collected, and the time when 
the data were collected as well as instrument maintenance 
record. The location should be given in latitude and longitude 
based on the World Geodetic System (WGS) standard from 
1984 which was revised in 2004 and the height above the 
surface. To avoid any confusion about time zones and seasonal 
time changes due to the “Daylight Saving Time,” the time when 
the data was collected should be reported in internationally 
accepted Coordinated Universal Time or UTC.  

The data should be organized and stored following one of 
the established portable data formats for ASCII data such as for 
example Met_Point or little_r formats 
(http://www.dtcenter.org/met/users/docs/presentations/MET_T
utorial_20090204/04_DataFormats.pdf)or self-describing 
binary formats such as GRIdded Binary or General Regularly-
distributed Information in Binary (GRIB) format, Common Data 
Format (CDF, http://cdf.gsfc.nasa.gov/), Network Common 
Data Format (NetCDF, 
http://www.unidata.ucar.edu/software/netcdf/), or Hierarchical 
Data Format (HDF, http://www.hdfgroup.org/). Using well 
defined, documented, and widely used data formats significantly 
enhances utility of data sets and simplifies their processing and 
quality control. 

Finally, such applications are moving toward cloud 
computing frameworks, which introduce their own 
complexities. The issues of disparate data arriving at different 
times and requiring blending to provide real-time forecasts will 

be complicated yet further as we wish to deploy on a larger 
variety of architectures. 

Although these challenges are far from trivial, the prospects 
for application are quite promising. The need for improved 
forecasts of the renewable energy variables certainly are 
becoming increasingly important as we seek to blend more wind 
and solar energy into the grid. As the need for these forecasts 
increases, so will the solutions to the challenges. 
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