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Abstract—Data clustering is an unsupervised learning task
that has found many applications in various scientific fields. The
goal is to find subgroups of closely related data samples (clusters)
in a set of unlabeled data. A classic clustering algorithm is the
so-called k-Means. It is very popular, however, it is also unable
to handle cases in which the clusters are not linearly separable.
Kernel k-Means is a state of the art clustering algorithm, which
employs the kernel trick, in order to perform clustering on a
higher dimensionality space, thus overcoming the limitations of
classic k-Means regarding the non linear separability of the input
data. Kernel k-Means typically computes the kernel matrix, which
contains the results of the kernel function for every possible
sample combination. This matrix can be viewed as the weight
matrix of a full graph, where the samples are the vertices and the
edges are weighed according to the similarity between the samples
they connect, according to the kernel function. In this context, it
is possible to work on the Nearest Neighbor graph, where each
sample is only connected to some of its closest samples, or only
using information from samples that are sufficiently close to each
other, referred to as e-ball. Doing so reduces the size of the kernel
matrix and can provide improved clustering results. In this paper,
we present a MapReduce based distributed implementation of
Nearest Neighbor and e-ball Kernel k-Means.

I. INTRODUCTION

The objective of data clustering is to divide a given group
of unlabeled data samples in subgroups (clusters), so that data
samples belonging to the same cluster are similar to each other
and dissimilar to data samples belonging to any other clusters.
Clustering has found many applications in different scientific
fields. Despite the fact that there has been an extremely rich
bibliography on this subject for years now [1], it is still an
active research field.

One of the earliest clustering methods is the k-Means
algorithm [2]. It is a basic textbook approach. Yet it is still
popular, despite its age. It involves an iterative process, in
which each data sample is assigned to the closest of the &
cluster centers and then each cluster center is updated to the
mean of all data samples assigned to this cluster. The initial
cluster assignment can be random. The process continues, until
there are no changes, or until a maximum number of iterations
has been reached. The main drawback of this approach is
the fact that the surfaces separating the clusters can only be
hyperplanes. Thus, if the clusters are not linearly separable,
the standard k-Means algorithm will not be able to give very
good results.
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In order to overcome this limitation, the classical algorithm
has been extended into the Kernel k-Means [3]. The basic idea
behind kernel approaches is to project the data into a higher,
or even infinite dimensional space. It is possible for a linear
separator in that space to have a non-linear projection back
in the original space, thus solving the non-linear separability
issue. The kernel trick [4] allows us to circumvent the actual
projection to the higher dimensional space. The trick involves
using a kernel function to implicitly calculate the dot products
of vectors in the kernel space using the feature space vectors.
Let a;,7 = 1,...,n be the data sample set to be clustered
and x; € R, i =1,...,n their d-dimensional feature vectors.
If ¢(x;), ¢(x;) are the projections of the feature vectors x;
and x; on the kernel space, then r(x;,x;) = ¢(x;)T ¢(x;)
is a kernel function. Different kernel functions correspond
to different projections. Finally, Euclidean distances in the
kernel space can be measured using dot products. Kernel k-
Means provides a popular starting point for many state of
the art clustering schemes [5], [6], [7], [8]. A recent survey
on kernel clustering methods can be found in [9], while [10]
presents a comparative study which supports the superiority of
kernel clustering methods, over more conventional clustering
approaches.

A convenient way to have quick, repeated access to the dot
products without calculating the kernel function every time, is
to calculate the function once for every possible combination
of two data samples. The results can be stored in a n X n
matrix K called the kernel matrix, where K;; = k(x;,%;).
This means that the i-th row of the kernel matrix contains the
kernel function entry for every possible sample combination
that includes x;. Interestingly, it has been proven that Kernel
k-Means, Spectral Clustering and Normalized Graph Cuts are
closely related tasks [11]. The kernel matrix can, therefore, be
viewed as the weighted adjacency matrix of a full graph, whose
nodes are the data samples a; and whose edge weights are
the kernel function values. Obviously, when there are n data
samples, the size of the kernel matrix is n X n and, therefore,
grows quadratically with respect to n.

Additionally, there have been approaches attempting to take
advantage of the local area information around each sample,
in order to improve performance, make the kernel matrix
sparse, or determine the number of clusters. It is possible
to use only a small number of entries in each row of the
kernel matrix, instead of the entire matrix [12]. This can be
accomplished by either working on the k-Nearest Neighbor
graph, where each sample is only connected to its & closest
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samples [13], [14], or only using information from samples
that are sufficiently close to each other [15], [16], which is
referred to as e-ball, e-neighborhood or r-graph clustering.
Furthermore, it is also possible to introduce additional weights
to the connections between samples, based on estimating
the local scaling parameter, i.e., by taking into account how
densely or sparsely populated the area around each sample
is [17], [18]. The Hartigan Dip Test for unimodality [19] is
used in [20], in order to determine whether a cluster should
be further divided into subclusters. The Dip Test is applied for
each sample, referred to as a viewer in [20], on the relative
distances between itself and other samples of the cluster. If
there are viewers for which the unimodality test fails, then the
cluster is further split.

Furthermore, in Media Production, footage is shot through
multiple cameras, several of them often containing actors and
multiple takes of the same shot are filmed. This generates very
large amounts of images, which will have to be put together
in the editing stage for the final product to be complete. Being
able to retrieve relevant footage through queries would be
very useful in quickly finding the proper video clips or video
segments that contain the desired content. For example, it may
a query may request footage where a certain actor appears,
or a certain action is performed. In the case of actors, they
are mostly identifiable by their face. Manual annotation of
actors present in footage would be easier and faster, if several
images of the same actor can be presented to the annotator.
Clustering can be applied to facial images to facilitate the
quicker annotation and image retrieval tasks.

Distributed computing can provide the means to handle
problems on very large datasets that would otherwise be almost
impossible to solve [21]. It provides virtually limitless memory
and processing power. Provided that a task can be split into
many independent subtasks, then it can theoretically be per-
formed in a reasonable amount of time, regardless of the data
size, given enough processing units. A distributed approach
that can work with any serial clustering algorithm entails using
the serial algorithm on data subsets, then merging the clusters
[22]. Distributed versions of other clustering algorithms related
to Kernel k-Means, like classic k-Means [23] and k-Medians
[24] have already been discussed.

In this paper, we present a distributed implementation
of the Nearest Neighbor and e-ball variations of Kernel k-
Means. The implementation uses Apache Spark [25], a cluster
computing framework, which is similar to and compatible
with Hadoop [26]. The computing cluster can include a wide
variety of hardware from high-end, multiprocessor computers
with large amounts of RAM, to average modern PCs. The
focus of the proposed implementation is to avoid requiring
the storage of n? kernel matrix entries into the distributed
memory at the same time, if possible. This paper is organized
as follows: Section II briefly introduces Kernel k-Means,
Section III describes the distributed implementation, Section
IV presents the experimental evaluation of the implementation
and Section V concludes tbe paper.

II. KERNEL k-MEANS

The Kernel k-Means algorithm [27] is an extension of
the classic k-Means clustering algorithm. Taking advantage of
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the kernel trick, it implicitly projects the data onto a higher
dimensional space and measures Euclidean distances between
data samples in that space. This circumvents the limitation
of linear separability imposed by k-Means. Let there be k
clusters Cs,6 = 1,...,k and data samples a;,i = 1,...,n.
Each cluster Cs has a center mg in the higher dimensional
space RY (d << d'), where ® : R? — R? is the mapping
function. Assuming that there is an assignment of every data
sample to a cluster, then the center of cluster Cj is computed

as follows:
Daecs 9(%5)

|Cs ’

ms —

(e))

where |Cs| is the cardinality of cluster Cs. The squared
distance D(x;,ms) = ||¢(x;) — m;s||? between the vectors
x; and mg can be written as:

D(x;,ms) = ¢(x;)" ¢(x;) — 2¢(x;) ' m; + mims.  (2)

By substituting ms from (1) into (2), we get:
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we can calculate the dot products using the kernel function:
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Since the kernel function results are stored in the kernel matrix,
k(x;,x;) = K;;, we finally obtain
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After measuring the distance of data sample x; to each
of the k clusters centers, the data sample is reassigned to
the cluster Cs with the minimum distance D(x;, ms). This
is an iterative process, in which the distances are measured
and the cluster assignments are updated, until there are no
more changes in the cluster entry assignments, or a maximum
number of iterations has been reached. The initial cluster entry
assignments can either be manual, or completely random.

III. DISTRIBUTED KERNEL k-MEANS

In this section, we provide the algorithms that implement
Nearest Neighbor and e-ball Kernel k-Means in a distributed
fashion, following the MapReduce programming model. We
shall begin with a small introduction to the MapReduce model
itself and then proceed to detail each major algorithmic step
in this framework, namely the kernel matrix computation, the
kernel matrix trimming algorithm and the Kernel k-Means
algorithm, in separate subsections.



A. MapReduce computing framework

The MapReduce programming model for distributed com-
puting was inspired by the map and reduce procedures of
functional programming languages, like Lisp [28]. MapReduce
implementations include Hadoop and Spark. It simplifies the
coding of distributed programs that follow this model. It was
specifically developed to allow easy processing of very big
datasets on computing clusters consisting of many workers.
A master node in the MapReduce framework automatically
splits the dataset up into smaller data sample collections and
distributes them to the workers, where each worker can process
the assigned data collection, independently of other workers.

For example, if our goal is to compute the squared sum
of a very large vector of numbers, we can map the square
function on each vector entry and then reduce the results with
the addition operation. The system will distribute the vector
entries to every worker, then each worker will square the
assigned vector entries, sum them up then return the partial
sum to the master, which will add up all the partial sums
it received from all the workers to compute the final result.
For a more theoretical analysis of the MapReduce model, the
interested reader may refer to [29].

As the name implies, there are two major components to
this programming model. The Map command, in which every
worker applies a user defined function to each data sample.
Each worker can then return the results to the master node,
thus computing that function output for the entire dataset.
Additionally using the Reduce command, a worker applies
a commutative and associative operation to collect the data
elements, or the results of a previously mapped function, into a
single result. As the operation is commutative and associative,
the results for each worker are independent from other workers
and they can also be combined in the same way on the master
node. A variation of the Reduce command is ReduceByKey,
in which, given a distributed set of (key, value) pairs and a
target operation, the operation is performed on the value parts
for each key separately. If there were k total keys, then the
output would be a k (key, total) pairs, where each fotal is the
result of performing the operation only on the value parts that
are associated with the specific key.

For our implementation, we chose the Apache Spark [25]
cluster computing framework. Its main advantage over Hadoop
is its ability to cache distributed data into the worker memories,
while automatically “spilling” excess data that cannot fit to the
hard disk and reading them back, whenever they are needed.
This reduces or, at best, eliminates the time spent reading
from and writing to the disk. Our main goal, therefore, is to
reduce the size of the data that must be stored in the distributed
memory as much as possible, so that data spilling to the hard
disk is minimized.

B. Distributed kernel matrix computation

Computing the kernel matrix under the MapReduce model
is pretty straight forward. Assuming there are n data samples,
each of which has d features, we read the data samples into n
d-dimensional data vectors, which are distributed to the cluster
worker nodes. Then we iterate through every data vector and
map the kernel function of the current vector with every other
vector. This provides us with a single row of the kernel matrix,
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which we can then write to the disk. After n iterations, the
computation is complete. This step requires O(nd) distributed
memory and O(n?d) operations.

The distributed operations are illustrated in Figure 1. In that
particular example, worker 1 has received the d-dimensional
data samples x;, xo and x3, worker j has received data
samples x; and x;;; and the last worker w has the last data
sample x,,. At the i-th iteration, the kernel function x(_, x;) is
mapped to very data sample, where _ (underscore) is replaced
with the corresponding data sample and x; is the i-th data
sample. In practice, in order to cut down on overhead costs
and maximize CPU utilization, it is a good idea to use map
to compute batches of, e.g., 100 lines of the kernel matrix at
a time. It is also possible to fork a new thread to write the
output, so that it will not delay the distributed computations.

C. Distributed kernel matrix trimming

After the kernel matrix has been computed and written
to the disk, we read the n-dimensional kernel matrix rows
and distribute them to the cluster nodes. Note that we shall
never need every one of these rows in memory at the same
time. Therefore, the framework can swap them to and from
the disk, whenever any row is needed. This is an iterative
process, in which the nodes vote for cluster cardinalities, the
winning cardinality is determined, the votes of the nodes that
voted for the winner are removed and the corresponding rows
are trimmed.

We begin an iteration by mapping a sorting function on
every matrix row. We then set the cut-off threshold to either
the value of e for e-ball, or the value of the appropriate element
of the sorted row, which corresponds to the desired number for
Nearest Neighbors. This process takes O(n? log n) operations,
due to the fact that every row of the kernel matrix is sorted.
The distributed operations are illustrated in Figure 2. The
workers are not shown, to avoid cluttering the figure. The _
(underscore) in functions is replaced with the corresponding
vector of the previous step.

D. Distributed Kernel k-Means

In order to save memory, instead of reading the full kernel
n x n matrix K as a set of n n-dimensional data vectors, we
instead read the trimmed kernel matrix that resulted from the
previous step as a set of n adjacency lists. The adjacency list
for row ki contains all the non-zero K7; of the trimmed kernel
matrix K*.

We initialize the data sample assignment to clusters ran-
domly. The assignment is a n-dimensional vector o, where
the i-th entry indicates which cluster (1 to k) data sample a;
belongs to. This assignment is updated at every iteration and
will eventually contain the final cluster assignment of every
data sample.

We will now provide an algorithm to compute (3) in a
distributed fashion. Note that the sum >, o >, cc, Kji
remains the same for every individual cluster Cs. Therefore, it
only must be computed once for each corresponding cluster.
The first step is to compute the k& such sums. This can be
accomplished by mapping a function that takes the cluster
assignment vector o, the node ID j and the node adjacency



worker 1 worker 1
X1=[1]2]...[d]|map ~(-, X;)| K(x1,X;)
xo=[112]..[d][ > K(x2,X;)

X3=-.-@ K(X3, %)

er map k(_, X; worker j write to disk
Xz— .[d] #l K(Xi, X;)

Xi+1=...@ K(Xit1,X;)

: ma . :
worker w PH ( - Xll worker w
Xn=[1]2]...[d] K(Xn, X;)
Fig. 1. Illustrated example of the distributed kernel matrix computation algorithm.
map sort( map trimRow(_, k, t)
’kernel matrlx row kﬂ—)@ thmmed matnx row kl‘
map sort( map trimRow(_, k, t)
kernel matrlx row k; \—)@ Htrlmmed matmx row k|
map sort( map trimRow(_, k

Htrlmmed matrlx row knJ

kernel matrix row kn‘w

Fig. 2. Tllustrated example of the distributed kernel matrix trimming algorithm.

veetor o tPartial ClusterSums(_, o)
map getPartialClusterSums(_, o
0020 > wem; K1
: ! map getPartialClusterSums(_, o) 5
O—OEL{) > g emy il
: : map getPartialClusterSums(_, o) :
o™ o > aem; Kt

vector updated vector o
d map updateAssignments(_, 0,q)

’Lu €T alEﬂ'l Kjl‘ >

(key, Ualue) reduceByKey
L —

reduceByKey : map updateAssignments(_, 0,q) |
wi€ns arens Kl >
reduceByKey : map updateAssignments(_, 0,q) |

aemy 2uayemy 51 >

Fig. 3. [Illustrated example of the distributed Kernel k-Means algorithm.

TABLE 1. THE RESULTS OF THE EXPERIMENTS. THE TYPE OF KERNEL, THE NAME OF THE APPROACH, THE TIME REQUIRED FOR THE DISTRIBUTED
COMPUTATIONS AND THE NMI PERFORMANCE ARE PROVIDED FOR EACH ROW. OUR APPROACH IS LABELLED AS DKKM, WHILE APPROXIMATE KERNEL
k-MEANS IS LABELLED AS AKKM. NMI VALUES ARE PRESENTED AS A mean (standard deviation) PAIR. THE ROWS ARE SORTED IN ASCENDING NMI

ORDER.

Kernel and approach Kernel matrix calculation time | Kernel matrix trimming time | Kernel k-Means execution time NMI
RBF kernel, 0.997-ball DKMM 40 min 59 min 5.3 min 0.2546(0.0121)
RBF kernel, 0.996-ball DKKM 40 min 66 min 4.8 min 0.3079(0.0223)
RBF kernel, AKKM N/A N/A 24 min ([30]) 0.4936(0.0136)
Polynomial kernel, AKKM N/A N/A 24 min ([30]) 0.4945(0.0136)
Neural kernel, AKKM N/A N/A 25 min ([30]) 0.4982(0.0226)
RBF kernel, 100-NN DKKM 40 min 45 min 3.3 min 0.5476(0.0468)
RBF kernel, 1000-NN DKKM 40 min 53 min 7.2 min 0.5835(0.0540)
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TABLE II.

CLUSTERING ACCURACIES OF THE METHODS IN [34] AND OUR APPROACH.

Method

Accuracy (%)

3-NN Kernel k£-Means
5-NN Kernel k-Means
9-NN Kernel k-Means
25-NN Kernel k-Means
Unsupervised Logistic Discriminative Metric Learning-kmeans [34]
0.98-ball Kernel k-Means
0.985-ball Kernel k-Means
Penalized Probabilistic Clustering [34]
100-NN Kernel k-Means
Unsupervised Logistic Discriminative Metric Learning-clustering [34]
Hidden Markov Random Fields-com [34]
1000-NN Kernel k-Means

36.2+2.95
36.2+3.373
36.72£0.71
39.56 & 1.86
44.08 £ 2.8
44.51 £2.35
44.96 £1.08
46.07 £5.52
46.76 £ 3.62
49.29£0
50.30 £ 2.73
50.53 +4.21

list L as arguments and returns a (key, value) pair. In such
a pair, key is the cluster that data sample a; is assigned to
(0;) and value is the partial sum Ealecg Kj;, where Cs is
the cluster identified by key and the entries Kj; are retrieved
from the adjacency list L. The function goes through the node
adjacency list and sums every entry that belongs to the same
cluster as node j. The total sums for every cluster are obtained
from these (key, value) pairs by applying the ReduceByKey
operation to add the appropriate partial sums for each cluster
and store them in vector q.

In the next distributed processing step, the distance com-
putations are completed and the new node assignments are
determined in the same function. This is accomplished by
mapping a function that takes the cluster assignment vector
o, the node ID 7 and the cluster sums vector q as arguments
and returns the new cluster assignment for node i. The function
initializes a vector d;, which is meant to store the distance of
data sample a; to every cluster, so each entry is initialized
to dis = Ky + ﬁqn . It then goes through i node
adjacency list L; and subtracts the corresponding values 2 fé;l
from the appropriate entry in vector d. When it goes through

the entire list, then each entry of vector d will contain the
Kij

a;€C;s Kiji
value of —2 ey for every cluster.

C 2
The new cluster assignment of Loﬂe 1 is determined by the
minimum entry in vector d. This final step requires O(n.)
operations and memory space, where n, is the number of
non-zero entries of the trimmed kernel matrix. Note that this
distributed algorithm can also work on the full kernel matrix,
by using O(n?) operations and memory space. The distributed
operations are illustrated in Figure 3. The workers are not
shown, to avoid cluttering the figure. The _ (underscore) in
functions is replaced with the corresponding list or vector of
the previous step. In that particular example, data samples a,
a; and a,,, with their corresponding adjacency lists L1, L; and
L, are initially assigned to cluster 2, as shown in assignment
vector o. Mapping getPartialClusterSums(_, o) provides the
(key, value) pairs (2, >, cc, K1), (2, 20, cc, Ki) and (2,
> wec, Kni) for data samples 1, ¢ and n, respectively. After
the reduceByKey operation, the values are added, along with
the results of all other data sample assigned to cluster 2, and
are stored in the second entry of vector q. Note that q has
k entries, as there are k clusters. Vector q is passed as an
argument, when mapping updateAssignments(_,0,q) to obtain
the new assignments. In this case, data samples a; and a; were
reassigned to cluster 1, while data sample a,, was reassigned

S0, ne
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to cluster 3.

IV. EXPERIMENTS

In order to evaluate the performance of our distributed
Nearest Neighbor and e-ball Kernel k-Means in a large
database, we used the MNIST handwritten digits database.
This is a dataset of grayscale small images, each depicting a
handwritten digit, 0-9. It contains 70000 total images, almost
equally, but not exactly, clustered to the respective 0-9 digits.
We will compare our approaches with Approximate Kernel k-
Means [30], whose performance is almost identical to baseline
Kernel k-Means.

In accordance with [31] and [30] for the MNIST hand-
written digit dataset, each sample image was concatenated
into a vector, then each feature of the vector was divided
by 255, thus normalizing every image feature in [0, 1].
The following kernel functions were used: the Neural ker-
nel k(x;,x;) = tanh(ax?x; + B3), the Polynomial kernel
k(xi,x;) = (xI'x; + 1) and the Radial Basis Function
(RBF) kernel k(x;,x;) = e~ Ixi=x41* Again, in accordance
with [31] and [30], we set « = 0.0045, 8 = 0.11 and
d = 5. For the RBF kernel, we chose v = 1. We used the
Normalized Mutual Information (NMI) metric [32] to measure
the similarity between the clustering results and the ground
truth. Each approach was executed 10 times. The computing
cluster consisted of 8 VirtualBox Virtual Machines, each of
which had 2 cores and 4GB of RAM available. The results of
the experiments are presented in Table I.

Overviewing the results, we can see that the running times
for the various distributed steps is similar among all relevant
entries. In this dataset, the e-ball approach seems to fare rather
poorly, providing the worst result. Approximate Kernel k-
Means provide the middle ground of NMI performance. Our
approach with 100 and 1000 Nearest Neighbor graphs provides
the best performance, with the 1000 Nearest Neighbor one
giving the absolute best result, 0.5835.

In order to evaluate the performance of our distributed
Nearest Neighbor and e-ball Kernel k-Means with a state of
the art facial image clustering approach, we used the BF0502
dataset. This dataset contains descriptors of the faces of the
protagonists of the 2-nd episode of the 5-th season of the TV
series “"Buffy, the Vampire Slayer” [33]. The 17000 images
are the result of facial image tracking. This dataset is used
to compare our approach with the one presented in [34],



that utilizes constraints derived from the facial image tracking
trajectories to subsample and improve results.

The RBF kernel was used in this instance. We calculated
the clustering accuracy of our algorithm in the same fashion
as in [34], by constructing the confusion matrix and measuring
the trace of that matrix, divided by the total images. We used
3-, 5-, 9-, 25-, 100- and 1000-Nearest Neighbor Kernel k-
Means, as well as e-ball Kernel k-Means with values 0.98
and 0.985 on this dataset. Again, in accordance with [34], we
run our methods 30 times and measured the performance per-
centages as mean=tstandard deviation. The kernel computation
took about 4.7 minutes, the trimming took at most 3.4 minutes
and the Kernel k-Means algorithm took about 4.2 minutes.
Table II presents the results of our approaches and the best
results several methods reported in [34] in increasing clustering
accuracy order. The accuracy of our approach for 1000-Nearest
Neighbor (50.53%) surpasses the performance of the state of
the art approach (50.30%).

V. CONCLUSION

In this paper, we have presented how the various steps
of Nearest Neighbor and e-ball Kernel k-Means, namely the
kernel matrix computation, the kernel matrix trimming and
the Kernel k-Means algorithm, can be performed in a dis-
tributed fashion. The algorithms were implemented using the
Spark cluster computing MapReduce framework. Our Nearest
Neighbor approach can provide improved results over baseline
Kernel k-Means and Approximate Kernel k-Means in under 2
hours.

ACKNOWLEDGMENT

The research leading to these results has received funding
from the European Union Seventh Framework Programme
(FP7/2007-2013) under grant agreement number 316564 (IM-
PART). This publication reflects only the authors’ views. The
European Union is not liable for any use that may be made of
the information contained therein.

REFERENCES
[1] A. K. Jain, M. N. Murty, and P. J. Flynn, “Data clustering: a review,”
ACM Comput. Surv., vol. 31, pp. 264-323, Sept. 1999.

J. B. MacQueen, “Some methods for classification and analysis of
multivariate observations,” in Proceedings of 5th Berkeley Symposium
on Mathematical Statistics and Probability, pp. 281-297, 1967.

B. Scholkopf, A. Smola, and K.-R. Miiller, “Nonlinear component
analysis as a kernel eigenvalue problem,” Neural Comput., vol. 10,
pp- 1299-1319, July 1998.

A. Aizerman, E. M. Braverman, and L. I. Rozoner, “Theoretical
foundations of the potential function method in pattern recognition
learning,” Automation and Remote Control, vol. 25, pp. 821-837, 1964.

S. Yu, L.-C. Tranchevent, X. Liu, W. Glanzel, J. A. Suykens, B. D.
Moor, and Y. Moreau, “Optimized data fusion for kernel k-means
clustering,” IEEE Transactions on Pattern Analysis and Machine In-
telligence, vol. 34, no. 5, pp. 1031-1039, 2012.

F. Zhou, F. De la Torre Frade, and J. K. Hodgins, “Hierarchical
aligned cluster analysis for temporal clustering of human motion,” /EEE
Transactions on Pattern Analysis and Machine Intelligence (PAMI),
vol. 35, pp. 582-596, March 2013.

H. Jia, Y. ming Cheung, and J. Liu, “Cooperative and penalized com-
petitive learning with application to kernel-based clustering,” Pattern
Recognition, no. 0, pp. —, 2014.

[4]

[5]

[6]

[7]

514

[8]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

M. R. Ferreira and F. de A.T. de Carvalho, “Kernel-based hard clustering
methods in the feature space with automatic variable weighting,” Pattern
Recognition, no. 0, pp. —, 2014.

M. Filippone, F. Camastra, F. Masulli, and S. Rovetta, “A survey
of kernel and spectral methods for clustering,” Pattern Recognition,
vol. 41, no. 1, pp. 176 — 190, 2008.

D.-W. Kim, K. Y. Lee, D. Lee, and K. H. Lee, “Evaluation of the
performance of clustering algorithms in kernel-induced feature space,”
Pattern Recognition, vol. 38, no. 4, pp. 607 — 611, 2005.

I. S. Dhillon, Y. Guan, and B. Kulis, “Kernel k-means: spectral
clustering and normalized cuts,” in Proceedings of the tenth ACM

SIGKDD international conference on Knowledge discovery and data
mining, KDD ’04, (New York, NY, USA), pp. 551-556, ACM, 2004.

F. R. B. M. L. Jordan and F. Bach, “Learning spectral clustering,”
Advances in Neural Information Processing Systems, vol. 16, pp. 305—
312, 2004.

U. von Luxburg, “A tutorial on spectral clustering,” Statistics and
Computing, vol. 17, no. 4, pp. 395-416, 2007.

M. Lucinska and S. T. Wierzchori, “Spectral clustering based on k-
nearest neighbor graph,” in Computer Information Systems and Indus-
trial Management, pp. 254-265, Springer, 2012.

M. Maier, U. von Luxburg, and M. Hein, “Influence of graph con-
struction on graph-based clustering measures,” in Advances in neural
information processing systems 21, pp. 1025-1032, 6 2009.

E. Arias-Castro, G. Chen, G. Lerman, et al., “Spectral clustering based
on local linear approximations,” Electronic Journal of Statistics, vol. 5,
pp. 1537-1587, 2011.

A.Y.Ng, M. I Jordan, Y. Weiss, et al., “On spectral clustering: Analysis
and an algorithm,” Advances in neural information processing systems,
vol. 2, pp. 849-856, 2002.

L. Zelnik-Manor and P. Perona, “Self-tuning spectral clustering,” in
Advances in neural information processing systems, pp. 1601-1608,
2004.

J. A. Hartigan and P. M. Hartigan, “The dip test of unimodality,” The
Annals of Statistics, p. 7084, 1985.

A. Kalogeratos and A. Likas, “Dip-means: an incremental clustering
method for estimating the number of clusters,” in Advances in Neural
Information Processing Systems, pp. 2393-2401, 2012.

D. Agrawal, S. Das, and A. El Abbadi, “Big data and cloud computing:
Current state and future opportunities,” in Proceedings of the 14th Inter-
national Conference on Extending Database Technology, EDBT/ICDT
11, (New York, NY, USA), pp. 530-533, ACM, 2011.

R. L. Ferreira Cordeiro, C. Traina, Junior, A. J. Machado Traina,
J. Lépez, U. Kang, and C. Faloutsos, “Clustering very large multi-
dimensional datasets with mapreduce,” in Proceedings of the 17th ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining, KDD ’11, (New York, NY, USA), pp. 690-698, ACM, 2011.

L. M. Rodrigues, L. E. Zarate, C. N. Nobre, and H. C. Freitas, “Parallel
and distributed kmeans to identify the translation initiation site of
proteins,” in SMC, pp. 1639-1645, IEEE, 2012.

A. Ene, S. Im, and B. Moseley, “Fast clustering using mapreduce,” in
Proceedings of the 17th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’11, (New York, NY,
USA), pp. 681-689, ACM, 2011.

M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica,
“Spark: Cluster computing with working sets,” in Proceedings of
the 2Nd USENIX Conference on Hot Topics in Cloud Computing,
HotCloud’10, (Berkeley, CA, USA), pp. 10-10, USENIX Association,
2010.

T. White, Hadoop: The Definitive Guide. O’Reilly Media, Inc., 1st ed.,
2009.

I. S. Dhillon, Y. Guan, and B. Kulis, “Weighted graph cuts without
eigenvectors a multilevel approach,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 29, pp. 1944-1957, Nov. 2007.

J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing on
large clusters,” Commun. ACM, vol. 51, pp. 107-113, Jan. 2008.

H. Karloff, S. Suri, and S. Vassilvitskii, “A model of computation for
mapreduce,” in Proceedings of the Twenty-First Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 10, (Philadelphia, PA,



[30]

[31]

[32]

[33]

[34]

USA), pp. 938-948, Society for Industrial and Applied Mathematics,
2010.

R. Chitta, R. Jin, T. C. Havens, and A. K. Jain, “Approximate kernel
k-means: solution to large scale kernel clustering.,” in KDD (C. Apte’,
J. Ghosh, and P. Smyth, eds.), pp. 895-903, ACM, 2011.

R. Zhang and A. I. Rudnicky, “A large scale clustering scheme for
kernel k-means.,” in ICPR (4), pp. 289-292, 2002.

T. O. Kvalseth, “Entropy and correlation: Some comments,” IEEE
Transactions on Systems, Man, and Cybernetics, vol. 17, no. 3, pp. 517—
519, 1987.

M. Everingham, J. Sivic, and A. Zisserman, ““Hello! My name is...
Buffy” — automatic naming of characters in TV video,” in Proceedings
of the British Machine Vision Conference, 2006.

B. Wu, Y. Zhang, B.-G. Hu, and Q. Ji, “Constrained clustering and
its application to face clustering in videos,” 2013 IEEE Conference on
Computer Vision and Pattern Recognition, vol. 0, pp. 3507-3514, 2013.

515



