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Abstract—In this paper, a Mahalanobis Distance (MD) based
hierarchical clustering technique is proposed for prognostics in
applications generating Big Data. This technique is shown to have
the ability to overcome certain challenges concerning Big Data
analysis. In this technique, Mahalanobis Taguchi Strategy (MTS)
is utilized to generate MD values which are in turn organized
into a tree. The hierarchical clustering approach is then applied
to obtain an overall MD value which is trended over time for
prediction. Simulation results are presented to demonstrate the
efficiency of the proposed technique.

I. INTRODUCTION

T he next generation of digital manufacturing involves the

fusion of complex physical machinery and networked

sensors. Examples of such systems include health care, process

control, manufacturing units, fleet of vehicles and so on [1].

Such complex systems are monitored for maintenance and in

the process significant amount of data is generated.

For instance, a single cross-country flight in the United

States generates an astonishing 240 terabytes of data [1] and

this volume is ever growing. According to [2], the volume

has gone from being in the range of Megabytes in the 70s to

Exabytes today, where 1 Exabyte = 260 bytes.

This deluge of data (Big Data) is characterized by Volume

(total size of the data present), Velocity (streaming data),

Variety (range of data types and sources like numeric, pictures

and so on), Veracity (quality of the data) and Value (the

importance of the information present in the data) as shown

in [3], these characteristics are collectively known as 5 V’s

of Big Data. By analyzing Big Data, valuable insight can

be gathered about system performance, which can be used

to increase its efficiency [4]. A multitude of challenges are

to be addressed during this process, which include real-time

analysis and its corresponding latency, memory management,

system complexity, application variety or scalability and most

importantly the 5 V’s of Big Data [2].

Processing Big Data involves two major roadblocks, one

is being able to load such data on the system memory for

analysis. This road block was addressed in a seminal paper

that introduced Google File System (GFS) in [5], which was

later extended to Hadoop in [6]. Hadoop is a java based

framework, that processes data in batches using a parallel

computing environment like MapReduce [7]. Improving or

developing technologies to this end is not our aim in this paper.

On the other hand, the other road block is the development

of methodologies and techniques, that can efficiently analyze

data and produce actionable insights. To this end, researchers

have applied data mining methodologies [8] and multivariate

statistical analysis techniques [9] for Big Data analysis. The

use of these techniques for Big Data analysis is feasible but

they are not suitable for prognostics applications where near

real time processing for multi dimensional data is necessary. In

[10], the high dimensionality of Big Data is tackled by using

neural networks (NN), but this process is essentially complex

and memory intensive and therefore cannot be used for near

real-time analysis. All current data analyzing techniques could

be applied on Big Data applications, but they are not tai-

lored to attack the problem of Big Data prognostics where

challenges like sensor reduction and placement, fault isolation

and detection are to be addressed. Therefore to the best of our

knowledge, no efficient technique is currently available for Big
Data prognostics.

In [11], [12], Mahalanobis Taguchi System (MTS) is used

as a tool for prognostics applications to detect bearing and

centrifugal pump failures. The core structure of MTS [13] is

based on a distance metric known as Mahalanobis Distance

(MD) [14]. The MD has the ability to fuse data from multiple

attributes into one single performance metric, which represents

the distinction between two points in a multi-dimensional

space. MD also has the ability to capture overall trends in

the data. When MD deviates from the healthy scenario, an

anomaly is said to be detected. By clustering MD values into

different clusters, one can isolate the type of anomaly, that has

occurred.

As a consequence, MD can be used to tackle the multi-

dimensionality of Big Data near real-time and trending of the

overall MD value can result in fault prognostics. Orthogonal

arrays and signal to noise ratio analysis can be used for sensor

reduction and placement. These characteristics of MTS show

promise and indicate that hierarchical MTS can overcome Big
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Data challenges. Also to the best of our knowledge, MTS has

never been used for Big Data.
One of the reasons, MTS in its current form cannot be

used for Big Data directly is because calculation of MD

values involves correlating different attributes present in the

data resulting in a complex correlation matrix. This matrix

is very big and subsequently storage/handling of this matrix

becomes a huge problem. By using a tree [15] like structure

and combining MD values, the size of correlation matrix

can be kept small and data organization can be improved.

Consequentially, in this paper, a novel MD based hierarchical

clustering technique for prognostics is proposed, this technique

builds upon the principles of MTS to analyze Big Data for

prognostics. The rest of the paper is organized as follows.

Section II describes the proposed methodology, and Section III

details the simulation results. Section IV provides conclusions

of the paper.

II. HIERARCHICAL MD BASED CLUSTERING

The process of Big Data prognostics is divided into four

steps, which includes data collection, storage, feature ex-

traction and finally analysis/prognostics. In this paper, data

collection, storage and feature extraction are not targeted,

therefore it is assumed that the Big Data set under test is

divided into multiple segments for storage and each segment

is assumed to be consisting of m observation and n attributes.

It is also assumed that each segment in the dataset can be

transferred to the system memory at least one at a time.
Let the data from a segment at time t be represented by

D(t), where D(t) ∈ R
m×n is the data matrix : m,n ∈ N,

where R is the set of real numbers, N is the set of natural

numbers, m is the total number of observations present and n
is the total number of attributes present.

Every row in D(t) is a data point and it is represented by a

value known as Hierarchical Mahalanobis Distance (HMD).

To calculate this value, a binary tree known as Mdtree is used.

The advantage of using a binary tree to cluster MD values is

that the size of the correlation matrix can be fixed at 2× 2.
Let Mdtree = (L,N) : L,N ∈ N, where L is the depth of

Mdtree and N = 2L+1 − 1, where N is the total number of

nodes in the tree.
Mdtree is composed of α leaf nodes (nodes, that do not

have a child node connected to it) and (N −α) internal nodes

(any node, that has a child node connected to it) called I . Each

leaf node in the Mdtree, represents an attribute.
Each Internal node Iη in Mdtree, ∀η ∈ {1, 2, 3, ..., (N −

α)} has exactly 2 child nodes, {γ1, γ2}. Iη is composed of a

Node Mahalanobis Distance (NMD) value, normal mean d,

normal standard deviation s and correlation matrix C at that

node. NMD value at Iη is calculated as,

NMDη =
1

2
ZC−1ZT , (1)

where C is the correlation matrix and Z is the normalized

data matrix, which is given by

Zij =
NMDij − dj

sj
, (2)

where j ∈ {γ1, γ2} and i ∈ {1, 2, 3, ...,m}, NMDij is the

MD value at the jth child node and ith observation and Zij is

the normalized data point at the jth node and ith observation.

Mean (dj) is calculated by using eq: 3 and standard deviation

sj is calculated by eq: 4.

dj =

∑m
i=1 NMDij

m
(3)

sj =

√∑m
i=1(D(t)ij − dj)2

m− 1
, (4)

where D(t)ij is the data point at the ith observation and jth
node, C is given by eq: 5

Cij =

∑n
p=1(Zip ∗ Zjp)

n− 1
, (5)

where Cij is the member of the correlation matrix C at the

ith row and jth column. C−1 is given by taking the inverse

of C. An example Mdtree is shown in Fig: 1.

Fig. 1: Example Mdtree.

A. Methodology

The methodology of hierarchical MD based Clustering is

divided into three stages.

1) Stage 1. Reference HMD Space: Let DN (t) ⊂ D(t) be

the data sample pertaining to the normal region of operation

for the system under test such that DN (t) ∈ R
p×n : p, n ∈ N

and t is the current time instant. Mdtree is initialized first

such that, n columns in data DN (t), are assigned to n leaf

nodes in the tree. Each node in the tree is evaluated and in the

process NMD, d, s and C are calculated and stored at each

node. HMDi, ∀i ∈ {1, 2, 3, .., p} is obtained and as a result

reference HMD space is established.

2) Stage 2. Sensor Reduction and Placement: Once the

reference HMD space has been established, optimization of

attributes is done. For this, it is assumed that certain amount

of data is available that belongs to a particular fault. An

orthogonal array is first initialized [16], OA ∈ R
2n×n, where

2n is the total number of runs in the experiment. This array

is based on Taguchi’s design of experiments principles and

it outlines 2n experimental combination, that can be used
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to determine which combination is sufficient to analyze a

particular fault. Using eq: 1, HMD values are calculated for

each row combination in OA. Using these HMD values,

signal to noise ratio is calculated for the included attributes

and the excluded attributes separately by

SNβ = −10 log
[
1

m

m∑
j=1

1

HMDj

]
,

for HMDβ = {HMDω}, where ω ∈ {1, 2, 3, 4, ...,m} and

β ∈ {1, 2, 3, 4, ..., 2n}. Depending on these two signal to

noise ratios, gain is calculated for each row of OA, this gain

represents the degree of closeness for the current experimental

run from the row combination in which, all attributes are

included in analysis, this is given by,

Gain = (SNβ)level1 − (SNβ)level2 (6)

When gains for all the rows in OA are obtained then, the set

of optimized attributes Γ is given by

Γ = {δ : δ = {1, 2, 3, ..., 2n}, Gainδ ≥ 0} (7)

An example of all the calculated gains is shown in Fig: 2.

Fig. 2: Example signal to noise ratio’s gain plot, green

indicates that the gain is positive and red indicates that the

gain is negative.

Optimized number of attributes are determined by selecting

those attributes, that have a positive gain. Optimized number

of attributes are unique for a particular fault. It must be noted

that when Big Data is targeted, the total number of attributes

are quite significant and using this analysis, unwanted and

expensive sensors can be eliminated.
3) Stage 3. Mdtree Initialization: Mdtree is reinitialized

depending on the optimized attributes set, corresponding to the

fault. Using this tree HMD values are calculated for the data.

A flow chart of this process is shown in Fig: 3. These HMD

values are then clustered based on predefined fault cluster

centroids enabling isolation and detection of fault.

B. Hierarchical Mahalanobis Distance (HMD) Based Fault
Clustering

Let C = {c1, c2, c3, ...., ck} be the set of all the centroid

HMD values for each of the faults for the system under test,

where k is the total number of faults. A particular HMD value

is clustered based on the cluster centroid index (r), which is

given by,

r = { argmin
∀i∈{1,2,3...,k}

|HMD − ci|} (8)

Fig. 3: Flow chart of Hierarchical MD based clustering.

For the purpose of clustering, centroids of the clusters are

defined prior to clustering based on expert knowledge about

the trends of a particular fault. In other words, data from

healthy and faulty operation is utilized to construct these

clusters. In this paper, the cluster centers represent all the

members of the cluster and these compact clusters essentially

follow a normal distribution. However any outlier can change

the size of the cluster and therefore must be eliminated. In

this work, any outliers are eliminated after computing the

corresponding HMD values.

An outlier is defined as an observation point, which is

very different from other observations in the dataset. Let

C = {c1, c2, c3, ...., ck} be the set of all the centroid HMD

values for each of the faults for the system under test, where k

is the total number of faults. Let F = {f1∪f2∪f3.∪, ...,∪fk},
where fk is the set of all the members of a particular fault,

∪ is the union operator, μ and ν are the mean and standard

deviations of all the HMD values of the members of a fault

cluster fk. A HMD value is said to be an outlier, if the

condition

|HMD − μ| < Λν, (9)

where Λ ∈ R is the multiplicative factor, is satisfied. A

cluster is assumed to follow a standard normal distribution

and consequentially this factor is three.

C. Hierarchical Mahalanobis Distance (HMD) Based Prog-
nostics

In this study, trending HMD values are used to determine

the progression of a system from a normal region of operation

to a faulty region of operation. The reference HMD space is

a unit space and therefore, if the HMD is much greater than

one, then the system is said to be moving away from normalcy

and towards a fault.

In the next section, the aforementioned claims about the

proposed technique are substantiated by simulation results.
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III. ROLLING ELEMENT BEARING DATA SET FOR CNC

MACHINES

A. Design Of Experiments

This dataset is derived from a CNC machine test bed

constructed at the Missouri S&T in 2009. The Taig micro mill

CNC machine, that is used to generate this dataset houses

two Ortadogu Rulaman Sanayai (ORS) 6023 brand rolling

element bearing. Each bearing is attached with temperature

and vibration sensors. Four types of conditions are introduced

manually into the system and the data is collected.

1. Normal Condition: The machine is operated with new

bearings installed.

2. Cage Defect: All the lubrication is removed from the

bearings.

3. Inner Race Defect: A groove is cut into the inner race of

the bearings

4. Outer Race Defect: A groove is cut into the outer race

of the bearings

11 features are extracted from sensor data. These are (1) Cage

Defect Frequencies in the x and the y direction (CDx, CDy).
(2) Ball Pass Outer Race Frequencies in the x and the

y direction (BPFOx, BPFOy). (3) Ball Pass Inner Race

Frequencies in the x and the y direction (BPFIx, BPFIy).
(4) Root Mean Square and Kurtosis of the vibration signal in

the x and the y direction (RMSx, RMSy,KURTx,KURTy).
(5) Temperature (temp). The resulting dataset is of the size

364 Gb, details about the feature extraction can be reviewed

from [11].

B. Step 1: Sensor Reduction and Placement

The initial hierarchical Mahalanobis space is constructed

using 11 features. Mdtree is initialized and orthogonal array

analysis is performed, the optimization results are obtained

and they are tabulated in TABLE: I. It is observed that, there

TABLE I: Total number of optimized variables for each fault

under evaluation

Type of Fault Number of Optimized Attributes

Cage Fault 8

Inner Race Fault 6

Outer Race Fault 6

is a significant reduction in the total number of attributes after

optimization. This is very favorable for Big Data prognostics

as this procedure leads to significant cost savings and increased

reliability. The result of this orthogonal array analysis is shown

in TABLE: IV. A value of yes indicates that the attribute is

marked as favorable for that particular fault.

1) Scalability of the sample: The reference space is estab-

lished using varying sizes of data sample like 100%, 50%,

25%,12.5% and 5% of the available data. An accurate ref-

erence space is observed for varying sample sizes, indicating

that established reference space does not depend upon the size

of the sample.

C. Step 2: Initialization of Mdtree

After optimization, a Mdtree is generated for each of the

faults. An example tree as generated for cage fault is shown

in Fig: 4.

Fig. 4: Example Mdtree for NO LUBE (Cage Fault)

condition

After this step, fault clusters centroids are initialized to facil-

itate clustering of HMD values. These values are tabulated in

TABLE: II. These centroids are dependent upon the predefined

fault cluster.

TABLE II: Cluster centroids for each one of the faults

Type of Fault Cluster Centroids Value (HMD)

Normal 1

Cage Fault 10

Inner Race Fault 30

Outer Race Fault 970

D. Step 3: Analysis

HMD values are calculated using Mdtree and are clustered

into various predefined clusters. These clusters are then ana-

lyzed for outliers.

1) Case 1: Outlier Detection: The proposed outlier detec-

tion technique is used to detect the outliers and these results

are tabulated in TABLE: III. A multiplicative factor of three

is used for analysis. It is observed that, all the outliers in the

cluster are detected by our methodology. For experimentation

purposes, outliers are introduced into the clusters and analysis

is done. This is done because the data is too well behaved.

Fault clusters after outlier detection are plotted in Fig: 6.

2) Case 2: HMD Trend: The trends of HMD values for

various types of faults with respect to time are plotted in Fig: 5.

It is seen from the plot that for the normal range of operation,

the resulting HMD values are very small and almost close to

one, where as for the various types of faults, the HMD’s are
TABLE III: Outlier Detection Results

Total elements Outliers Detection rate

1 12022 0 100%

2 11201 11201 100%

3 11497 3942 97%

4 12122 100 100%
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TABLE IV: Orthogonal Array Results

Type of Fault CDx CDy BPFIx BPFIy BPFOx BPFOy Kurtx Kurty RMSx RMSy Temp
Cage Fault Yes Yes Yes Yes Yes Yes No No Yes Yes No

Inner Race Fault No Yes No No Yes No No No Yes Yes No

Outer Race Fault Yes No Yes Yes No Yes No No Yes Yes No

(a) HMD values progressing towards a fault.

(b) No Lube v/s Time (c) Inner Race v/s Time

(d) Outer Race v/s Time (e) Normal v/s Time

Fig. 5: Trending of HMD values for various faults.

much greater than the HMD’s in the normal region, which

validates our reference space. It is also seen from the plots

that different faults have different range of values for HMD

and this indicates that the proposed technique can be used to

isolate these faults. It must be observed here that, due to the

nature of the proposed technique, the final HMD values are one

dimensional. Due to this property, it is noted that the clusters

are linearly separable and boundary conditions/thresholds can

be clearly defined depending on the trends, which assists in

fault analysis.

3) Case 3: Prognostics: Clear progression of a system

going from a normal region of operation towards a fault is seen

in Fig: 5a. Fig: 5a corresponds to the cage fault condition and

this plot demonstrates the prognostic ability of the technique.

Isolation of a fault is feasible if a maximum and a minimum

Fig. 6: HMD Clusters

for a particular fault is defined, this is easy in this case because

every cluster has a maximum and a minimum value. The

maximum value for a single cluster can be used as a threshold

for the system response. In other words, if HMD values are

greater than a maximum value of a certain cluster, that means

the system is moving away from that particular fault and

similarly, if it is greater than a certain minimum, then the

system is moving towards that particular fault.

4) Case 4: Cluster Validity Metrics: To evaluate the per-

formance of our technique, it is necessary to evaluate the

formation of fault clusters by using some standard validation

metrics. Various cluster validity metrics are present in the

literature and these are explained in [17]. Out of the many

present in the literature, the most relevant metrics for this

study are compactness, separation and dunn validity Index.

Let k be the total number of clusters defined by the proposed

technique, F =
k⋃

i=1

{fi}, where fi represents a fault cluster,

i ∈ 1, 2, 3, ...., k and C = c1, c2, c3, ..., ck is the set of all the

cluster centroids.

a) Compactness (CP): This metric measures the close-

ness of the cluster. Let CPi be the compactness of fault cluster

given by

CPi =
1

|fi|
∑
xj∈fi

||xj − ci||, (10)

where |.| is the total number of elements present in the set

and ||.|| is the euclidean norm. Compactness CP , that is the

average compactness for all the clusters is found by eq: 11.

CP =
1

k

k∑
i=1

CPi (11)

A lower value of compactness is better as it indicate the

existence of compact clusters.
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TABLE V: Cluster Validity Metrics

Validity Index Average value

Compactness 0.001

Separation 75.7

Dunn Validity Index 5.003

b) Separation (SP): This metric quantifies the distinction

between the different clusters. The value is calculated by using

eq: 12

SP =
2

k2 − k

k∑
i=1

k∑
j=i+1

||ci − cj || (12)

where i ∈ 1, ..., k, j ∈ 1, ..., k. The more the value is greater

than zero, larger is the separation of clusters.

c) Dunn Validity Index (DVI): This metric quantifies both

the degree of separation and the degree of compactness in one

single metric.DVI is given by eq: 13

DV I =

min
0<p �=q<k

{ min
∀ci∈Cp,∀cj∈Cq

{||ci − cj ||}}
max
0<p≤k

max
∀xi,xj∈fp

{||xi − xj ||} (13)

A larger value of DVI indicate compact and well separated

clusters.

Its seen from TABLE: V, that the value of compactness

for this dataset comes out to be very low and the value of

separation is also large. These values indicate an acceptable

performance of the proposed technique in defining clusters.

IV. CONCLUSION

In this paper, a hierarchical MD based technique is in-

troduced for Big Data prognostics. The advantages of the

proposed technique include the ability to handle the high

dimensionality of Big Data, organization of the attributes

resulting in better memory management, generic approach and

the ability to perform sensor reduction and placement. The

proposed technique can perform prognostics including fault

isolation and detection. The ability to perform outlier detection

in Big Data was also observed during analysis.

The performance of this technique is validated in this paper

with rolling element bearing dataset. It is observed both from

the approach and from the case study that expert domain

knowledge is required to make informative decisions in the

preprocessing stage and certain amount of data is required

for establishing reference space. This technique might not

be suitable for a completely unknown data due to the lack

of expert knowledge for determining thresholds. We aim to

improve this technique to handle various types of data and to

tackle other challenges of Big Data that were not addressed

in this paper.
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