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Abstract—We propose FS-Scala, a flexible and modular Scala
based implementation of the Fixed Size Least Squares Support
Vector Machine (FS-LSSVM) for large data sets. The framework
consists of a set of modules for (gradient and gradient free) opti-
mization, model representation, kernel functions and evaluation
of FS-LSSVM models. A kernel based Fixed-Size Least Squares
Support Vector Machine (FS-LSSVM) model is implemented in
the proposed framework, while heavily leveraging the parallel
computing capabilities of Apache Spark. Global optimization
routines like Coupled Simulated Annealing (CSA) and Grid Search
are implemented and used to tune the hyper-parameters of
the FS-LSSVM model. Finally, we carry out experiments on
benchmark data sets like Magic Gamma, Adult, Forest Cover Type
and Higgs SUSY and evaluate the performance of various kernel
based FS-LSSVM models.

[. INTRODUCTION

The 215! century stands out in how mankind learned
the value of storing and making predictions/decisions from
large volumes of data. A significant aspect of large scale
data analysis is distributed computation frameworks like High
Performance Computing, Message Passing Interface etc. Re-
cently large scale commodity hardware clusters have replaced
the two former frameworks as the most popular model for
parallel data analysis. With this crucial change in hardware
came a change in computational models as well. It is at this
juncture that distributed Map Reduce became the de-facto
computational philosophy for large scale data analysis and
words such as Hadoop [1], [2], [3] and Apache Spark [4],
[5] have become synonymous with large scale data analysis
and machine learning.

Along with innovation in hardware design and distributed
computing models, there came a need for good programming
libraries and frameworks to work with various Machine Learn-
ing models on large data sets. It was demonstrated in [6] that
a gigantic language corpus encapsulates almost all aspects of
human language and speech. So far the prevalent ‘motto’ in the
Internet industry has been “large data, simple models”. Often,
this is misunderstood as the Machine Learning translation
of Occam’s Razor. The bias-variance trade-off [7] is a far
better mechanism to ensure the model does not become overly
complex, and this, rather than restricting the user to simple
models, is the real Occam’s razor in training a model.

Therefore, in order to extract maximum value from large
scale data, it is important to have the flexibility to train and
compare different model families before arriving at the one that
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fits the requirement of the user. Therefore one must be able to
train general nonlinear models and tweak them by changing
the various components which they employ to learn (i.e., a
model may be linear or kernel based, it can be optimized by
various methods like Stochastic Gradient Descent, Conjugate
Gradient, etc.). This is not possible in a rigid, monolithic
programming framework. Modularity, extensibility and ease of
usage are of paramount importance while designing Machine
Learning software for large scale data applications.

The current state of the art in distributed Machine Learning
in Scala is the MLLib module in Apache Spark [8]. It has
implementations of Linear SVM and Logistic Regression for
solving binary classification problems. But a crucial compo-
nent missing in MLLib and all distributed Machine Learning
libraries is the ability to learn classification models with non-
linear decision boundaries. FS-Scala aims to solve the problem
of scalable non-linear classification models by implementing
the Fixed-Size Least Squares Support Vector Machine (FS-
LSSVM) algorithm [9], [10] with model tuning capabilities.

In recent literature we find sparse reductions to FS-LSSVM
methods [11], [12]. The authors in [11], [12] explored the
sparsity vs error trade-off for FS-LSSVM models. Even though
they run experiments on large scale datasets like Forest Cover
dataset, the scalability of these methods are restricted to avail-
able memory on a single machine. Moreover, they don’t exploit
the possibility of parallelism available in several components
of the FS-LSSVM model. Another work [13] converts the Big
Data into a Big Network and then uses a network based subset
selection technique (Fast and Unique Representative Subset
selection (FURS) [14]) to obtain a representative subset of
the original data. It then builds a FS-LSSVM model using
this subset. However, in this paper we showcase that we can
parallelize the subset selection technique which maximizes
the Quadratic Renyi Entropy for Big datasets and use the
generated subset as the set of prototype vectors (PV) essential
for building the FS-LSSVM model.

This paper is organized as follows. Section II introduces
the FS-LSSVM algorithm [9]. Section III outlines the various
modules that comprise FS-Scala and their roles. An imple-
mentation of the FS-LSSVM model is constructed using the
framework and tested on various data sets, with the findings
outlined in IV. Finally, we conclude in Section V.
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II. LEAST SQUARES SUPPORT VECTOR MACHINES

A. Formulation

Least Squares Support Vector Machines (LSSVM) [10]
[15] modifies the SVM formulation to include the squared
error loss function and equality constraints with respect to the
error variables e;, as shown in (1).

N
. 1 i 2

min oo =guTuty ) n

st ylwTe(z;) +b=1—e;,i=1,...,N,

with w and b the weights and bias parameters of the model,
v a regularization parameter, ¢ the feature map, x; a training
data point and y; the corresponding label. N is the size of
the training set. Applying the KKT conditions on (1) gives
us the solution in the dual [10]. As compared to the classical
SVM this solution looses sparsity since each point becomes
a support vector, however we solve a linear system and not a
Quadratic Programming problem.

B. FS-LSSVM

For large scale data analysis, solving (1) in the dual is
not advantageous as the size of the solution matrix is equal
to the size of the original data. In order to make training
large scale kernel SVM models feasible, one needs to make
approximations to the computation of the kernel matrices.
The Fixed-Size LSSVM (FS-LSSVM) as proposed by De
Brabanter, Suykens et. al [9], [10] consists of solving the
LSSVM problem in the primal as follows.
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The solution to equation 2 is given by:
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In the above formulation, ¢(zj) is an approximation to
the true feature map ¢(xy) (likewise, the hats on other vari-
ables indicate estimates of the corresponding objects in the
earlier equations), which is related to the kernel K (z;,z;) =
¢(xi)Té(zj) (Mercer’s theorem). The approximate feature
map ¢(xy) is calculated using the Nystrom method as outlined
in [9], [11] and [12]. A low rank approximation to the kernel
matrix is constructed by iteratively calculating a subset of the
original data which maximizes the Quadratic Renyi Entropy.
This procedure of extracting ¢(xy) from a data set, given a
kernel function, is called Automatic Feature Extraction (AFE).

Kernel based models are sensitive to hyper-parameters.
In the case of FS-LSSVM we have to tune the model with
respect to vy the regularization parameter and the parameters
of the kernel chosen. Models are generally compared with their
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cross-validation performance in which case the objective cost
function with respect to the hyper-parameters is in general
non-smooth and non-convex. Gradient free methods like Grid
Search, Nelder Mead [16] and Coupled Simulated Annealing
[17] are suitable to tackle the problem of model selection for
FS-LSSVM based kernel models.

Algorithm 1 explains the steps involved in tuning the FS-
LSSVM model with the bold part representing our contri-
butions in this paper, which have been implemented in a
MapReduce setting. As per 1, after preprocessing the original
data, FS-Scala performs Renyi Entropy based greedy subset
selection to choose a prototype set of the prescribed size.
Model tuning is carried out using either grid search or Coupled
Simulated Annealing, by first initializing a grid on the hyper-
parameters of the model (i.e. regularization constant and kernel
parameters). Every point on the defined grid defines a unique
model instance. Each instance is scored according to its n-
fold cross-validation score and at the end of this procedure
the best performing model instance is chosen to train on the
entire training data and evaluated against a test set that was
held out initially.

Algorithm 1: Tuning FS-LSSVM

1 Data: Data Set, Kernel, Global Optimization routine,
grid parameters

2 Result: Proposed Tuned FS-LSSVM model

3 Pre-process the data by mean scaling.;

Calculate the prototype set by maximizing the

Quadratic Renyi Entropy in parallel using

MapReduce.;

Initialize a grid for the hyper-parameters;

6 while rermination of global optimization routine do

Initialize the kernel using the hyper-parameters. Do

AFE on the kernel matrix constructed from the

prototypes, using the Nystrom method;

evaluate the cross validation score for the particular

hyper-parameter values;

9 end

wm
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III. FS-LSSVM IMPLEMENTATION

Our Scala-based [18] software, called FS-Scala, tackles
three major issues w.r.t. the implementation of the FS-LSSVM:

e  Tuning Kernel Models: Since the performance of ker-
nel based models is sensitive with respect to the choice
of hyper-parameters, one has to choose a mechanism
of model selection or hyper-parameter optimization. In
FS-Scala, we implement the Grid Search and Coupled
Simulated Annealing global optimization algorithms
for model tuning.

Parallel Computation: Big Data analysis requires the
distribution of computational work load, MapReduce
is the dominant paradigm employed for writing dis-
tributed data processing programs. In FS-Scala we
leverage MapReduce to distribute the computation in
the pre-processing, training and cross-validation tasks.

Infrastructure Flexibility: The big data landscape has
many tools which enable the storage and analysis of



large streams of data, they consist of technologies such
as, but not limited to Apache Spark, Hadoop, Graph
Databases like Titan [19], OrientDB [20], Neo4j [21].
Creating a powerful framework for model training
and evaluation requires the decoupling of storage and
processing infrastructure from the actual logic that
implements the architecture of learning models.

The implementation of the FS-LSSVM in FS-Scala, out-
lined in Algorithm 1 is as described in the original article of
De Brabanter et al. [9]. Kernel based models all implement the
interface GloballyOptimizable in the optimization module (see
Figure 2). Since the GlobalOptimizer and its subclasses (i.e.
GridSearch and CoupledSimulated Annealing) all optimize
models which implement the GloballyOptimizable interface, it
enables tuning of models with a variety of global optimization
algorithms convenient.

Architecture

Figure 1 shows the organization of modules in FS-Scala.
It can be decomposed into five principal modules:

Model Classes: This is the core set of classes which
form the heart of the library, a number of abstract
model categories are defined each with its own set of
defined behaviours.

Optimization application programming interface
(API): A module which houses the implementation
of common optimization methods (i.e. Gradient
and Gradient free). Currently FS-Scala has
implementations for Conjugate Gradient (algorithm
3), Gradient Descent, Grid Search and Coupled
Simulated Annealing [17] (CSA).

Kernels: FS-Scala is equipped with a powerful abstract
API for representing kernel functions. The module
has two abstract classes to outline the behaviors of
kernels used in SVM based applications as well as
density estimation. The library comes bundled with
an implementation for AFE as well as for common
SVM kernels i.e. Linear, Radial Basis Function (RBF),
Polynomial, Laplace, Exponential. New kernel func-
tions can be easily added to the library by extending
the base classes in this module.

Evaluation Metrics: We have implemented evalua-
tion metrics for Binary Classification and Regression
problems. Further more, the implementation of binary
classification performance expressed as the area under
Receiver Operating Characteristic (ROC), is carried
out using MapReduce in a single pass fashion through
the evaluation data points, which can be seen in
algorithm 4. Calculating the area under the ROC curve
in a single pass fashion greatly increases the speed of
the eventual FS-LSSVM source code.

Miscellaneous Utilities: This module contains code to
carry out auxiliary tasks for model learning and op-
timization. It contains the implementation of entropy
calculation, summary statistics, prototype selection as
well as a set of various functions which can be
required for implementing new model classes using
the library.
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The FS-Scala software is available at [22].
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Fig. 1. Schematic structure of FS-Scala

Map Reduce

As discussed above, we use MapReduce wherever possible
in order to distribute the workload using Apache Spark. Due to
the priIAnalA formulation of the FS-LSSVM, the size of matrix
A= 9TD, + I”% , in the linear system in (3) is (m +
1) x (m 4+ 1), where m is the number of prototypes selected
to construct the kernel matrix in kernel based FS-LSSVM.
Procedure 3 outlines the procedure to estimate the parameters
w, b of the FS-LSSVM model discussed in section II-B, using
the Conjugate Gradient algorithm.

Using MapReduce, we calculate A = @g@c + I% and

PTY. We use these results to carry out iterations of the
Conjugate Gradient updates until the maximum number of
iterations is reached.

Optimization/Hyper-parameter tuning

Figure 2 depicts the class hierarchy structure of the Op-
timization module of FS-Scala. The FS-LSSVM model class
has an embedded optimization object which it inherits from the
Optimizer interface. Implementations of Conjugate Gradient
and Gradient Descent are provided in the optimization module.
New optimization algorithms can be added by inheriting from
the top level Optimizer interface or the RegularizedOptimizer
abstract class in case one is working with parametric models
which involve regularization. Another important component
of the optimization module is the GlobalOptimizer interface
which acts as a skeleton for implementing gradient free global
optimization algorithms. We have implemented simple Grid
Search and CSA, for tuning kernel based models. CSA as
proposed by De Souza et al. [17] creates a grid (simplex) of



Algorithm 2: Calculate feature matrices from data using
MapReduce: FeatureM at

1 Data: X = [¢7], 2/ e R", ¢ : R — R,

Y = [y],y'eR
2 Result: (fi)gi)c), @gY
3 begin
4 MapFn(x,y):
5 M +— ¢(z)p(z)"
6 v— p(x) y
7 | emit(M,v)
8 begin

9 RedFn((M,v), (M',v")):

10 | emit(M + M, v+)

11 begin

12 (F,v) +— MapReduce(X, MapFn, RedFn)
13| return (F,v)

Algorithm 3: Conjugate Gradient: CG

1 Data: X = [17], qci eR", ¢: R" — R™,
Y =[y'],y'€R, 7, ¢

A A -1,
2 Result: — (018 + I20) aTY

/N
S S>
N——"

3 begin
4 (F,v) +— FeatureMat(X,Y, ¢,7)
s | Ac—F+ 3 Luxm

6 | (,b) «— CG(i;, b;, A, v)

hyper-parameter values and treats each point as a Simulated
Annealing (SA) process.

IV. EXPERIMENTS

The experiments are performed on a 40 core 64GB RAM
machine at the Department of Electrical Engineering, KU
Leuven. The experiment parameters are summarized in table
II. We use the Magic Gamma Telescope, Adult, Forest Cover
Type and Higgs Susy data sets available from the UCI Machine
Learning Repository [23].

e  Magic Gamma: The data is generated by the regis-
tration of high speed gamma particles measured by
a ground based atmospheric Cherenkov gamma tele-
scope. Each entry consists of 10 numerical attributes
and a binary class attribute.

e  Adult: This is based on a a census study carried out in
1994, the data consists of 6 numerical attributes and
8 categorical attributes. The target attribute is binary
class value, which indicates if the given individual has
an annual income more than 50000%.

e Forest Cover Type: A data set which consists of
observations of cartographic variables on 30x 30 metre
cells at various locations with the task of predicting
the forest type in the respective cells. This is a multi-
class classification problem. This is transformed to a

Algorithm 4: Evaluate

evaluateFold

performance for fold:

1 Data: X; = [27], 2' € R", ¢:R" — R™,
Yy = [y],y' € R, b, b.

2 Result: score for given fold

3 begin

4 predictLabel(w, b)(z, y):

b
5 | emit(w-z+b,y)

6 begin

7 Vector. fill(length)(Indicator F'n):

8 vec +— (0, ...,0)iength, map(IndicatorFn)
9 | return(vec)

10 begin

1 MapScore(score, label):

12 if label = 1.0 then

13 Pos +— Pos+1

14 tpv —

Vector. fill(l)(Indicator Fn(sign(score —
thresholds(i)) == 1.0))

15 fpv «— Vector. fill(l)(Indicator Fn(false))
16 else

17 Neg <— Neg+1

18 tpv <— Vector. fill(l)(Indicator Fn(false))
19 fpv+—

Vector. fill(l)(Indicator Fn(sign(score —
| thresholds(i)) == 1.0))

20 | emit(tpv, fpv)

21 begin

2 RedScore((u,v), (u',v")):

23 emit(u+u',v+ ")

24 begin

25 thresholds <— List(ty,ta,...t)
26 Pos <— 0

27 Neg+— 0

28 scoresLabels «+—

(X¢,Y}y) map predict Label(w, b)
29 (tpv fp) A

scoresLabels map(MapScore) reduce(RedScore)
30 tp «— tp/Pos fp<— fp/Neg
roc «— thresholds zip(tp zip fp)

31 return 1 — area(roc)

binary classification task of distinguishing forest type
2 from the others.

e  Higgs Susy: A classification data set where one must
distinguish between a signal process which produces
super-symmetric particles and a background process
which does not.

Linear and kernel based FS-LSSVM models are trained,
tuned and tested for various values of the experimental parame-
ters shown in table II, each set of experiments is repeated four
times, the mean and standard deviation of the classification
accuracy are recorded and presented in figures IV, IV, 5 and
6. Note that the diameters of the circles in the figures indicate
the standard deviation of the respective accuracy value over



TABLE 1. METADATA
Data Set Training samples ~ Test Samples  Features
Magic Gamma 18792 228 10
Adult 29310 3251 13
Forest Cover 523076 57936 53
Higgs Susy 4500000 500000 18
TABLE II. EXPERIMENT PARAMETERS
Name Meaning Values
Kernel The type of kernel used RBE, Polynomial, Laplacian, Exponential, Linear
Prototypes Size of prototype set 50, 100, 200, N.A (Linear)
Global Opt. Hyper-parameter optimization algorithm gs: Grid Search, csa: Coupled Simulated Annealing
Grid Size Number of points (per hyper-parameter) in the grid 2,34
Accuracy avg. measure of classification accuracy -
Algorithm 5: Distributed v-Fold Cross-Validation < <interface>> < <abstract>>
; ; A Optimizer RegularizedOptimizer
1 Data: X = [27], 2/ ¢ R", ¢ : R" — R'™, P g L4
Y = il vieR. fold — - <+ - 7 regParam: Double
= [y ]7 y_e ’ 7, Iolds gp'tl.mlze(nPomts: Long, data: S, T 1
2 Result: Cross Validation Performance initialParams: P) batchfraction: Double
3 begin
4 (A,v) «+— FeatureMat(X,Y, ¢,7)
5 score +— 0
7 for i < 1 to folds qo GradientDescent ConjugateGradient
8 (XZ,Y;) «— fold i
9 (A;,v;) +— FeatureMat(X;,Y;, ¢,7)
10 (i,0) ¢— CG(A— Aj + 1 Lsm, v — v7)
1 score +— score + evaluate Fold(w, b, X;, Y;) S el e
GlobalOptimizer step: Double
12 | return score /folds system: GloballyOptimizable | gridsize: Double
TR logScale: Boolean
optimize(initialConfig:
Map[String, Double], options:
Map(String, String]) T
the trials.

The performance of binary FS-LSSVM classifiers on the
MAGIC Gamma Telescope Data Set obtained from the UCI
Machine Learning Repository, are summarized in figure IV.
FS-LSSVM models trained with polynomial kernels give better
classification performance than the RBF and Linear counter-
parts, on the MAGIC Gamma data.

Results on the Adult Data Set, are summarized in figure
IV. FS-LSSVM models trained with exponential kernels give
better classification performance than the RBF and Linear
counterparts, on the Adult data. For both the data sets one sees
a pattern emerging that tuning kernel models with CSA gives
better results than naive Grid Search based hyper-parameter
optimization.

A. Execution time and Scalability

In figures 7 and 8 the execution time taken for model
tuning and testing while using F'S-Scala on the Forest Cover
Type and Higgs SUSY data sets respectively. We can compare
the execution time taken for model tuning on Forest Cover
Type with corresponding results of the LSSVMLab software
used in [9]. It is observed that FS-Scala gives an 80% — 90%
improvement in execution time as compared to LSSVMLab on
the Forest Cover Type data.

V. CONCLUSION

In this paper we propose FS-Scala, a Scala-based im-
plementation of kernel based FS-LSSVM models, which is
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CoupledSimulated Annealing

numlterations: Double

acceptance(energy: Double,
coupling: Double, temperature:
Double)

mutate(config: Map[String,
Double], temperature: Double)
acceptanceTemperature(t: Dou-
ble)(k: Int)
mutationTemperature(t: Double)(k:
Int)

Fig. 2. Class Hierarchy of Optimization API

capable of scaling the the learning process to large data sets.
As a use case, the kernel based FS-LSSVM model is tested
on benchmark data sets. We observed that our implementation
enables a substantial speed up over the existing FS-LSSVM
implementations, while still providing flexibility to tweak
various underlying data processing infrastructure.
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Fig. 7. Forest Cover Type: Execution time of FS-Scala FS-LSSVM imple-
mentation (training, tuning and test)
Laplacian Linear Poiynomial REF
- . =T
g 5 .« 500
g_ & 1000
E - @ 4y 1500
g
2 globaloptimization
=,
- . e
o .I.:'.rltiz.{otyp.e;” 0 N.A. 100 201
Fig. 8. Forest Cover Type: Execution time of FS-Scala FS-LSSVM imple-
mentation (training, tuning and test)
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