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Abstract— The identification of molecular markers with 
prognostic value in colorectal cancer is a challenging task and 
vital for future therapeutic guidelines. Despite recent advances in 
the screening, diagnosis, and treatment of colorectal cancer, an 
estimated 608,000 people die every year from colon cancer, which 
is 8% of all cancer deaths. We performed two staged integrated 
bioinformatics analytics on gene expression data sets of three 
latest developed studies of colon cancer. We identified two groups 
of integrated signatures from the comparison of normal versus 
tumor and tumor versus mets patients samples. Functional 
analysis of 267-gene diagnostic signature shows over-represented 
signaling-related molecules and other significantly cancers 
related regulatory pathways. The metastatic 124-gene signature 
shows functionally involved in immune-response, lipid 
metabolism and PPAR signaling pathways. Kaplan-Meier 
estimates of 124-gene signature using independent data sets 
shows that higher grade/stage patients shows significantly better 
overall-survival (p=0.001, HR=2.61(CI 1.43-4.79)) and disease-
specific survival rate (p=0.00, HR=2.41(CI 1.28-4.53)) compare to 
low grade patients. Further biological validation of genes 
identified in this study may provide vital biomarker targets for 
colon cancers.    

I. INTRODUCTION 
Colon Cancer (CC) is a common malignancy affecting both 

women and men. In 2012, it become the fourth most 
commonly diagnosed cancer (after prostate, breast, and lung 
cancer) with an estimated 103,170 new cases every year and, 
combined with rectal cancer, is the second most common cause 
of cancer deaths with 51,690 deaths (Marisa, et al., 2013; 
Siegel, et al., 2012). Despite recent advances in the screening, 
diagnosis, and treatment of colorectal cancer, an estimated 
608,000 people die every year from this form of cancer, which 
is 8% of all cancer deaths. Pathological staging is the only 
prognostic classification used in clinical practice to select 
patients for adjuvant chemotherapy. However, pathological 
staging fails to predict recurrence accurately in many patients 
undergoing curative surgery for localized CRC. In fact, 10%-
20% of patients with stage II CRC, and 30% - 40% of those 
with stage III CRC, develop recurrence (Zhang, et al., 2001).  

Among the molecular markers that have been extensively 
investigated for colon cancer (CC) characterization and 
prognosis. DNA mismatch repair (MMR) system, is the only 
marker that was reproducibly found to be a significant 
prognostic factor in early CRC in both a meta-analysis and a 
prospective trial (Nannini, et al., 2009; Zhang, et al., 2001). 
Precise classification of tumor is critically important for cancer 
diagnosis and treatment. During the past decade, efforts have 

been made to use gene expression profiles to improve the 
precision of classification, with limited success (Cardoso, et al., 
2007). Many studies have exploited the use of microarray 
technology to investigate gene expression profiles (GEPs) for 
the diagnosis of colon cancer in recent years, but no signature 
has been to be useful for clinical practice, especially for 
predicting prognosis (Sagynaliev, et al., 2005). It is shown that 
the reproducibility of GEP studies on colon cancer has not 
been sufficient for clinic practice, possibly because colon 
cancer cells are composed of distinct molecular entities that 
may develop through multiple pathways (Chan, et al., 2008; 
Shih, et al., 2005). Therefore, there may be several prognostic 
signatures for CRC, each corresponding to a different entity.  

Indeed, GEP studies, based on integrated analysis of 
genetic/epigenetic data including high-throughput methylome 
data (Nannini, et al., 2009), have identified at least three 
distinct molecular subtypes of colon cancer. Therefore, colon 
cancer should no longer be considered as a homogeneous 
entity. However, the molecular classification of CC currently 
used, which is based on a few common DNA markers (MSI, 
CpG island methylator phenotype [CIMP], chromosomal 
instability [CIN], and BRAF and KRAS mutations) (Jass, 
2007; Kang, 2011), needs to be refined, and a standard and 
reproducible molecular classification is still not available.  

In order for identifying more robust diagnostic gene 
signature of colon cancer, this paper presents an investigated 
analysis of multiple latest competitive studies based on various 
stages of colon cancer. We applied tissue-based differential 
expression followed by supervised machine learning approach 
for the discovery of diagnostic/prognostic gene signatures for 
the earlier and outcome identification of patients with colon 
cancers. We identified 124-gene signature that can discriminate 
between the patients with good and poor outcomes, also 
provide evidences of functionally involved in immune 
response, lipid metabolism and PPAR signaling pathways. 

II. METHODS 
We performed two staged integrated analysis on the 

expression data sets on three lately developed studies based on 
gene expression analysis of colon cancer for the discovery of 
potential gene signature. In order to extract the biological 
information, we further performed gene ontology enrichment 
analysis in order to identify the functional pathways involved 
in localised colon cancer as well as spread to other tissues. We 
searched studies involving applications of gene expression 
profiling on patients involving samples primary and metastatic 
tumor tissues. 
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TABLE I.  SUMMARY COHORT OF STUDIES INVOLVING COLON CANCER. 

Author Studies Cohort Sample Size Platform Dataset 

Musella et al. (2013) Time course analysis of colon cancer 
samples Normal vs Tumor N=88, T=84 

GPL6947 Illumina 
HumanHT-12 V3.0 
expression beadchip 

GSE37182 

Shaffer et al. (2009) Expression data from colorectal 
cancer patients 

Normal vs Tumor vs 
Mets N=54, T=186, M=67 Affymetrix Human 

Genome U133A Array GSE41258 

Agesen et al. (2013) 
Specific extracellular matrix 

remodeling signature of colon hepatic 
metastases 

Normal vs Tumor vs 
Mets N=18, T=20, M=19 Affymetrix Human 

Genome U133A Array GSE49355 

A. Data Collection 
The three microarray expression data sets were obtained 

using GEOquery Bioconductor R package (Davis, 2013) from 
the Gene Expression Omnibus (GEO) database 
(http://www.ncbi.nlm.nih.gov/geo) (Table I). The expression 
data sets involve samples from normal, primary tumor and 
metastatic tissue samples. In order to identify tissue specific 
mRNA signatures, we performed comparisons of among three 
tissues to identify specific dysregulated mRNAs. 

B. Stistical Analysis 
Each of the extracted raw expression data sets were log-

transformed and normalised by quantile method individually. 
Using R/Bioconductor, linear models for microarray data 
analysis were employed by forming contrast matrix 
comparisons for normal vs primary tumor, normal vs mets and 
primary tumor vs mets. Significance value (P-Value < 0.05) 
and log scale (logFC > 1 | logFC < -1) was used to rank the 
genes of interest. Corrections for multiple comparison was 
done using false discovery rate (FDR) method. NCBI’s original 
genome annotation was used to obtain gene symbols for probe 
sets id’s.  

C. Functional Analysis 
We applied gene ontology enrichment analysis for the 

interpretation of gene signatures in order to identify potential 
biological processes, functional network and pathways. For this 
purpose, we applied Functional Annotation Tool of DAVID 
Bioinformatics Resources 6.7 (Huang, et al., 2009) using 
default settings. We used gene symbols as input gene list for 
each derived signature by selecting the Homo sapiens as their 
population background. We used (P-value < 0.05) as a cut-off 
value for the selection of DAVID terms. 

D. Classification Performance Evaluation 
We applied supervised machine learning approach in order 

to study the reliability and robustness of inter-study signature. 
We estimated classification performance on each expression 
data sets by building a classifier using signature genes, as a 
feature vector, and their corresponding expression data from 
(Musella et al. (2013), Shaffer et al. (2009), Agesen et al. 
(2013)) using the cross-validation loop on support vector 
machine (SVM) (Mukherjee, et al., 1999). We used standard 

leave one-out cross-validation (LOOCV) to estimate the 
accuracy of above classifier. Hence, for every sample xn in the 
training set S, we train the classifier by leaving one sample (N-
1) and then classifying the left out sample to predict the label 
of xn.  

E. Survival Analysis 
We performed prognostics analysis for the 124-genes 

signature derived from the comparison of tumor versus mets 
tissues. For this purpose, we used independent data set 
(GSE17538) from the study conducted by Smith et al. (Smith, 
et al., 2010) derived from metastatic colon cancer. We tested 
124-genes association with the clinical endpoints such as 
Overall survival (OS), Disease-specific survival (DSS) and 
Disease-free survival (DFS) across all the grades (grade 1, 2 
and 3) by building Cox proportional hazard (PH) model. We 
build classifiers using genes from signature genes and their 
corresponding values from training set for the calculation of 
Wald score for each of the gene in classifier. Log-rank test P-
Value were computed for both univariate and multivariate Cox 
model for OS, DSS and DFS. Similarly Kaplan-Meier 
estimates were calculated for each endpoint. 

F. Validations  
For the validation of this studying findings, we applied two 

approaches: first we validated our proposed signature using in-
silico cross validation followed by the literature search of 
signature genes from previously published studies and curated 
cancer signature databases. Therefore, we searched gene 
signature database GeneSigDB  
(http://compbio.dfci.harvard.edu/) for the potential overlaps 
between the proposed signatures and previously published 
signatures. 

III. RESULTS 

A. Gene Expression Analysis and Microarray Data 
Integration  
We performed differential expression analysis on each of 

the study by comparing expression profiles of normal, tumor 
and metastatic tissues samples. We employed t-test statistics 
among the contrast matrix comparisons for the identification of 
dysregulated genes. 
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B. Expression in Normal and Primary Tumor Colon Tissues 
To investigate the difference in human colon cancer, we 

performed differential expression using normal versus tumor 
samples of each data sets. We identified 2358 dysregulated 
(2144 up-regulated and 214 down-regulated) genes consisting 
of 88 normal and 84 primary tumor samples of Musella et al. 
study. Similarly, we observed 2696 genes (724 up-regulated 
and 1972 down-regulated) and 1050 genes (366 up-regulated 
and 684 down-regulated) from Agesen et al. and Shaffer et al. 
studies, respectively. We excluded all those probes set id’s 
with no gene symbols for further analysis. 

Following the identification of dysregulated gene lists from 
the comparison of normal versus primary tumor tissues classes 

of each eligible studies, we combined the resulted gene lists to 
form an inter-study signature gene set. In this case, we 
observed 267 genes were common to three gene lists of normal 
versus primary tumor comparison of three investigated data 
sets (Fig 1). 

The gene ontology functional analysis of 267-genes shows 
over-representation of signaling-related molecules in processes 
and networks (Fig 2). We also identified pathways significantly 
(P-value < 0.05) involved in various cancers such as bladder 
cancer and acute myeloid leukemia. Known signaling and 
metabolic pathways also featured among the top ten regulatory 
identified pathways (Table II). 

 
 

Fig. 1. Summary results of comparison between normal, tumor and mets tissues. (A) Venn diagram showing the common 
and unique genes of resulted gene lists after comparison between normal versus tumor samples. (B) Venn showing normal 
versus mets comparison (C) Venn showing results from tumor versus mets samples. (D) Venn diagram representing 
differentially expressed genes among three comparisons 

Fig. 2. Top-ten processes and molecular functions.  
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TABLE II.  TOP 10 FUNCTIONAL REGULATORY PATHWAYS.  

Pathways P-Value Genes 

Focal adhesion 6.82E-05 

CAV1, MET, FLNC, COL5A2, 
COL5A1, PRKCB, MYL9, CCND1, 

VEGFA, COL1A2, COL1A1, 
COL11A1, THBS2, MYLK, SPP1 

ECM-receptor interaction 8.12E-03 COL1A2, COL1A1, COL5A2, 
THBS2, COL11A1, COL5A1, SPP1 

Bladder cancer 1.12E-02 CCND1, MMP9, VEGFA, MYC, 
MMP1 

Nitrogen metabolism 1.18E-02 CA7, CA4, CA2, CA1 
Complement and 

coagulation cascades 1.45E-02 C7, F12, CFB, SERPINE1, CFD, 
PLAU 

Cell cycle 1.57E-02 CDK1, CCND1, E2F5, BUB1, 
MCM4, MYC, CDC25A, CDC25B 

Vascular smooth muscle 
contraction 2.99E-02 KCNMA1, ACTG2, MYH11, 

KCNMB1, MYLK, PRKCB, MYL9 

Acute myeloid leukemia 3.30E-02 CCND1, LEF1, ZBTB16, RUNX1, 
MYC 

Leukocyte transendothelial 
migration 3.73E-02 CLDN8, MMP9, CLDN1, CXCL12, 

PRKCB, THY1, MYL9 

Wnt signaling pathway 3.90E-02 WNT5A, CCND1, SFRP1, MMP7, 
CHP2, LEF1, MYC, PRKCB 

In the second step of bioinformatics analytics, we 
investigated reliability and robustness of proposed 264-gene 
signature using each of the expression data sets generated from 
different platforms (Table III). The 264-gene signature 
consistently achieved high classification accuracy ratios across 
all the data sets, classifying with 100%, 93.84% and 77.77 %, 
respectively. 

TABLE III.  LEAVE ONE OUT CROSS-VALIDATION CLASSIFICATION OF 
NORMAL VERSUS TUMOR SIGNATURE (267-GENES). 

Author Expression 
Set 

No. of 
Samples 

Accuracy 
(%) 

Sensitivity 
(%) 

Specificity 
(%) 

Musella et al. 
(2013)  GSE37182 N=88, 

T=84 100 100 100 

Shaffer et al. 
(2009) GSE41258 

N=54, 
T=186, 
M=67 

93.84 92.82 100 

Agesen et al. 
(2013) GSE49355 

N=18, 
T=20, 
M=19 

77.77 81.7 96.6 

C. Expression in Mets Tissues 
Similarly, we carried out differential expression analysis 

for subset of Shaffer et al. data set consist of 54 normal and 67 
mets  samples, and identified 1328 genes were significantly 
dysregulated.  

TABLE IV.  LEAVE ONE OUT CROSS-VALIDATION CLASSIFICATION OF 
NORMAL VERSUS METS SIGNATURE (877-GENES). 

Author Expression 
Set 

No. of 
Samples 

Accuracy 
(%) 

Sensitivity 
(%) 

Specificity 
(%) 

Musella et al. 
(2013)  GSE37182 N=88,  

T=84 100 100 100 

Shaffer et al. 
(2009) GSE41258 

N=54, 
T=186, 
M=67 

93.39 96.82 100 

Agesen et al. 
(2013) GSE49355 

N=18, 
T=20, 
M=19 

93.33 93.17 96.6 

Among the total identified 1328 genes, 1310 have shown 
over-expression whereas 18 gene were under-expressed. 
Likewise, analysis using subset of Musella et al. study consists 
of 18 normal and 19 metastatic samples have shown 
deregulation of 3122 genes, mostly 3098 showing over-
expression (logFC > 1). We also focused our attention towards 
comparison of differentially expressed profiles among the 
tumor versus mets tissues comparison and identified 124 genes 
were common between the resulted gene lists. We observed 
number of notable genes were previously linked with 
metastases in colon cancer.  

TABLE V.  LEAVE ONE OUT CROSS-VALIDATION CLASSIFICATION OF 
TUMOR VERSUS METS SIGNATURE (124-GENES). 

Author Expression 
Set 

No. of 
Samples 

Accuracy 
(%) 

Sensitivity 
(%) 

Specificity 
(%) 

Musella et al. 
(2013)  GSE37182 N=88,  

T=84 100 100 100 

Shaffer et al. 
(2009) GSE41258

N=54, 
T=186, 
M=67 

72.96 72.82 95.53 

Agesen et al. 
(2013) GSE49355

N=18, 
T=20, 
M=19 

76.86 80.39 96.6 

 

D. 124-gene metastatic signature identified patients 
associated with poor outcome in independent data set 
An independent human colon cancer gene expression and 

clinical data set was used to test the ability of 124-gene 
signature that discriminate between patient associated with 
cancer reoccurrence, overall survival and disease-specific 
survival. 238 patients with histopathological properties of age, 
gender, ethnicity, stage and grade were available for analysis. 
We observed, patients with higher grade (grade 3) across all 
the grades in independent set has significantly better OS 
(p=0.001, HR=2.61(CI 1.43-4.79); p=0.16, HR=1.42(CI 0.86- 
2.35), respectively) and DSS (p=0.00, HR=2.41(CI 1.28-4.53); 
p=0.25, HR=1.35(CI 0.80-2.28) compare to low grade patients. 

Similarly, we determine the relative risk of reoccurrence 
and cancer related deaths. We observed a significant 
association of 124-gene signature with the risk of reoccurrence 
when analysed across all the tumor grades (p=0.0003, 
HR=1.74(CI 1.28-2.37)). We also analysed that the relative 
risk of reoccurrence has increase with the increase of tumor 
grade in patient samples (grade 3 (p=0.0005, HR=2.94(CI 
1.59-5.46))) (Fig 3).  

E. The Cancer-focused Genes  
We further analysed identified signatures by performing 

meta-analysis among inter-study signature derived from 
individual comparisons of normal versus tumor, normal versus 
mets and tumor versus mets tissues by comparing the 
similarities between them. We observed overlapping of 184 
genes between normal versus tumor and normal versus mets 
gene lists. However, 64 genes of normal versus tumor 
comparison represents a strict tumor-specific (those genes 
which are not significantly dysregulated in other comparison) 
pool for which the functional analysis identified their targeted 
pathways involved: -cell cycle, acute myeloid leukemia, 
progesterone-mediated oocyte maturation, 
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-TGF-beta signaling pathway, role on ran in mitotic spindle 
regulation and G1-phase progression by myc  

Similarly, in normal versus mets and tumor versus mets, a 
total of 701 genes were differentially expressed among met 
tissues. acute myeloid leukemia, progesterone- mediated 
oocyte maturation, TGF-beta signaling pathway, role on ran in 
mitotic spindle regulation and G1-phase progression by myc. 
We tracked the significant pathways involved: immune 
response, lipid metabolism and PPAR signaling pathway.  

IV. DISCUSSION  
The purpose of present study is to propose possible marker 

gene sets for colorectal cancer by using a two-step 
bioinformatical analytics. We performed meta-analysis using 
publically available GEO expression profiles of normal, tumor 
and metastatic tissues for the discovery of robust signature 
involving pathogenesis of colon cancer.  

We identified cross-study 267-gene signature from the 
comparison of normal versus primary tumor samples across all 
the data sets that may be vital for the diagnosis for colon 
cancer. The functional analysis of 267-genes have revealed the 
involvement of cell cycle, cell-signaling and metabolic 
regulated pathways as reported in the previous studies (Moreno 
and Sanz-Pamplona, 2015; Planutis, et al., 2014). We further 

tested the robustness of gene signature using cross-validation, 
which shows excellent 90.53% overall-average accuracy-rate 
across all the expression data sets. We also observed the 
Agesen et al. expression validated with higher error-rate 
compare to other two data sets in the validation cohort. A close 
examination of the cohort present possible to explanation of 
these results; Agesen et al. study samples include stage IV 
tissues whereas Musella et al. and Shaffer et al. samples were 
derived from slightly earlier stages I-IV. However, we cannot 
rule out these variations are due to difference in sample size 
and/or platform differences.  

For the mets tissues analysis, we identified two gene sets of 
deregulated genes from the comparison of normal, tumor and 
mets tissues. Further analysis of 124-genes deregulated among 
tumor versus mets tissues have shown involvement in key 
regulatory pathways such as complement cascade, formation of 
fibrin clot, extracellular matrix organization, collagen 
degradation and lipoprotein metabolism. Survival analysis of 
124-gene signature using independent data sets have separated 
patients with high grades from lower grades when analysed for 
overall survival rate and disease-specific survival. The ability 
of 124-gene signature to discriminate between patient 
outcomes may be useful in patient prognosis, but further 
biological validation will be required. The prognostics results 

Fig. 3. The 124-gene classifier as tested in the independent data set across all grades. Kaplan–Meier estimates of overall and disease-specific survival in 
test set. Expression data for probes corresponding to the 124-gene recurrence classifier were used to build the Cox proportional hazard model from patient 
data in the Vanderbilt dataset. Plots represent survival analyses in the independent patient data set (A) Overall survival, (B) disease-specific survival analyses 
and (C) disease-free survival 
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also shows the positive correlation between the risk of 
reoccurrence and disease related deaths with the increase of 
tumor grade.    

We also compared the similarities between the results of 
three signatures. The deregulated 64 genes specific to normal 
versus primary tumor comparison have also shown significant 
linkages to cancer related pathways. The other group of genes 
(701), strictly related to mets tissues have also shown 
significantly involvement in pathways previously observed in 
colon cancer.  

In conclusion, this study shows the importance of 
integrated techniques of individually conducted gene 
expression studies and provide further insights in 
understanding of colon cancer data for clinical purposes. The 
cross-validation analysis of gene signature shows samples 
scarcity and different platform used for generation of 
expression remains challenging area. This study have also 
shown valuable knowledge  and future direction for the 
treatment of colon cancers but a more robust approach using 
multiple biological stage data may answer question related to 
molecular heterogeneity. 

CONFLICT OF INTEREST 
None declare  

REFERENCES 
[1] Cardoso, J., et al. (2007) Expression and genomic profiling of colorectal 

cancer, Biochimica et biophysica acta, 1775, 103-137. 
[2] Chan, S.K., et al. (2008) Meta-analysis of colorectal cancer gene 

expression profiling studies identifies consistently reported candidate 
biomarkers, Cancer epidemiology, biomarkers & prevention : a 
publication of the American Association for Cancer Research, 
cosponsored by the American Society of Preventive Oncology, 17, 543-
552. 

[3] Davis, S. (2013) GEOquery R package: Get data from NCBI Gene 
Expression omnibus (GEO). Sean Davis, sdavis2@mail.nih.gov, pp. The 
NCBI Gene Expression Omnibus (GEO) is a public repository of 
microarray data. Given the rich and varied nature of this resource, it is 
only natural to want to apply BioConductor tools to these 
data. GEOquery is the bridge between GEO and BioConductor. 

[4] Huang, D.W., Sherman, B.T. and Lempicki, R.A. (2009) Systematic and 
integrative analysis of large gene lists using DAVID bioinformatics 
resources, Nat Protoc, 4, 44-57. 

[5] Jass, J.R. (2007) Classification of colorectal cancer based on correlation 
of clinical, morphological and molecular features, Histopathology, 50, 
113-130. 

[6] Kang, G.H. (2011) Four molecular subtypes of colorectal cancer and 
their precursor lesions, Archives of pathology & laboratory medicine, 
135, 698-703. 

[7] Marisa, L., et al. (2013) Gene expression classification of colon cancer 
into molecular subtypes: characterization, validation, and prognostic 
value, PLoS medicine, 10, e1001453. 

[8] Moreno, V. and Sanz-Pamplona, R. (2015) Altered pathways and 
colorectal cancer prognosis, BMC Med, 13, 76. 

[9] Mukherjee, S., et al. (1999) Support vector machine classification of 
microarray data. 

[10] Nannini, M., et al. (2009) Gene expression profiling in colorectal cancer 
using microarray technologies: results and perspectives, Cancer 
treatment reviews, 35, 201-209. 

[11] Planutis, K., Planutiene, M. and Holcombe, R.F. (2014) A novel 
signaling pathway regulates colon cancer angiogenesis through Norrin, 
Sci. Rep., 4. 

[12] Sagynaliev, E., et al. (2005) Web-based data warehouse on gene 
expression in human colorectal cancer, Proteomics, 5, 3066-3078. 

[13] Shih, W., Chetty, R. and Tsao, M.S. (2005) Expression profiling by 
microarrays in colorectal cancer (Review), Oncology reports, 13, 517-
524. 

[14] Siegel, R., Naishadham, D. and Jemal, A. (2012) Cancer statistics, 2012, 
CA: a cancer journal for clinicians, 62, 10-29. 

[15] Smith, J.J., et al. (2010) Experimentally derived metastasis gene 
expression profile predicts recurrence and death in patients with colon 
cancer, Gastroenterology, 138, 958-968. 

[16] Zhang, H., et al. (2001) Recursive partitioning for tumor classification 
with gene expression microarray data, Proceedings of the National 
Academy of Sciences of the United States of America, 98, 6730-6735. 
 

541


