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Abstract—We experience changes in stationarity/time variance
in many practical applications. Since changes modify the oper-
ational framework the application is working with, its accuracy
performance is in turn affected. When changes can occur,
we need to detect them as soon as possible, in general by
inspecting features extracted from data, and afterwards intervene
to mitigate their effects. In this paper, we propose a novel
change detection test based on the least squares density difference
estimation. Neither assumptions about the distribution of features
are needed, nor the change types are made (the method is pdf-free
and can handle arbitrary changes.). What here proposed requires
limited data to become operational and thresholds needed to
assess the change can be set met to predefined false positive rates.
We show through comprehensive experiments the effectiveness
of the detection method and point out how it outperforms other
related methods.

I. INTRODUCTION

In traditional learning, the stationary hypothesis is always

assumed implying that the data generating process does never

change. However aging phenomena affecting sensors, time

variance of the environment and faults lead to changes in the

process generating the data and, as a consequence, deviations

from nominal, error-free values in turn, changes affect the

normal operation of the application and its performance.

After having extracted features, we should look at changes

in the probability density function (pdf) to detect the oc-

currence of a change. The literature presents many methods

monitoring some features of the pdf, e.g., mean or variance.

For instance, Ross et al. [1] [2] propose several methods to

allow for nonparametric change detection in non-Gaussian

sequences: nonparametric hypothesis tests are combined to

create a sequential change-point model (CPM) [1], while

[2] presents two control charts to detect arbitrary changes

when the distribution is unknown. Raza et al. propose an

EWMA-based method [3] to monitor auto-correlated obser-

vations without delay which is suitable for real-time adaptive

classification problems [4]. Alippi et al. put forward a Just-in-

time framework in [5] [6] to adapt models only when needed

(changes are detected). The proposed CI-CUSUM test [5] and

ICI-based change detection test(CDT) [7] can detect trends

and drifts, with due the thresholds learned from a training

set. Schilling proposes a KNN-based test [8] to measure the

proportion of all k nearest neighbor comparisons in which a

point and its neighbor are members from the same set. The

statistic explicitly satisfies a limiting normal distribution under

some mild requirements, and is compared with a predefined

threshold.

However, the above methods either were not designed for

multi-dimensional features, or cannot control the rate of false

positives (FPs). Clearly, having the possibility to compare the

pdfs directly at the data streams(or features) level would be

the preferable method. However, it would suffer from the

fact that mostly, we have a limited dataset, and it is hard

to obtain accurate estimates for the pdf. A different solution

is proposed by Sugiyama et al., which uses a linear model

to directly estimate the density-ratio [9] [10] or the density-

difference [11] [12] of two subsets. These methods overcome

the drawback of traditional two-step procedures requesting

to estimate two densities separately and then computing

their difference in order to detect a change, a situation that

propagates the estimation error. The values of density-ratio

and density-difference represent the dissimilarity of the two

pdfs with high values implying a large difference. However,

neither a reasonable threshold is proposed there to detect a

change, nor the FP rate is considered in their work. Another

drawback is that the estimated values change a lot, in particular

in correspondence with limited data sets, which makes it

impossible in those papers to derive an effective threshold.

By investigating the least squares density-difference esti-

mation (LSDD) [12] method, we discovered some interesting

properties. In particular, the distribution of LSDD values of

a stationary dataset is associated with an asymmetric distri-

bution, and the values of nonstationary dataset will exceed

the distribution limits. Although the subset size has a strong

impact on LSDD values, the difference between LSDD values

from pre and post-change samples with a small size is still

significant. This implies that we can detect changes even with

a small dataset.

In this paper, we propose a pdf-free change detection test to

monitor data streams based on LSDD and investigate resulting

properties. The method can be used in multi-dimensional

datasets. A bootstrapping procedure has been considered to

extract the LSDD values in scenarios encompassing smal-

l datasets. By fitting the collected values with a Gamma

distribution that shows to be appropriate in modeling the

LSDD values, thresholds can be easily obtained according to
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predefined FP rates. The carried out experiments validate the

effectiveness of our method.

The structure of the paper is as follows. Section II briefly

introduces the LSDD method. Section III shows a detailed

description of our proposed LSDD-based CDT (LSDD-CDT)

method. The experimental section IV validates the effective-

ness of our method, and gives a comprehensive comparison

with other related methods on benchmarks. The conclusion is

given in Section V.

II. LSDD METHOD

Density-difference estimation between two probability den-

sities has been proposed in [12] to measure the least squares

density-difference:

D2(p, q) =

∫
(p(x)− q(x))

2
dx, (1)

where x ∈ Rd is a real vector, and p(x), q(x) are two

probability density functions. Kernel density estimation [13]

with Gaussian kernel is used to model p(x) − q(x) without

strong assumptions:

g(x,Θ) =
2n∑
i=1

θi exp(−||x− ci||22
2σ2

) (2)

Θ=(θ1,...θi,...θ2n)

where (c1, ..., cn, cn+1, ..., c2n) = (xp,1, .., xp,n, xq,1, ..., xq,n)
are d-dimensional kernel centers, n is the subset size, Θ is a

parameter vector, and σ is the kernel width, e.g, empirically

determined as the median distance between points in the

aggregate sample [14] [15]: σ = median(||xi−xj ||2, 0 < i <
j ≤ 2n). The optimal parameter Θ∗ is achieved by minimizing

the squared loss J(Θ):

J(Θ) =

∫
(g(x,Θ)− (p(x)− q(x)))

2
dx (3)

Adding a L2-regularizer λ to the objective function (3) to

avoid over-fitting, the optimization problem transformes to:

Θ̂ = argmin
Θ

(J(Θ) + λΘTΘ)

= argmin
Θ

(ΘTHΘ− 2hTΘ+ λΘTΘ)
(4)

where λ ≥ 0, H is a 2n×2n matrix, and h is a 2n×1 vector

defined as:

Hi,j =

∫
exp(−||x− ci||22

2σ2
) exp(−||x− cj ||22

2σ2
)dx

= (πσ2)
d/2

exp(−||ci − cj ||22
4σ2

)

(5)

hi =

∫
exp(−||x− ci ||22

2σ2
)p(x)dx

−
∫

exp(−||x− ci ||22
2σ2

)q(x)dx

(6)

i, j = 1, ..., n, n + 1, ...2n. Since p(x), q(x) are unknown, an

estimate ĥi is used:

ĥi =
1

n

n∑
j=1

exp(−||xp,j − ci ||22
2σ2

)

− 1

n

n∑
j=1

exp(−||xq,j − ci ||22
2σ2

)

(7)

Thus, Θ̂ can be expressed as:

Θ̂ = (H + λI)
−1

ĥ (8)

By replacing p(x) − q(x) with g(x, Θ̂), the D2 -distance

can be estimated by two equivalent expressions D̂2(p, q) ≈
ĥT Θ̂ and D̂2(p, q) ≈ Θ̂THΘ̂. [11] combines them together

to reduce the bias brought by λ:

D̂2(p, q) = 2ĥT Θ̂− Θ̂THΘ̂

The quality of over-fitting depends on the regularization

parameter λ. [11] [12] suggest to find the optimal parameters

by cross validation when comparing two different distribu-

tions. Whenever we compare two subsets drawn from a

stationary distribution, the estimated densities are similar, and

the density-difference is so small that a larger λ corresponding

to smoother fitting is always preferred. However in this case,

the LSDD values associated with the transition stationary to

non-stationary will not be close to the real ones. In this paper,

we propose a method to select the parameter λ by controlling

the relative difference defined as:

RD =
ĥT Θ̂− Θ̂THΘ̂

ĥT Θ̂
= 1− Θ̂THΘ̂

ĥT Θ̂

Expanding (H+λI)−1 at λ = 0 by Taylor expansion, ĥT Θ̂
and Θ̂THΘ̂ can be expressed as:

ĥT Θ̂ = ĥTH−1ĥ+ f1(λ),

Θ̂TH−1Θ̂ = ĥTH−1ĥ+ f2(λ),

where f1(λ), f2(λ) are the higher order terms. When λ = 0,

D̂2 = ĥT Θ̂ = Θ̂TH−1Θ̂ = ĥTH−1ĥ; when λ > 0, the ratio

between the two expressions ĥT Θ̂
Θ̂TH−1Θ̂

changes with λ, and

is above 1, i.e. the relative difference RD changes. Thus, we

offer some alternatives of λ during training, and choose the

one which controls the relative difference RD smaller than a

given constant.

III. LSDD-CDT

By inspecting changes in the LSDD we can immediately

detect a change in the pdfs. However, D̂2 values are strongly

dependent on the particular realization of samples as well

as the particular distribution. That is, we can’t give a fitting

function or a fixed constant associated with thresholds suitable

for any situation.

Obviously, the distribution of D̂2 in the stationary case

satisfies an unknown but fixed distribution, whereas the values

associated with a change in stationarity will not satisfy this

distribution. Since there is no direct and theoretical basis

543



indicating which distribution should be considered to fit the

L2-norm dissimilarity of two densities, in this paper Gamma

distribution is considered because of its proven effectiveness

in extensive experiments.

A. Generating LSDD Values with Bootstrapping

Having a small training set allows the method for becoming

immediately operational even with few available data, and at

the same time, the computational cost is kept under control.

We consider using bootstrap to generate a bootstrap-based

distribution as suggested in [16] from the small training set.

Two subsets are sampled repeatedly with bootstrap from the

training set with size N
t , and each of them with n samples

works as a reference Zp and a testing set Zq respectively.

Then, the LSDD value y
i is calculated by comparing Zp and

Zq as a sample from D̂2 distribution.

In order to verify the feasibility of using bootstrap, we also

extracted a very large dataset with values extracted according

to the same distribution. In this case, the computed D̂2 values

are treated as being extracted from the ”real” distribution of

LSDD values. The estimated distribution of D̂2 values with

bootstrap will be compared with this ”real” distribution in

subsection IV-A.

B. Estimating Thresholds with Predefined FP Rates

In [17], a practical method based on the Wilson-Hilferty

normal approximation is provided to estimate the upper tol-

erance limits of a Gamma distribution directly on collected

samples.

Assuming a series of D̂2 values y1, ..., ym extracted from

the training set as per sample of a Gamma distribution, let

Ȳ =
1

m

m∑
i=1

y
1/3
i ,

S2 =
1

m− 1

m∑
i=1

(y
1/3
i − Ȳ )

2
.

The upper tolerance limit Utl [17] is given as:

Utl = (Ȳ + tl · S)3, tl = 1√
m
tm−1,γ,zp

√
m (9)

where zp is the p-th quantile of the standard normal distribu-

tion and tm−1,γ,zp
√
m denotes the γ-th quantile of a noncentral

t-distribution with m−1 degrees of freedom and noncentrality

parameter zp
√
m. With the preset confidence level γ, Utl is

only determined by p.

As recommended in [18], the selected threshold should

better ensure that the FP rate μ = 1 − p is controlled which

satisfies

P (D̂2 > Utl) = μ. (10)

The corresponding value of ARL0 (average run length, which

denotes the average number of observations between false

detections whereas there is no change) is 1/μ. Thus given a FP

rate or ARL0, the upper tolerance limit Utl is only determined

by (10) as a threshold T .

C. The LSDD-CDT Algorithm
To detect changes in data streams where samples are

continuously produced, LSDD can be applied sequentially to

compare the density difference between two fixed sliding win-

dows. During the testing phase, the left window Zp with pdf

p(x) includes samples arrived earlier and confirmed without

any changes as a reference, and the right window Zq with

pdf q(x) contains the new samples treated as a testing set.

As time passes, both Zp and Zq slide away to collect new

samples; the oldest ones are discarded. Then a series of D̂2

values y1, ..., yi, ... is generated by estimating the least squares

density difference of continuously updated Z
p and Zq . A

change is detected only when a D̂2 value is greater than the

threshold T associated with a predefined FP rate μ.

Algorithm 1 LSDD-CDT

1: Input: training set with Nt samples, window size n(n <
N

t/2), FP rates μc < μw < μs , confidence level γ, sample

time m;

Output: A series of D̂2 values y1 , ..., yi , ..., detection

results: no changes / (changes, location).

2: Generate LSDD values D̂2 on the training set with boot-

strap and calculate the parameters σ and λ;

3: Fit D̂2 values with a Gamma distribution, and calculate the

thresholds TW , TC , TS according to predefined FP rates

μ
w , μc , μs respectively based on (9)(10);

4: Prepare samples for right and left windows; i = 1;
5: while (1) do
6: Calculate the LSDD value yiof two subsets Zp, Zq;

7: if yi > TW or during a ”warning” state then
8: Set/keep the warning alarm; Stop updating Zp;

9: if yi > TC then
10: Detection results: change, point PC ;

11: Collect new samples, retrain models by steps 2-4;

12: end if
13: if yi < TS or the ”warning” state lasts exceeding n

samples then
14: Clear the warning alarm;

15: Update Zp .

16: end if
17: else
18: Update Zp, Zq with slide strategy;

19: i = i+ 1;
20: end if
21: end while

In order to be more sensitive to small changes under the

same FP rate, a three-level threshold mechanism is adopted

to reduce the FN rate. It contains a warning threshold (TW ),

a change threshold (TC ) and a safe threshold (TS) which are

determined by different FP rates respectively as in (10) to

give a warning, confirm a change or clear a warning. When

small perturbations happen, i.e., the D̂2 value exceeds TW

which corresponds to a high FP rate μw , a ”warning” state is

initiated at point PW . The right window Zq slides to collect

new samples to further determine whether there is a change,
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or it is a false alarm. Meanwhile, the left widow Zp stops

updating to avoid the influence of possible changes. If the D̂2

value goes over TC further which corresponds to a low FP rate

μ
c , change is confirmed at point PC . If the D̂2 distance falls

back below TS which is related to a higher FP rate μs than

TW , or the ”warning” state continues exceeding n samples,

the warning alarm is cleared and considered as a false alarm.

The two windows continue to slide or update as normal.

The detailed procedure is summarized in Algorithm 1. We

take a simple reaction (step 12) as an example to show how it

deals with datastreams, and it can be replaced by any effective

strategy in real applications [22]. Moreover, the computational

complexity is O(N · n2 · d) where N is the size of dataset.

IV. EXPERIMENTS

To validate the effectiveness of the proposed LSDD-CDT

method, we provide a comprehensive comparison with three

other related methods on six different applications.

The three methods are KNN-based test [8] [19], H-ICI

CDT [20] and CPM tests [1] [2]. KNN-based test aims at

monitoring the statistic T
k,n

, which indicates how close the

two distributions are. For a fair comparison, it uses the same

training and detection strategy as the LSDD-CDT. Since a

larger parameter k will bring a higher FP rate and a lower

FN rate, we set k = 7 to obtain a similar FN rate as our

method. H-ICI CDT is a two-level hierarchical CDT, whose

first level uses the ICI-based CDT [7], and the second one uses

the Hotellings T-square statistic[21]. CPM-LP [1] and CPM-

CvM [2] are two CPM methods designed to detect arbitrary

changes.

There are six applications which are simulated and cou-

pled with different distributions or different changes. 2000

samples are contained in each application and a different

change happens at point 1000. Applications D3-6 are well-

known multidimensional benchmarks for assessing detection

performance.

• Applications D1-2 refer to a Normal distribution. Param-

eters change from (0, 0.5) to (0.2 0.5) and (0.3, 0.8),

where the two values in each bracket are the mean and

the standard variance of the distribution.

• Application D3 is a 10-dimension Normal distribution

suggested in [23] which aims at evaluating the detection

performance dealing with multi-dimension applications.

• Application D4 is STAGGER (used in [24]) which is 3-

dimensional. Since we do not focus on the ”reaction”

aspect here, we change this classification problem into a

detection problem by taking only one class of samples.

1000 samples respectively with Concept1 and then Con-

cept2 are generated.

• Application D5 is a circle problem [25] with dataset

satisfying (x − a)2 + (y − b)2 ≤ r2; and changes affect

the radius r. In this paper, a = b = 0.5, r = 0.2 → 0.3,

10% noise is added and the ranges of x, y are [0,1].

• Application D6 is a moving hyperplane problem y ≤
−a

0
+

d∑
i=1

a
i
x

i
, and changes happen by changing a

0
. a

1
=

a
2 = 0.1, a0 = −1→ −3.2, 10% noises are added, and

the ranges of x
i , y are [0, 1] and [0, 5] respectively as

suggested in [25].
The setting parameters are fixed as follows. The size of

training set Nt is 400, confidence level γ is 0.99, and sample

time m is 2000. The FP rates μ
s , μw , μc corresponding to TS ,

TW and TC respectively are set to 2%, 1% and 0.1%, i.e. the

respective values of ARL0 are 50, 100 and 1000. The relative

difference RD of two D̂2 expressions is set to 0.25. 500 trials

are operated for each application.

These settings are appropriate for LSDD-CDT and KNN-

based test since they follow the same detection procedure. The

H-ICI CDT retains the same settings as in [20]. The ARL0

values of CPMs are set to 1000, i.e., the predefined FP rates

are 0.1% as μ
c .

The following four indices are introduced to evaluate the

performance of our algorithm:

• False positives (FPs): it counts the times that a change is

detected while there is no change. In D1-6, a FP means

there is a ”change” detected before point 1000. At each

trial, the ”change” times will be recorded, and then we

sum the times on the 500 trials.

• False negatives (FNs): it counts the times that no changes

are detected while there are. In D1-6, a FN means no

changes are detected after point 1000. At each trial, if

no change is detected, a FN is recorded, and we sum the

FNs on the 500 trials.

• Delay (sample): it measures the promptness by consid-

ering the detection delay. The value of PC − 1000 is

recorded when PC > 1000 at each trial, and both the

mean and the standard deviation of the delay values are

calculated on the 500 trials.

• Computational time (CT (s)): it shows the execution time

taken to perform the tests (reference platform: ThinkCen-

tre M4300t Intel i5 core running @ 3.1GHz, 4G RAM).

Both the mean and the standard deviation of the delay

values are calculated on the 500 trials.

A. Comparison of Distribution Fitting

In order to verify the feasibility of using bootstrap, several

experiments are taken on applications D1 and D3-5. Two win-

dows repeatedly collect independent n samples respectively

from a certain application, and then a series of D̂2 values are

calculated to build the ”real” distribution Dist. ˆDist is built

on the training set with bootstrap, which is an estimate of

the real one when training samples are limited. Since with the

increase of the number m of extractions to generate D̂2 values,

the distribution Dist is closer to the real one, m = 2000 is

large enough to set the reference case.

We discretize the probabilities into 60 intervals, and calcu-

late the mean squared errors (MSE) between Dist and the

estimated one. The sample size n is set to 100 and 200,

and ”Bs” means we use bootstrap to extract subsets from the

training set. Each comparison runs 100 times, and the mean

and standard deviation of MSE (mean(std)) are recorded

in Table II. The fitting performance with using bootstrap is
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TABLE I
SIMULATION RESULTS WITH SIX METHODS ON DIFFERENT APPLICATIONS

LSDD-CDT KNN H-ICI CPM-LP CPM-CvM

D1

FPs 49 306 0 481 462
FNs 271 94 179 0 0

Delay(sample) 206.63(259.97) 382.29(308.58) 574.39(233.12) 125.09(169.33) 92.75(144.63)
CT(s) 12.44(1.94) 17.51(1.13) 0.044(0.0087) - -

D2

FPs 49 547 0 480 457
FNs 42 9 0 0 0

Delay(sample) 115.62(156.97) 108.56(146.9) 266.08(45.74) 38.83(118.97) 44.86(87.76)
CT(s) 12.85(1.14) 16.7(2.38) 0.037(0.004) - -

D3

FPs 162 452 1 13361 14641
FNs 5 3 1 0 0

Delay(sample) 32.81(53.03) 46.03(56.59) 167.78(18.3) 22.7(20.92) 20.84(16.97)
CT(s) 18.1(1.67) 32.1(3.65) 0.089(0.015) - -

D4

FPs 33 0 2500 24500 17672
FNs 2 0 0 0 0

Delay(sample) 35.88(5.75) 3.52(0.74) 412.3(388.88) 0.96(1.03) 15.76(9.7)
CT(s) 13.92(2.42) 25.7(3.3) 0.086(0.028) - -

D5

FPs 57 459 0 972 519
FNs 18 10 242 59 169

Delay(sample) 83.19(31.24) 74.13(34.12) 656.05(251.85) 314.11(269.45) 298.91(312.82)
CT(s) 13.55(0.21) 25.76(1.23) 0.066(0.009) - -

D6

FPs 57 475 0 382 461
FNs 1 5 0 250 182

Delay(sample) 34.05(10.74) 53.01(52.96) 203.92(31.14) 345.18(289.11) 266.68(281.44)
CT(s) 15.69(0.76) 26.97(2.12) 0.067(0.012) - -

similar with that trained by enough samples in D1, D4 and

D5. However, when n = 200 in D3, the fitting errors with

bootstrap are much larger than the others, due to the presence

of high dimensional data. For instance, with d = 10, only 400

training samples coupled with a large window size (200) are

not enough to be close to the ”real” distribution. That is, high

dimension and large window size demand large training set.

TABLE II
FITTING COMPARISON WITH GAMMA DISTRIBUTION

Sample
size n

D1 D3 D4 D5

Gamma
(∗10−5)

100 1.63(0.56) 1.35(0.38) 5.042.03) 1.17(0.32)
200 1.63(0.53) 1.75(0.41) 2.79(0.98) 1.11(0.29)

Gamma(Bs)
(∗10−5)

100 2(0.89) 4.24(0.78) 5.13(2.79) 1.26(0.4)
200 1.98(0.89) 33.77(5.57) 3.31(1.37) 1.32(0.39)

50 100 150 200 250 300
0

1

2

3

4

x 10
−5

n

M
SE

 

 

Gamma
Gamma(Bs)

Fig. 1. Fitting performance with different window size

Furthermore, in order to discover how the subset size n

impacts, the fitting MSEs along with different n are calculated

shown in fig.1. The samples are generated from D1, and it runs

100 times at each value of n. With the increase of n when n ≤
100, the performance of bootstrap improves, whereas when

n > 100, the errors increase because the subset size is closer to

the training size. We can draw the same conclusion that fitting

the distribution of D̂2 values with bootstrap is appropriate

when choosing a suitable n, such as n = 100.

B. Performance Analysis

A comprehensive comparison is taken on D1-D6 between

our LSDD-CDT and three other detection methods. The win-

dow size n is set to 100, and the other settings are consistent

as defined in the beginning of the section. At each trial, we

record FPs before change location 1000 and FNs if changes

are not detected after 1000. There are at most 600 (1000-400)

FPs which means the method detects a false positive at each

sample, whereas there is 0 or 1 FN which indicates a right

detection or a failure. For each application, we sum the FPs

and FNs, and calculate the average delay and computational

time over 500 trials. The first three methods are implemented

in MATLAB, while CPMs operate using the R package cpm.

In this case, we didn’t record the execution time of the CPMs

to keep the comparison fair. The detection performance is

shown in Table I.

H-ICI has the least FPs in most applications and the

shortest computational time. However, it does not provide an

acceptable delay in detecting both small and large changes. It

has too many FPs and FNs in D4 and D5 respectively, i.e., it

can’t offer an accurate detection when data are discrete, and

always fails to detect changes in multidimensional problems

with small changes.
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CPMs do well in D1-2 with the shortest detection delay,

whereas the performance of accuracy and promptness in D3-6

is pretty bad. The reasons being the methods are rank-based

and cannot deal with multidimensional problems directly with-

out transforming them into several single-dimension problems.

Furthermore, in most applications, FPs are too high to give a

reliable result, where they almost report a FP every 20 samples

in D4. In D6, the high FNs mean that they can’t detect these

obvious changes.

The KNN-based test does the best in D4 whose observations

are discrete with the shortest delay and perfect accuracy. It also

shows similar performance in promptness and computational

time with our LSDD-CDT. However, it has a bit high FPs

in most applications, which means it always reports a false

detection before the real change location.

Based on the analysis above, we can get the following

conclusions: H-ICI shows an obvious advantage in computa-

tional time, CPMs do well in detection promptness on single-

dimensional problems with normal distribution, but they both

have their intolerable shortcomings and can’t handle the most

applications well; LSDD-CDT does a good job in promptness

under acceptable FPs and FNs in all these applications, that is,

it has an excellent integrated and consistent performance. In

real applications, methods with low FP rate and small detection

delay are always preferred.

V. CONCLUSION

In this paper, we propose a novel pdf-free change detec-

tion algorithm for data streams monitoring. It can deal with

observations without knowing any priors, especially those

which are multi-dimensional. In order to make it applicable

with limited samples, a bootstrapping procedure works to

extract the sufficient LSDD values during training. By fitting

the collected values with a Gamma distribution, thresholds

are easily obtained by estimating the upper tolerance limits

with predefined FP rates. The comprehensive experiments also

show that the proposed LSDD-CDT has a good integrated and

consistent performance in promptness and accuracy.

However, the LSDD-CDT takes a long time to train models

and operates a test, which limits the application. What’s more,

the choice strategy of kernel width is also a restriction that the

only fixed width might not offer a good fitting performance

when dealing with multimodal data. We will be dedicated to

solving these problems, and make it more practical.
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