
Learning an Optimal Control Policy
for a Markov Decision Process

Under Linear Temporal Logic Specifications

Masaki Hiromoto and Toshimitsu Ushio

Abstract—In this paper, we consider an optimal control prob-
lem under a qualitative specification such as progress and safety
properties for a Markov decision process(MDP) with control
costs. This control problem is motivated by the optimal path
planing and control of mobile robots. We assume the existence
of the uncertainty such as the unknown transition probability
in the MDP. Then, we apply reinforcement learning(RL) to
the generation of the optimal control policy. We consider the
case where the qualitative specification is described by a linear
temporal logic(LTL) formula. We construct a deterministic Rabin
automaton(DRA) by which we check if the controlled behavior
of the MDP satisfies the LTL specification with probability 1.
We convert the DRA to a weighted automaton whose weight
is determined based on the acceptance conditions of the DRA.
Thus, the weighted automaton is used to learn a control policy
that satisfies the LTL specification. Then, the control problem
considered in the paper is reduced to a reinforcement learning
problem with multiple rewards that correspond to the control
costs and the weights. To generate the optimal control policy,
using the MDP and the weighted automaton, we construct a
product MDP with sequentially decision making. The proposed
controller consists of a sequential decision making of two steps.
At the first step, one learns a minimally restrictive set of actions
such that if an action selected at the second step generates runs
that do not satisfy the LTL specification, it is eliminated from
the set. At the second step, one learns the optimal action that
minimizes the discounted sum of the control costs in the set. We
also consider an illustrative example to show that the proposed
RL based controller can learn an optimal control policy.

I. INTRODUCTION

A temporal logic(TL) has been used to verify reactive and

concurrent systems [1]. The TL is an extension of a classical

logic and describes temporal properties, that is, properties of

state transitions. Recently, in many control applications such

as the optimal path planing and control of mobile robots, there

has been an increased interest in describing a qualitative con-

trol specification by the TL [2]–[15]. Several control methods

have been proposed. In [2], they considered a discrete-time

linear time-invariant system under constraints given by a linear

temporal logic(LTL) formula and proposed a receding horizon

control(RHC) using a finite abstraction of the continuous state

set. In [3], the RHC for finite deterministic systems has been

studied. On the other hand, for the logical control of discrete

event systems(DESs) where a control specification is given

by a language, a supervisory control has been studied [16].

In [5], they consider the case where a control specification

is given by an LTL, a computational tree logic(CTL), or a

CTL* formula and, for each TL formula, proposed a design

method for a supervisor such that all infinite words generated

by the supervised DES satisfies the TL formula. They use

an ω-autmaton to decide whether the controlled behavior

satisfies the TL formula. Such an automaton based approach

is often used for the checking the satisfaction of the LTL

formula [17]. Safra’s method is a well-known method for the

conversion from the LTL formula to a deterministic Rabin au-

tomaton(DRA) and uses a non-deterministic Büchi automaton

as an intermediate automaton [18]. Recently, however, a novel

method for direct conversion from the LTL formula to a DRA

has been proposed [19]. The DRA constructed by the novel

method has acceptance conditions based on not only states but

also transitions and the cardinality of its state set is smaller

than that of the DRA by Safra’s method.

In general, when a system is uncertain, that is, the system’s

parameters are unknown a priori, the robust control approach

is often used when the uncertainty is described in such a way

that the unknown parameter is in a given set. In [4], they con-

sider an uncertain Markov decision process(MDP) where each

transition probability is in a given uncertain set and proposed

a robust controller that satisfies a control specification given

by an LTL formula. Recently, learning based control has been

proposed as another approach to the design of the controller

[20], [21]. A reinforcement learning(RL) based approach is

useful for such a situation [22], [23]. The RL is a learning

framework that learns a transition probabilities and control cost

function of the uncertain MDP and searches an optimal control

policy that optimizes an expected discounted sum of the costs

through trial and error. In [20], Sadigh et al. considered an

uncertain MDP and a control specification given by an LTL

formula. They proposed a RL based method for design of

a control policy such that the controlled MDP satisfies the

LTL formula with probability 1. They constructed a DRA

that accepts all words satisfying the formula and computes

a product MDP of the MDP and the DRA. Then, to learn

the control policy by which the controlled MDP satisfies the

LTL formula with probability 1, a reward is assigned to each

state of the product MDP in accordance with the acceptance

conditions of the DRA. Using the reward, the controller learns

an optimal policy such that an expected discounted sum of the

rewards on the controlled product MDP is maximized for each

state. In [21], Jones et al. considered a control specification

described by a signal temporal logic(STL) formula. To the

best of our knowledge, a problem to learn a control policy

2015 IEEE Symposium Series on Computational Intelligence

978-1-4799-7560-0/15 $31.00 © 2015 IEEE

DOI 10.1109/SSCI.2015.87

548

that optimizes the control cost on the MDP under the LTL

formula has not been studied. So, we consider an MDP with

control cost for each state and formulate an optimal control

problem that has the following two control objectives: The first

objective is for the controlled MDP to satisfy the LTL formula

with probability 1. The second one is to minimize the expected

discounted sum of the control costs. Such a control problem is

applicable to the optimal path planning of mobile robots with

safety and progress properties.

In this paper, first, we construct a DRA that accepts all

and only infinite words satisfying the given LTL control

specification. Second, we construct a product MDP of the

MDP and the DRA to represent a dynamic control policy

that satisfies the control specification. Third, we modify the

product MDP in order to apply RL to the design of an

optimal control policy. The modified product MDP has a set

of reward functions that return a reward for each transition on

the modified product MDP in accordance with the acceptance

conditions of the DRA. The control action of the modified

product MDP is a pair of a pattern and an action, where the

pattern is a set of actions. Moreover, we introduce a reward

that represents both the satisfaction of the control specification

and the minimally restrictiveness of the pattern. Finally, we

proposed an algorithm for design of an optimal control policy

that consists of a sequential decision making of two steps. At

the first decision making, we remove actions by which runs

that do not satisfy the LTL control specification. At the second

one, we select an action from the pattern selected at the first

one such that it minimizes the discounted sum of the costs.

This paper is organized as follows: In Section II, we review

an LTL formula and a DRA. In Section III, we formulate

an optimal control problem of an MDP with control costs

under an LTL control specification. In Section IV, we propose

a method to design an optimal policy using RL. In Section V,

we consider an illustrative example to show that the proposed

algorithm can obtain an optimal control policy. We conclude

in Section VI.

II. PRELIMINARY

We review Linear temporal logic(LTL) [1]. We use an

LTL formula to describe a control specification. An LTL

formula is recursively defined over a finite fixed set of atomic

propositions AP as follows.

• An atomic proposition a ∈ AP , the symbol tt, and the

symbol ff are LTL formulas,

• for given LTL formulas ϕ and ψ, ¬ϕ, ϕ ∧ ψ, and ϕ ∨ ψ
are LTL formulas, and

• for given LTL formulas ϕ and ψ, Xϕ, Fϕ, Gϕ, and

ϕUψ are LTL formulas,

where ¬ is a negation, ∧ is a logical conjunction, and ∨
is a logical disjunction. The LTL formula ϕ is qualitatively

evaluated by an infinite word w ∈ (
2AP

)ω
. The ith letter of

ω is denoted by ω[i], i.e. ω = ω[0]ω[1] The suffix of ω
starting from the ith letter is denoted by ωi = ω[i]ω[i+1]
We write w |= ϕ iff ϕ is TRUE for w. We write w �|= ϕ iff ϕ
is FALSE for w.

Semantics of the formula on the word ω is defined induc-

tively as follows.

w |= tt. w �|= ff.

w |= a ⇐⇒ a ∈ ω[0].
w |= ¬a ⇐⇒ a �∈ ω[0].
w |= ϕ ∧ ψ⇐⇒ w |= ϕ ∧ w |= ψ.

w |= ϕ ∨ ψ⇐⇒ w |= ϕ ∨ w |= ψ.

w |= Xϕ ⇐⇒ w1 |= ϕ.

w |= Fϕ ⇐⇒ ∃k ≥ 0, wk |= ϕ.

w |= Gϕ ⇐⇒ ∀k ≥ 0, wk |= ϕ.

w |= ϕUψ ⇐⇒ ∃k ≥ 0, ∀l (0 ≤ l < k), wk |= ψ ∧ wl |= ϕ.

Intuitively, if ϕ and ψ are atomic propositions, Xϕ is TRUE

when ϕ is TRUE in the next step, Fϕ is TRUE when ϕ
is TRUE in some steps, Gϕ is TRUE when ϕ is TRUE

in all steps, and ϕUψ is TRUE when ϕ is TRUE until

ψ becomes TRUE. Several control specifications such as

liveness properties GFϕ, stability properties FGϕ and safety

properties G¬ϕ are described by the LTL formulas.

We introduce a deterministic Rabin automaton(DRA) [19].

The DRA R is described by (Q, q0,Σ, δ, Acc), where Q is a

finite and non-empty set of states, q0 ∈ Q is an initial state,

Σ is a finite set of input alphabets, δ : Q × Σ → Q is a

transition function, Acc = {Acci}nAcc

i=1 is a set of acceptance

conditions, Acci = (Si, Ti) for each i = 1, . . . , nAcc, Si ⊂ Q
is a set of non-acceptance states, Ti = (Gi, Bi) ⊂ Δ × Δ,

Δ = {(q, ν, q′) ∈ Q × 2Σ × Q | δ(q, ν) = q′} is a transition

relation, Gi is a set of acceptance transitions, and Bi is a set of

non-acceptance transitions. We consider two kinds of infinite

sequences in the DRA for the input word ω̃ ∈ (Σ)
ω

: rq ∈ Qω

and rδ ∈ Δω defined by rq = rq[0]rq[1] . . . with rq[i] =
δ(rq[i− 1], ω̃[i− 1]) (rq[0] = q0) and rδ = rδ[0]rδ[1] . . . with

rδ[i] = (rq[i], ω̃[i], rq[i+1]) ∈ Δ. We call the pair r = (rq, rδ)
the run of R over ω̃. For each sequence, let inf(rl) be a set

of elements that appear infinitely often in the sequence.

inf(rl) = {r̂ | r̂ = rl[i] for infinitely many i’s} for l = q, δ.

Note that inf(rq) and inf(rδ) are nonempty sets because both

Q and Δ are finite sets. The run r = (rq, rδ) is accepted by

Acc if there exists i ∈ {1, . . . , nAcc} such that

inf(rq) ∩ Si = ∅ ∧
inf(rδ) ∩Gi �= ∅ ∧ inf(rδ) ∩Bi = ∅. (1)

For each LTL formula ϕ over AP , let Rϕ be a DRA with a

finite set of input alphabets Σ = 2AP that accepts all and only

infinite words over AP that satisfy ϕ.

III. PROBLEM FORMULATION

We consider a plant modeled by a labeled Markov deci-

sion process(MDP) M = (S, A,A, P, s0, AP,L, g), where

S is a finite and non-empty set of states of the plant,

A = {a1, . . . , anA
} is a finite and non-empty set of actions

(controls), A : S → 2A \ ∅ = {π1, . . . , π2nA−1} is a

function that represents a set of available actions at each state,

P : S × A × S → [0, 1] is a transition probability function

549

such that
∑

s′∈S P (s, a, s
′) = 1 for all s ∈ S and a ∈ A(s),

s0 ∈ S is an initial state, AP is a set of atomic propositions,

L : S → 2AP is a labeling function, g : S × A → R≥0 is a

control cost function, and R≥0 denotes the set of non-negative

real numbers. Note that the labeling function L returns atomic

propositions that are TRUE at the state. In the following, a

subset π of A will be called a pattern.

We also consider a control specification described by

an LTL formula ϕ. Then, we construct a DRA Rϕ =(
Q, q0, 2

AP , δ, Acc
)

that accepts all and only words satisfying

ϕ. In order to check ϕ’s satisfiability for a run onM, we intro-

duce a product MDP Mϕ = (S×, A,A×, P×, s0×, Acc×, g×)
of M and Rϕ with the same action set A as that of M, where:

• S× = S ×Q is a set of states,

• A× : S× → 2A is a function such that A×(s×) =
A([[s×]]s) ⊂ A is a set of actions available at the state

s× = (s, q) ∈ S×, where [[·]]s : S× → S is a projection

function defined by [[s×]]s = s,
• P× : S× × A × S× → [0, 1] is a probability function

defined as:

P×(s×, a, s′×) =

⎧⎪⎨
⎪⎩
P ([[s×]]s, a, [[s′×]]s)

if [[s′×]]q = δ([[s×]]q,L([[s′×]]s)),
0 otherwise,

where [[·]]q : S× → Q is a projection function defined by

[[s×]]q = q for s× = (s, q),
• s0× = (s0, δ(q0,L(s0))) ∈ S× is an initial state,

• Acc× =
{
Acci×

}nAcc

i=1
is a set of acceptance conditions,

for each i = 1, . . . , nAcc, Acci× = (Si
×, T

i
×) and T i

× =
(Gi
×, B

i
×) are defined as:

Si
× = {s× | [[s×]]q ∈ Si} ,

Gi
× =

{
(s×, s′×) | ([[s×]]q,L([[s′×]]s), [[s′×]]q) ∈ Gi

}
,

Bi
× =

{
(s×, s′×) | ([[s×]]q,L([[s′×]]s), [[s′×]]q) ∈ Bi

}
,

and

• g×(s×, a) = g([[s×]]s, a) is a control cost function.

P×(s×, a, s′×) is a probability such that the transition from

[[s×]]s to [[s′×]]s in M is caused by the occurrence of the action

a and the transition from [[s×]]q to [[s′×]]q in Rϕ is caused by

the occurrence of the set of atomic propositions L([[s′×]]s).
Thus, we define that [[s0×]]q is not q0 but δ(q0,L(s0)).

We consider a control policy d : S× → A in Mϕ, which

is a dynamic policy in M. In the following, the control

policy will be called the policy for short. The controlled

Mϕ by d is described by a Markov chain(MC) Md
ϕ =(S×, s0×, p, T,Acc×, gd×), where p : S××S× → R is a transi-

tion probability function such that p(s×, ·) = P×(s×, d(s×), ·)
for all s× ∈ S×, T = {(s×, s′×) | p(s×, s′×) > 0} is a set

of transitions, and gd×(s×) = g×(s×, d(s×)) is a control cost

function of the policy d. We define a run rd× = (rdq×, r
d
δ×)

on Md
ϕ by rdq× = rdq×[0]r

d
q×[1] . . . ∈ (S×)ω that satis-

fies P×(rq×[i], d(rq×[i]), rq×[i + 1]) > 0 for each i and

rdq×[0] = s0× and rdδ× = rdδ×[0]r
d
δ×[1] . . . with rdδ×[i] =

(rdq×[i], r
d
q×[i+ 1]).

Based on (1), we introduce the following definition.

Definition 1: Let Md
ϕ be an MC. We say that Md

ϕ satisfies

ϕ with probability 1 if Pr({(rdq×, rdδ×) : ∃Acci× s.t. inf(rdq×)∩
Si
× = ∅ ∧ inf(rdδ×) ∩Gi

× �= ∅ ∧ inf(rdδ×) ∩Bi
× = ∅}) = 1.

Let D be a set of policies d by which Md
ϕ satisfies ϕ with

probability 1. We define a discounted sum of the control costs

under the policy d after a state rdq×[t] as follows.

Rd
t =

∞∑
i=0

γigd×(r
d
q×[t+ i+ 1]),

where γ ∈ [0, 1) is a discount rate. We consider a state value

function V d : S× → R≥0 for Md
ϕ given by

V d(s×) = Ed{Rd
t | rdq×[t] = s×}

=
∑

s′×∈S×

p(s×, s′×)Ed{gd×(rdq×[t+ 1]) +

γRd
t+1 | rdq×[t] = s×, rdq×[t+ 1] = s′×}

=
∑

s′×∈S×

p(s×, s′×)[g
d
×(s

′
×) + γV d(s′×)].

Our objective is to design an optimal policy d∗ ∈ D
such that for all s× ∈ S×, V d∗

(s×) = mind∈D V d(s×).
In other words, for a given LTL control specification ϕ, the

optimal control policy d∗ achieves the minimization of the

discounted sum of the control costs under the requirement

that the controlled plant Md∗
ϕ satisfies ϕ with probability 1.

IV. RL BASED DESIGN OF OPTIMAL POLICY

We consider a design problem of the optimal control policy

under the existence of uncertainty in the plant M, that is, the

transition probability function P of the plant is unknown. We

apply reinforcement learning(RL) to learn the optimal control

policy on-line. Recall that the considered optimal control

problem has two requirements, that is, the minimization of the

discounted sum of the control costs given by the control cost

function g and the satisfaction of the LTL control specification

ϕ with probability 1. The former requirement is reduced to the

standard RL problem for MDP where the reward corresponds

to the control cost. For the latter requirement, D. Sadigh et

al. introduced rewards that evaluate the acceptance conditions

in a DRA Rϕ for the LTL specification ϕ [20]. Thus, we

formulated the control problem as a reinforcement learning

problem with multiple rewards.

We consider a learning problem of a set of actions, that

is, a pattern satisfying the latter requirement for each state of

the product MDP Mϕ by which we decide the satisfaction

of the LTL formula. Thus, a control policy is described by a

mapping from the state set of the product MDP to a pair of a

pattern π and an action a, where a ∈ π. The control objective

is to learn the optimal pair (π∗, a∗). The optimal pattern π∗

is a minimally restrictive set of actions such that an action

by which the LTL control specification is satisfied with the

probability less than 1 is removed from the set. The optimal

action a∗ achieves the optimization of the discounted sum of

the control costs in π∗ while the optimal action a∗ satisfies the

550

�

��������	���
�

�����
��

� �
��������
�

���
������
�����
����

�����������
�����
����

Fig. 1: A sequential decision making in the modified MDP P
with Acci.

LTL specification in π∗. Thus, the optimal control is reduced

to RL based optimal control consisting of sequentially decision

making as shown in Fig. 1. At the first decision, we use

rewards corresponding to the acceptance conditions of the

DRA and learn a pattern that includes actions satisfying the

LTL specification as many as possible so as to restrict the

search of the optimal action in the pattern. At the second

decision, we use the control costs and learn the optimal action

in the pattern selected at the first decision. In the following,

we formulate the RL based optimal control problem with the

sequentially decision making.

First, we define a modified product MDP P from Mϕ as

follows.

Definition 2: Let Mϕ be a product MDP.

The modified product MDP is described by

P = (SP , A,AP , PP , sP0, AccP ,WP , gP), where SP = S×
is a set of states, AP : SP → 2A \ ∅ × A is a function

such that AP(sP) = {(π, a) | π ∈ 2A×(sP) \ ∅, a ∈ π},
PP : SP ×AP ×SP → [0, 1] is a probability function defined

as :

PP(sP , aP , s′P) = P×(sP , a, s′P) (aP = (π, a)),

sP0 = s0× is an initial state, AccP =
{
AcciP

}nAcc

i=1
=

{(Gi,Bi)}nAcc

i=1 is a set of acceptance conditions defined as

: Gi = Gi
× and Bi = Bi

× ∪ Influx(Si
×),

Influx(Si
×) = {(sP , s′P) | ∃a s.t.

P×(sP , a, sP) > 0 ∧ s′P ∈ Si
×},

WP = {W i
P}nAcc

i=1 is a set of reward functions for AccP , W i
P :

SP × SP → R is defined as:

W i
P(sP , s

′
P) =

⎧⎪⎨
⎪⎩
wG(> 0) if (sP , s′P) ∈ Gi,

wB(< 0) if (sP , s′P) ∈ Bi,

0 otherwise,

and gP(sP , aP) = g×(sP , a) is a control cost function.

Note that the set of non-acceptance states Si
× is merged into

the set of non-acceptance transitions Bi
× and the probability

measure of the set of all sequences that satisfy ϕ is unchanged

because of (1). Then, if a sequence satisfies ϕ, the agent

obtains a positive reward wG infinitely often and a negative

reward wB finitely often. We define a policy μ : SP → AP
defined as μ(sP) = (μ1(sP), μ2(sP)) = (π, a) ∈ AP(sP).

Next, we introduce two kinds of optimal value functions

Qμ∗
1i (i = 1, 2, . . . , nACC) and Qμ∗

2 that are used for the first

and the second decision, respectively.

The function Qμ∗
1i is an optimal value function about the

LTL control specification for each acceptance condition AcciP ,

that is, Qμ∗
1i (sP , π) is the expected discounted sum of the

rewards when transitions depend on an optimal policy μ∗ and

a pattern π at the first decision making. Thus, the following

optimal Bellman equation holds.

Qμ∗
1i (sP , π) =

∑
t∈SP

Pro (sP , π, t) ·
{
R1i (sP , π, t) + γ1 max

π̄∈2A([[t]]s)\∅
Qμ∗

1i (t, π̄)

}
,

where Pro(sP , π, t) is a probability of a transition from the

state sP to the state t caused by the pattern π, R1i (sP , π, t)
is a reward obtained by the transition from the state sP to the

state t caused by the pattern π for the acceptance condition

AcciP , and γ1 ∈ (0, 1) is the discount rate for the evaluation

of the LTL control specification. Pro(sP , π, t) is reduced to

the following equation.

Pro(sP , π, t) =
∑
σ∈π

P1(sP , π, σ)P2(sP , σ, t),

where P1(sP , π, σ) is the decision probability of the action

σ at the state sP and the pattern π, and P2(sP , σ, t) is the

transition probability from the state sP to the state t by the

occurrence of the action σ.

The function Qμ∗
2 is an optimal value function about control

costs, that is, Qμ∗
2 (sP , π) is the expected discounted sum

of the control costs when the pattern π is selected at the

first decision making under the optimal policy μ∗. Thus, the

following equation holds.

Qμ∗
2 (sP , π) = min

σ∈π

∑
t∈SP

P2(sP , σ, t) ·
{
g([[sP]]s, σ) + γ2 min

π̄∈2A([[t]]s)\∅
Qμ∗

2 (t, π̄)

}
,

where g([[sP]]s, σ) is the control cost for the state [[sP]]s and

γ2 ∈ [0, 1) is the discount rate for the cost evaluation. Note that

the value function about control costs is defined independently

for each acceptance condition. We make the following two

assumptions [24], [25].

Assumption 1: R1i (sP , π, t) is given by

R1i (sP , π, t) = R (sP , π) +W i
P (sP , t) ,

where R (sP , π) is a pattern cost that evaluates the restriction

of selectable actions by the pattern π at the state sP defined

by

R (sP , π) =

{
RC

|A([[sP]]s)|−|π|
|A([[sP]]s)|−1 if |A([[sP]]s)| ≥ 2,

0 if |A([[sP]]s)| = 1,

551

and RC ∈ R≤0 is a non-positive parameter that indicates the

importance of less restrictiveness of the patterns.

If RC equals to 0 and gP(sP , aP) = 1 for all sP and aP ,

the optimal action is same as an optimal action defined in [20].

Therefore, the method in [20] is a special case of our proposed

method. As RC decreases, the agent learns a policy that makes

the discounted sum of control costs smaller and may select

a pattern including an action by which the controlled MDP

satisfies ϕ with probability less than 1.

In general, an optimal action is not unique. So, for simplic-

ity, we introduce a priority for the set of actions in such a

way that the smaller the index of the action is, the higher its

priority of the action is. We say that the action σi has a higher

priority than the action σj if i < j.
Assumption 2: P1(sP , π, σ) is given by

P1(sP , π, σ) =
{

1 if σ = opt action∗ (sP , π) ,
0 otherwise,

where

opt action∗ (sP , π) = σj∗

and

j∗ = min arg min
j∈{j | σj∈π}

∑
t∈SP

P2(sP , σj , t) ·
{
g([[sP]]s, σj) + γ2 min

π̄∈2A([[t]]s)\∅
Qμ∗

2 (t, π̄),

}
.

Assumption 2 means that the action σ is selected with

probability 1 at the state sP from the pattern π in such a

way that it is the highest priority among actions achieving

the minimum expected discounted sum of the costs. This

assumption is made for simplicity. Note that the probability

Pro in the optimal Bellman equation depends on the expected

discounted sum of the control costs.

Using Assumptions 1 and 2, we rewrite Qμ∗
1i (sP , π) as

follows.

Qμ∗
1i (sP , π) =

∑
t∈SP

Pro (sP , π, t) {R1i (sP , π, t) +

γ1 max
π̄∈2A([[t]]s)\∅

Qμ∗
1i (t, π̄)}

=
∑
t∈SP

[
∑
σ∈π

P1 (sP , π, σ)P2 (sP , σ, t) ·

{R (sP , π) +W i
P (sP , t) +

γ1 max
π̄∈2A([[t]]s)\∅

Qμ∗
1i (t, π̄)}]

= R (sP , π) +∑
σ∈π

P1 (sP , π, σ)T
μ∗
i (sP , σ), (2)

where

Tμ∗
i (sP , σ) =

∑
σ∈π

Pa (sP , π, σ)
∑
t∈SP

P2 (sP , σ, t) ·
{
W i
P (sP , t) + γ1 max

π̄∈2A([[t]]s)\∅
Qμ∗

1i (t, π̄)

}
.

We learn P1 and Tμ∗
i in order to calculate Qμ∗

1i from (2). Note

that R is given before learning.

From the above discussion, the controller makes two deci-

sions sequentially in the modified MDP P with Acci as shown

Fig.1. Such sequential decision making is different from that

in normal MDPs. For the two kinds of value functions Qμ∗
1i

and Qμ∗
2 , we learn an optimal policy as follows. An optimal

pattern at the state sP for the acceptance condition AcciP is

given as follows.

μ∗1(sP) = πj∗ ,

where

j∗ = min arg max
j∈{j | πj∈2A([[sP]]s)\∅}

max
i
Qμ∗

1i (sP , πj).

An optimal action at the state sP for the acceptance condition

AcciP under the optimal pattern μ1(sP) is given as follows.

μ∗2(sP) = opt action∗ (sP , μ1(sP)) .

Therefore, we obtain the following optimal control policy

μ∗(sP) at each state sP .

μ∗(sP) = (μ∗1(sP), μ
∗
2(sP)).

Note that, even if the pattern μ∗1(sP) contains an action

that leads to the non-acceptance transition or transitions to

a livelock state, the action dose not tend to be selected as

the action μ∗2(sP) at the second decision making because the

expected discounted sum of the control costs for such an action

is not minimum in the pattern μ∗1(sP). We learn an optimal

policy by optimizing these value functions.

Finally, we introduce a method for checking whether an MC

Pμ generated by a policy μ and a product MDP P satisfies ϕ
with probability 1. The set SP of states of Pμ is partitioned

into a disjoint union of transient states Traμ and irreducible

sets of recurrent classes Recjμ as follows [26].

SP = Traμ �Rec1μ � · · · �Recnμ.
We check whether Pμ satisfies ϕ with probability 1 by

computing strongly connected components of Pμ [1].

Proposition 1: Consider the MDP M and the LTL formula

ϕ. Let P be the modified product of M and Rϕ, and μ
be a policy. Mμ satisfies ϕ with probability 1 iff for all

j ∈ {1, . . . , n}, there exists (Gi,Bi) ∈ AccP such that

Bi ∪ Tranrec
μ,j = ∅ and Gi ∪ Tranrec

μ,j �= ∅, where

Tranrecμ,j = {(sP , s′P) | ∃s′P s.t. (sP ∈ Recjμ,
s′P ∈ Recjμ) ∧ PP(sP , μ(sP), s′P) > 0}.

The proof of Proposition 1 is shown in Appendix A. We

check whether the policy satisfies the LTL formula based on

Proposition 1.

Shown in Algorithm 1 is a modified temporal difference

learning algorithm. Shown in Algorithm 2 is an update algo-

rithm used in Algorithm 1. It is assumed that the transition

probabilities and the control cost function of M are unknown

a priori. Let α1 and α2 ∈ [0, 1] be the rates of the update of

552

Algorithm 1: A proposed algorithm based on RL for P
Input : s′P // A current state on P
Output: a′ // A selected action at s′P
Persistent variables:

• Functions Q2, Ti, Q1i, R2i, RCOST , P ro1, P ro2 are

initialized as 0.

• A frequency counter table of a pair of a state [[sP]]s
and an action a Nsa([[sP]]s, a) is initialized as the empty

table.

• A frequency counter table of a pair of ([[sP]]s, a) and

[[sP]]′s Ns′|sa([[sP]]s, a, [[sP]]′s) is initialized as the empty

table.

• An Estimated optimal policy μop = (μ1op, μ2op) is

initialized.

• sP , π and a are initialized as NULL.

1 if ResetConditionMet() returns TRUE then
2 s′P =ResetRabinState(s′P);

3 else if sP �= NULL then
4 UpdateFunctions(sP , a, s′P);

// See algo. 2
5 μ1op(sP) = opt pattern (sP);
6 μ2op(sP) = σ s.t. Pro1(sP , πop(sP), σ) = 1;

7 if s′P has already visited before then
8 π′ is updated from μ1op(s

′
P) using the ε-greedy

method and a′ is updated s.t. Pro1(s
′
P , π

′, a′) = 1.;

9 else
10 π′ is updated at random and a′ is determined from π′

at random.;

11 sP = s′P , π = π′, a = a′;

Q1i and Q2, respectively. The function ResetConditionMet() at

line 1 in Algorithm 1 returns TRUE if the behavior is livelock

in a sufficiently long specified time interval. The function

ResetRabinState(s′P) at line 2 in Algorithm 1 initializes the

current state of Rϕ. Using these functions, the agent avoids

visiting states that need not explore. These functions are valid

when ϕ is constructed from FGϕ′, GFϕ′, Fϕ′, or Gϕ
because the updates of estimation functions are independent

of the initial state for these formulas. The function opt action

used at line 12 in Algorithm 2 is defined as follows.

opt action (sP , π) = σj∗

where

j∗ = min arg min
j∈{j | σj∈π}

∑
t∈P

Pro2 (sP , σj , t) ·
{
RCOST ([[sP]]s, σj) + γ2 min

π̄∈2A([[t]]s)\∅
Q2(t, π̄)

}
.

The function opt pattern used at line 5 in Algorithm 1 is

defined as follows.

opt pattern (sP) = πj∗

Algorithm 2: An update function of Nsa, Ns′|sa, Pro2,

RCOST , Q2, Pro1, Ti and Q1i : UpdateFunctions(sP , a,

s′P)

Input : sP , a and s′P
Output: NULL

Persistent variables:

• Functions Q2, Ti, Q1i, R2i, RCOST , P ro1, P ro2 are

common to ones in Algorithm 1.

• Tables Nsa and Ns′|sa are common to ones in

Algorithm 1.

1 Nsa([[sP]]s, a)← Nsa([[sP]]s, a) + 1;

2 Ns′|sa([[sP]]s, a, [[s′P]]s)← Ns′|sa([[sP]]s, a, [[s′P]]s) + 1;

3 for all t s.t. Ns′|sa([[sP]]s, a, [[t]]s) �= 0 ∧ [[t]]q =
δ([[sP]]q,L([[t]]s)) do

4 Pro2(sP , a, t)←
Ns′|sa([[sP]]s, a, [[t]]s)/Nsa([[sP]]s, a);

5 RCOST ([[sP]]s, a)← g([[sP]]s, a);
6 if Updating Q2(sP , π) is the first time. then
7 Q2(sP , π)← RCOST ([[sP]]s, a);
8 else
9 Q2(sP , π)← Q2(sP , π) +

α2[minσ∈π
∑

t∈SP Pro2(sP , σ, t)(RCOST ([[sP]]s, σ)+
γ2 minπ̄∈2A([[t]]s)\∅Q2(t, π̄))−Q2(sP , π)];

10 for all t ∈ SP , π̄ ∈ 2A([[t]]s) \ ∅ s.t. ([[t]]s = [[sP]]s ∧ a ∈
π̄) ∨ (∃σ ∈ π̄ s.t. Pro2(t, σ, sP) �= 0) do

11 for all σ ∈ π̄ do
12 if σ = opt action(t, π̄) then
13 Pro1(t, π̄, σ) = 1;

14 else
15 Pro1(t, π̄, σ) = 0;

16 for all i ∈ {1, . . . , nAcc} do
17 R2i(sP , s′P)←W i

P(sP , s
′
P);

18 if Updating Ti(sP , a) is the first time then
19 Ti(sP , a)← R2i(sP , s′P);
20 else
21 Ti(sP , a)← Ti(sP , a) + α1[R2i(sP , s′P) +

γ1 max
π̄∈2A([[s′P]]s)\∅Q1i(s

′
P , π̄)− Ti(sP , a)];

22 for all ∀t ∈ SP , π̄ ∈ 2A([[t]]s) \ ∅ s.t. (t = sP ∧ a ∈
π̄) ∨ (∃σ ∈ π̄ s.t. Pro2(t, σ, sP) �= 0) do

23 Q1i(t, π̄)←
R(t, π̄) +

∑
σ∈π̄ Pro1 (t, π̄, σ)Ti (t, σ)/;

where

j∗ = min arg max
j∈{j | π̄j∈2A([[sP]]s)\∅}

max
i
Q1i(sP , π̄j).

V. ILLUSTRATIVE EXAMPLE

In this section, as an example, we consider a 5 × 5 grid

world, which is given in [20], where an agent is required to

visit cells labeled A and B infinitely often, while avoiding

553

Fig. 2: A grid world example with arrows implies control costs

1000. An initial state’s location is (0, 3) denoted by a solid

square.

Fig. 3: A DRA constructed from ϕ. There is only one valid ac-

ceptance condition. Blue, red and black arrows represent non-

acceptance, acceptance, and neutral transitions, respectively.

cell labeled C. This requirement is described by the following

LTL formula ϕ.

ϕ = GFA ∧ GFB ∧ G¬C.
Fig. 3 shows the DRA constructed from ϕ. The agent selects

an action from 4 actions in each cell: upper right, lower right,

lower left, and upper left. The action ”Upper right” causes the

agent to move rightward, upward, and remain stationary with

probability (w.p.) 0.4, 0.4, and 0.2, respectively. The agent

does not move upper-leftward because a probability such that

the agent moves to it in one step is 0. If a wall is located in

the agent’s right cell, the agent moves upward w.p. 0.8 and

remains stationary w.p. 0.2. If it is located above, the agent

moves rightward w.p. 0.8 and remains stationary w.p. 0.2. If

the agent is in the upper right corner, it remains stationary w.p.

1. The probabilities for the other actions are determined in the

same way. The yellow arrows in the Fig. 2 represent control

costs of 1000. When the agent selects an action corresponding

to the arrow, it obtains the control cost. When the agent selects

the others, the obtained control cost is 0.

Simulation parameters are set as follows. For both cases

(a) and (b), the number of the steps in each episode is 1000,

the function ResetConditionMet() returns TRUE if the agent

is in a livelock state by 4 steps, the positive reward ωG is

100, the negative reward ωB is −1000, the constant RC is

−6, the discount rates are γ1 = γ2 = 0.99 and ε = 1. For the

case (a), the maximum values of the learning rates α1 and α2

are 0.1, their minimum values are 0.01. For the case (b), the

maximum values of the learning rates α1 and α2 are 0.1, their

(a) episodes=1000 (b) episodes=50000

Fig. 4: Simulation results of the projection of the run for 5000

steps by the estimated optimal policy.

0

0.2

0.4

0.6

0.8

1

0 200 400 600 800 1000

ra
ti
o

episode

(a) episodes=1000

0

0.2

0.4

0.6

0.8

1

0 10000 20000 30000 40000 50000

ra
ti
o

episode

(b) episodes=50000

Fig. 5: Simulation results of concordance ratio between a

obtained optimal action and a calculated optimal action by

DP.

�����

����	

������

����	

Fig. 6: A sample path for the generated policy of the case (b).

minimum values are 0.0001. We linearly decreased the rates

while learning the policy.

Shown in Fig. 4 are the results of the learning algorithm.

The arrows represent direction for which the agent moved for

5000 steps by the obtained optimal policy from the initial

state. We confirmed that both policies satisfy the LTL formula

ϕ with probability 1. Shown in Fig. 5 is a ratio η defined by

the following equation for each episode ep.

η(ep) =
X1(ep)

X21(ep)−X22(ep)
,

where X1(ep) is the number of times that matched between

a obtained optimal action and an optimal action calculated

by dynamic programming(DP) at the non-livelock state in the

episode ep, the livelock state is a state sP such that [[sP]]q = q6
in this example, X21(ep) is the total number of steps in the

episode ep, that is, X21(ep) equals to 1000, X22(ep) is in the

episode ep the number of times that the agent is in the livelock

state. Shown in Fig. 6 is a sample path for the obtained policy

of the case (b). As you can see on cell (1, 1), the optimal

554

policy depend on a past behavior of the agent.

VI. CONCLUSION

We considered an uncertain MDP with control cost and

an LTL control specification. We have proposed a method

for designing a policy based on RL such that the controlled

modified product MDP satisfies the control specification with

probability 1 and the policy minimizes the expected discounted

sum of the costs. In the method, we transformed the problem

into the optimization of the value functions and we applied

temporal difference learning algorithm. It is future work to

prove a condition for which the proposed algorithm obtains an

optimal policy. It is also future work to prove the convergence

of the value function about control costs.

ACKNOWLEDGMENT

This research was supported in part by JSPS KAKENHI

Grant Number 24360164.

REFERENCES

[1] C. Baier and J. Katoen, Principles of Model Checking, The MIT Press,
2008.

[2] W. Tichakorn, T. Ufuk, and M. M. Richard, “Receding Horizon Tempo-
ral Logic Planning,” IEEE Trans. Automat. Contr., vol. 57, no. 11, pp.
2817–2830, 2012.

[3] X. Ding, M. Lazar, and C. Belta, “LTL receding horizon control for
finite deterministic systems,” Automatica, vol. 50, no. 2, pp. 399–408,
2014.

[4] E. M. Wolff, U. Topcu, and R. M. Murray, “Robust control of uncertain
Markov Decision Processes with temporal logic specifications,” in Proc.
51th IEEE Conference on Decision and Control, pp. 3372–3379, 2012.

[5] S. Jiang and R. Kumar, “Supervisory Control of Discrete Event Systems
with CTL* Temporal Logic Specifications,” SIAM Journal on Control
and Optimization, vol. 44, no. 6, pp. 2079–2103, 2006.

[6] S. Karaman and E. Frazzoli, “Sampling-based Motion Planning with
Deterministic μ-Calculus Specifications,” in Proc. 48th IEEE Conference
on Decision and Control, pp. 2222–2229, 2009.

[7] E. F. Gerogios, G. Antoine, K. Hadas, and J. P. George, “Temporal
logic motion planning for dynamic robots,” Automatica, vol. 45, no. 2,
pp. 343–352, 2009.

[8] E. F. Gerogios and J. P. George, “Robustness of Temporal Logic Speci-
fications for Continuous-Time Signals,” Theoretical Computer Science,
vol. 410, no. 42, pp. 4262–4291, 2009.

[9] M. Kloetzer and C. Belta, “A Fully Automated Framework for Control
of Linear Systems from Temporal Logic Specifications,” IEEE Trans.
Automat. Contr., vol. 53, no. 1, pp. 287–297, 2008.

[10] I. Filippidis, D. V. Dimarogonas, and K. J. Kyriakopoulos, “Decentral-
ized multi-agent control from local LTL specifications,” in Proc. 51th
IEEE Conference on Decision and Control, pp. 6235–6240, 2012.

[11] M. Lahijanian, S. B. Andersson, and C. Belta, “A Probabilistic Approach
for Control of a Stochastic System from LTL Specifications,” in Proc.
48th IEEE Conference on Decision and Control, pp. 2236–2241, 2009.

[12] M. Svorenova, I. Cerna, and C. Belta, “Optimal Temporal Logic Control
for Deterministic Transition Systems With Probabilistic Penalties,” IEEE
Trans. Automat. Contr., vol. 60, no. 6, pp. 1528–1541, 2015.

[13] A. Sakakibara, S. Pruekprasert, and T. Ushio, “Optimal Directed Control
of Discrete Event Systems with Linear Temporal Logic Constraints,” to
appear in Proc. ETFA, 2015.

[14] X. Ding, S. L. Smith, C. Belta, and D. Rus, “Optimal Control of Markov
Decision Processes With Linear Temporal Logic Constraints,” IEEE
Trans. Automat. Contr., vol. 59, no. 5, pp. 1244–1257, 2014.

[15] A. Nilim and L. El Ghaoui, “Robust Control of Markov Decision
Processes with Uncertain Transition Matrices,” Oper. Res., vol. 53, no.
5, pp. 780–798, 2005.

[16] C. G. Cassandras and S. Lafortune, Introduction to Discrete Event
Systems, 2nd ed. Springer, 2006.

[17] M. Y. Vardi, “An Automata-Theoretic Approach to Linear Temporal
Logic,” Banff Higher Order Workshop 1995, pp. 238–266, 1995.

[18] S. Safra, “On the complexity of omega -automata,” in Proc. 29th IEEE
Annual Symposium on Foundations of Computer Science, pp. 319–327,
1988.

[19] J. Esparza and J. Kretı́nský, “From LTL to Deterministic Automata: A
Safraless Compositional Approach,” CoRR, vol. abs/1402.3388, 2014.

[20] D. Sadigh, E. S. Kim, S. Coogan, S. S. Sastry, and S. A. Seshia, “A
Learning Based Approach to Control Synthesis of Markov Decision
Processes for Linear Temporal Logic Specifications,” in Proc. 53rd IEEE
Conference on Decision and Control, pp. 1091–1096, 2014.

[21] A. Jones, D. Aksaray, Z. Kong, M. Schwager, and C. Belta, “Enforcing
temporal logic specifications via reinforcement learning,” in Proc. 18th
International Conference on Hybrid Systems : Computation and Control,
pp. 279–280, 2015.

[22] D. P. Bertsekas, Dynamic Programming and Optimal Control, vol. 1,
3rd ed. Athena Scientific, 2005.

[23] R. S. Sutton and A. G. Barto, Introduction to Reinforcement Learning,
A Bradford Book, 1998.

[24] T. Ushio and T. Yamasaki, “Supervisory control of partially observed
discrete event systems based on a reinforcement learning,” in Proc.
International Conference on Systems, Man, and Cybernetics, pp. 2956–
2961, 2003.

[25] T. Ushio and T. Yamasaki, “Reinforcement Learning of Optimal Super-
visor Based on Laguage Measure,” in Proc. 44th IEEE Conference on
Decision and Control and European Control Conference, pp. 126–131,
2005.

[26] D. Richard, Essentials of stochastic processes, 2nd ed. Springer, 2012.

APPENDIX A

PROOF OF PROPOSITION 1

From Definition 1, we obtain the following fact:

Fact 1: If

Pr({rμδ : ∃Acci× s.t. inf(rμδ) ∩Gi �= ∅ ∧
inf(rμδ) ∩Bi = ∅}) = 1,

then controlled Mϕ satisfies ϕ with probability 1, where rμδ
is a sequence of transitions of Pμ.

(⇐) : Suppose that for all j ∈ {1, . . . , n}, there exists

(Gi,Bi) ∈ AccP such that Bi ∩ Tranrecμ,j = ∅ ∧ Gi ∩
Tranrec

μ,j �= ∅, we have Pr({rμδ : ∃Acci× s.t. inf(rμδ) ∩ Gi �=
∅ ∧ inf(rμδ) ∩ Bi = ∅}) = 1. By Fact 1, we have the

conclusion.

(⇒) : we prove by contradiction. Suppose that Mμ satisfies

ϕ with probability 1 and there exists j ∈ {1, . . . , n} such that

for all (Gi,Bi) ∈ AccP , Bi∩Tranrec
μ,j �= ∅ or Gi∩Tranrecμ,j =

∅. We consider the case where Bi∩Tranrecμ,j �= ∅ holds. Then,

Pr({rμδ : ∃Acci× s.t. inf(rμδ) ∩Gi �= ∅ ∧
inf(rμδ) ∩Bi = ∅})

≤ Pr({rμδ : ∃Acci× s.t. inf(rμδ) ∩Bi = ∅})
< 1 (∵ Bi ∩ Tranrec

μ,j �= ∅) (3)

From Fact 1 and Eq. (3), we have a contradiction. We consider

the case where Gi ∪ Tranrec
μ,j = ∅ holds. Then, by the similar

discussion, we have a contradiction.

Therefore, Proposition 1 holds.

555

