
A Policy Gradient with Parameter-based Exploration
Approach for Zone-heating

Kevin Van Vaerenbergh∗, Yann-Michaël De Hauwere∗, Bruno Depraetere†, Kristof Van Moffaert∗, Ann Nowé∗
∗Artificial Intelligence Lab, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium

Email: {kevvaere,ydehauwe,kvmoffae,anowe}@vub.ac.be †Flanders’ Make, Campus Arenberg, Celestijnenlaan 300

- bus 4027, B-3001 Heverlee, Belgium

Email:bruno.depraetere@flandersmake.be

Abstract—Heating a home is an energy consuming task. Most
thermostats are programmed to turn on the heating at a par-
ticular time in order to reach and maintain a predefined target
temperature. A lot of energy is often wasted since most of these
thermostats do not take energy consumption into account but
are only concerned with reaching the target temperature. In this
paper we present a learning approach based on policy gradient
with parameter estimations to balance user comfort with energy
consumption. Our results show that our approach is capable of
offering good trade-off solutions between these objectives.

I. INTRODUCTION

Most households have some form of HVAC (Heating, Ven-
tilation and Air Conditioning) system installed to control the
inside temperature. Whether it is through air conditioning
in warmer regions or central heating in colder regions or
sometimes both. These systems are typically installed and
configured by a technician and many people never change its
settings. However, people may change their habits over time
due to changes in their commute, children growing up or any
other changes in schedule. So what might have been reasonable
at the time of installation, may not be suitable anymore after
some time. Furthermore, initially misconfigured systems can
be energy-inefficient. Finding a good trade-off between user
comfort and energy efficiency is not an easy task, especially
not when attempting to balance these manually.

Several approaches for dealing with multi-objective prob-
lems exist. The most intuı̈tive way is to use a scalarisation
function [1] to transform the multi-objective problem to a
standard single-objective problem, which can be solved by
traditional techniques. This approach is called a single-policy
mechanism as the algorithm will only converge to a single
solution for a particular scalarisation function. In order to find
multiple trade-off solutions, one would typically use several
scalarisation functions with different weighting parameters and
combine the results.

In this paper, we discuss the use of Reinforcement Learning
(RL), more specifically Policy Gradient with Parameter-based
Exploration (PGPE) with a scalarisation function to guide
a Model Predictive Controller (MPC) for a zone heating
scenario in which user comfort and energy consumption are
to be leveraged and optimised. Reinforcement learning [2] is

a machine learning technique that involves an agent operating
in a (possibly unknown) environment and receiving a scalar
feedback signal for its behaviour. By sampling actions and
observing the feedback signal the agent adjusts its estimate of
the quality of an action.

The remainder of this paper is organised as follows. In
Section II we introduce the necessary background information
for our approach. We discuss our approach and experimental
setup in Section III together with other work that has been
performed in this domain. Next, we present the results of our
approach in Section IV. Finally, we conclude this paper with
a summary and possible avenues for future research.

II. BACKGROUND ON LEARNING APPROACH

A. Reinforcement Learning (RL)
RL problems [2] are a class of machine learning problems

where an agent must learn to interact with an unknown
environment, using a “trial and error” approach. At a given
time-step t, the agent may execute one of a set of actions
a ∈ A, possibly causing the environment to change its state
s ∈ S , and generate a (scalar) reward r ∈ R. Both state
and action spaces can be multidimensional, continuous or
discrete. An agent’s behaviour is represented by its policy,
mapping states to actions. The aim of a RL algorithm is to
optimise the policy, maximising the reward accumulated by the
agent. Simply stated, RL consists in learning from a teacher
(the environment) who cannot tell us what to do next (the
optimal policy), but only how good we are doing so far (the
reward signal). It therefore offers a suitable tool for controlling
systems with limited feedback information: the target state at
the sensor location(s) can be incorporated in the reward signal,
favouring the desired behaviour.

Two main families of RL approaches can be distinguished.
In value based methods, such as Q-learning, the maximum
expected future reward Q∗(s, a) obtained by taking action a
in state s is estimated: the policy consists of selecting the
action a which maximises Q∗ in the current state s. This
can be done by storing and updating estimates in tabular
form (which is often used in discrete state spaces), or by
using function approximators if A and S are too big, or
continuous. In direct policy search, the space of policies is
searched directly in an attempt to maximise the reward: for
example, in Policy Gradients (PG) methods [3], the policy is

2015 IEEE Symposium Series on Computational Intelligence

978-1-4799-7560-0/15 $31.00 © 2015 IEEE

DOI 10.1109/SSCI.2015.88

556

���

��

��	
��	
 ��	
�

Fig. 1: Block representation of RL. Env: environment being
controlled. Π: policy (controller), generating the action (control
signal) a(t) given the current state of the system s(t); RL:
learning algorithm, adapting the policy based on state, action,
and reward signals. Continuous lines indicate online interac-
tions, while discontinuous lines refer to the learning process,
which can be online or offline, depending on the particular
algorithm.

represented as a parametric probability distribution over the
action space, whose parameters are updated following a Monte
Carlo estimate of the expected reward.

In both value based and policy based methods, learning is
done using a sequence of epochs, each consisting of one or
multiple interactions with the environment.

In this paper, we apply an existing variant of the Policy
Gradient (PG) method, called PGPE[4]. In this approach, the
parameters of a controller are adapted based on the return
collected during the whole epoch, regardless of the trajectory
in the state space. In the remainder of this section we briefly
describe PGPE, referring the reader to [4], [5] for further
details.

B. PG with parameter exploration (PGPE)

In PG methods, the policy is represented as a parametric
probability distribution over the action space, conditioned on
the current state of the environment. Epochs are subdivided
into discrete time-steps: at every step, an action is randomly
drawn from the distribution, conditioned by the current state,
and executed in the environment, which updates its state ac-
cordingly. After an epoch has been completed, the parameters
of the policy are updated, following a Monte Carlo estimate
of the expected cumulative (discounted) reward.

A major disadvantage of PG methods is that drawing a
random action at every time-step may result in noisy control
signals ([6]), as well as noisy gradient estimates. Moreover,
the policy is required to be differentiable w.r.t. its parameters.

0 1

π0

a0

μ0

σ0

0 1

π0

a0

∂p(a0)
∂μ

∂p(a0)
∂σ

0 1

π0

π1

a0

μ1

σ1

Fig. 2: A simple example illustrating the effect of one step
of PGPE, with no state information and single stage epochs
(T = 1). A single policy parameter A = [0, 1] is sampled
from a Gaussian prior π, with θ = (μ, σ). Left: the first
epoch is executed, drawing a parameter value a0 ∼ π0(a),
and observing a return R0. Center: as R0 > b, following the
gradient (1) increases π(a0). Right: updated prior π1, ready
for the next epoch.

To overcome these issues, PGPE was introduced [7], [4].
In this method, the random sampling and policy evaluation
steps are, in a sense, “inverted”: the policy is a parametric
function, not necessarily differentiable, therefore it can be an
arbitrary parametric controller; the parameter value to be used
is sampled at the beginning of each epoch from a Gaussian
distribution, whose parameters are in turn updated at the end
of the epoch, again following a Monte Carlo estimate of the
gradient of the expected return. In other words, rather than
searching the parametric policy space directly, PGPE performs
a search in a “meta-parameter” space whose points correspond
to probability distributions over the parametric policy space.

To simplify notation, we consider a parametric policy fa
with a scalar parameter a. Be α = (μ, σ) the meta-parameter
defining the Gaussian distribution pα(a) over parameter val-
ues. The index we intend to maximise is the expected value
of the return R given a, J = E{R|a}. The gradient of this
expected return J with respect to the meta-parameter α can
be estimated as follows (see [4] for details):

∇αJ ≈ 1

N

N∑
n=1

∇α log pα(a
n)(Rn − b), (1)

where θn is the parameter used at the n-th of the N epochs
considered (typically N = 1), and b is a baseline return, which,
in the simplest case, is the average return observed so far. Fig. 2
illustrates the effect of a single step of PGPE.

C. Multi-Objective Optimisation
In a multi-objective optimisation (MOO) ([8]) problem we

want to optimise a vector function with each element represent-
ing an objective. When wanting to maximise the problem, we
maximise the function F(x) = max{f1(x), f2(x), ..., fm(x)}
where m represents the number op objectives and f i is the
value of the i-th objective. A Pareto dominant solution x1,

557

dominates another solution x2 iff there exists one objective i,
for which f i(x2) < f i(x1) and f j(x2) ≤ f j(x1) is valid for
all other objectives. The collection of non-dominated, optimal
solutions is referred to a the Pareto front. When optimising a
solution in a multi-objective environment, conflicts can arise
while optimising the objectives simultaneously. In such case a
trade-off between the different objectives must be learned.
Multi-Objective Reinforcement Learning
Different from single-objective learning, multi-objective learn-
ing consists of an objective space with more then one dimen-
sion. Therefore the return of such a problem provides a vector
of rewards:

R(si, ai) = (R1(si, ai), . . . Rm(si, ai)) (2)

where m represents the number of objectives. A solution for
a multi-objective problem is a policy π, evaluated using the
expected return Jπ:

Jπ ≡
[
E

[∞∑
t=0

γtR1(st, π(st))

]
, . . . , E

[∞∑
t=0

γtRm(st, π(st))

]]

(3)
In general, it is a vector with an expected return for each
objective.

In a multi-objective environment, a solution π1 can only
dominate another policy π2 when the reward is greater for at
least one objective and not strictly less for every other objective
in π1. Two solutions are incomparable when they each improve
the solution in one objective where the other solution does not
do better in the same objective.
Scalarised MORL
Most work in multi-objective reinforcement learning uses
scalarisation functions [9] to reduce the dimensionality of the
multi-objective environment. A linear scalarisation function is
often used to reduce the objective space, where the main focus
can be set by appointing a higher weight value to the objective
that is of greater importance. This gives the user some control
over the solution. Applying a scalarisation function s on a m-
dimensional reward vector V using a weight vector w, a value
Vw is calculated using the following:

Definition A scalarisation function s is a function that projects
a vector V to a scalar

Vw = s(V,w) (4)

where w is a weight vector parametrising s.

III. APPROACH

A. Goals and objectives

The main focus of this research lies on adaptability of HVAC
systems to user demand patterns and user preferences, i.e.
tailoring of the performance of these systems to the specific
circumstances imposed on them by their everyday use. By
taking into account patterns in user behaviour and expectations,
system usage can be optimised, both in the service provided
by the system to the end user, and the resources needed to
keep the system running. In this paper we focus specifically on

thermostats for zone heating in households. As already men-
tioned, these systems are typically installed by technicians who
adopt a kind of default setting which will suit most people. In
general, several parameters have to be configured: the desired
target temperature, the time when the heating should begin,
the time when the heating can be turned off. Using incorrect
values for these parameters will result in either energy loss
when the system is heating when no user is present, or when a
predefined target temperature was programmed that is too high,
or when the heating is turned on too late, all will result in user
discomfort. Our goal is to optimise these parameters based on
the actual user behaviour and his preferences. This means that
we allow our learning approach to decrease/increase the time
when the system should start heating and decrease/increase the
target temperatures. At the end of this section, we illustrate in
more detail how this is achieved with PGPE and how these
two objectives are leveraged to obtain a policy which aims
at satisfying the preferences of the user and decreasing the
energy consumption. A secondary goal is to minimise the cost
of learning. This means that we will try to disturb the user of
the system as little as possible by trying to stay in the pre-
defined comfort zone of the user.

B. Related work

Zone heating is not a recent domain of research and has
already been investigated for decades to attempt to improve
basic thermostats in which a typical on/off schedule is pro-
grammed. Two main tracks of research can be identified.
First, a lot of research has been performed on training con-
trollers for households such that a target temperature can be
reached by a certain time. Since a thermostat does not have
access to a full thermal model of the house, which includes
insulation, orientation and windows, ... , reaching these targets
is a difficult task. Several approaches exist based on genetic
algorithms [10], fuzzy PD-control [11], model predictive con-
trol [12] and reinforcement learning [13]. More recently, many
companies have jumped on this zone heating track by releasing
so-called smart thermostats, that optimise the moment in time
when the heating system should have reached a particular
temperature. The definition of smart, however, is ambiguous.
In many of these systems, the concept of smart indicates the
ability to control the heating system from a remote location and
manually ensure that energy can be conserved. Other systems
will use presence sensors and some learn to achieve the desired
temperature by the time the user arrives. This usually comes
at a cost in terms of energy efficiency and sometimes user
comfort if no user walks in front of the presence sensors for
some time. Our research is located in this second track of
research, where we will optimise both target time and target
temperature while actively try to optimise energy consumption.

C. Approach

Contrary to [13], reinforcement learning can also be applied
as global learner that defines a control policy that is used by
an underlying controller. For this simulation we used a model
predictive controller (MPC) as this underlying controller. The

558

defined control policy is a set of target temperatures that
must be reached at a certain point in time, and these target
temperatures are passed onto the MPC controller. Based on
these values, it determines the necessary control actions to
ensure the control policy is applied correctly. .

MPC is a model-based control strategy [14]. It relies on a
dynamic thermal model of the room under control, including
the heater elements and any thermal interactions with the
outside (losses for example). By using this model, the future
behaviour for any set of control signals can be predicted. This
is then used to solve a numerical optimisation, in which the
set of control signals is looked for that optimises a criterion
of the predicted values (cost function), such as the difference
between the target temperature and the realised one, while
also taking into account any system limitations (equality or
inequality constraints). As a result, the main advantage of MPC
is that it takes future time-steps into account when optimising
the current control value. This then allows to for example
anticipate on a future requested temperature increase, and to
already heat up ahead of time, thus reducing discomfort. This
is an important advantage not available to many alternative
control methods such as PID control, on/off control and
deadband control [15], [16], [17], and will become more and
more relevant due to more energy efficient houses being built
with smaller heater powers, making it needed to anticipate
further ahead. Another advantage is that MPC offers a very
flexible framework. We can easily add more terms to the
cost function to for example include penalties for when the
temperature is too high, or add thermal comfort constraints
that ensure the temperature is never more than 5 ◦ C below
the reference temperature. Another extension that could be
applied would be to solve the problem in a stochastic sense,
for example optimising the control given a 50% probability of
temperature reference 1 being applicable and a 50% probability
of reference 2.

Even though MPC relies on a dynamic thermal model, it
is generally not sensitive to the quality of the model. This
can be explained by the fact that, after optimisation, only
the first value of the calculated control sequence is applied,
the system’s output is recorded, and the optimisation problem
is resolved, now looking ahead one step further. Because
this problem is recalculated at every step, and because it
is always initialised to match the currently observed system
output, this approach becomes capable of reacting to observed
differences between model and plant, thus introducing a type
of feedback, and thus reducing the sensitivity to model-plant
mismatch [14]. Better models are desirable, as these will lead
to more accurate predictions and thus better results, but for
zone-heating this is not a real issue, since the overall behaviour
can be modelled relying on linear models, which can easily be
identified experimentally during normal machine operation.

As global controller we use the policy gradient with
parameter-based exploration algorithm to learn when the ther-
mostat should start heating the house and what its target
temperature should be, such that the user is satisfied with both
the comfort level of the environment as well as the power
consumption required to achieve this comfort level. The RL
algorithm uses a policy that is adjusted during the experiments.

The initial policy is a reference trajectory generated based on
different temperature/time-step pairs. Every pair is a temper-
ature that the controller has to reach at a certain time-step.
Using these pairs, we generate a trajectory which has a target
temperature for every time-step (60 seconds). To facilitate
the learning process, the whole trajectory is represented by 9
different temperature/time-step pairs. These 9 pairs represent
the important temperatures or time shifts in the trajectory.
These points represent the policy that our PGPE algorithm will
adjust to achieve the best trajectory given a certain trade-off
between personal comfort and energy efficiency.

To generate a trajectory, 9 target temperatures and 9 time-
steps must be chosen. Choosing a value for these parameters
is done by sampling a value from a Gaussian distribution over
each parameter. At the start of every experiment we have to
define initial value μ and the variance σ, for each parameter.
When the user does an override, the search space is reduced
by removing the part of the search space that does not respect
the comfort of the user. i.e.: it the user thinks it is to hot, an
override will tell the algorithm that future action, higher then
the current chosen one will result in an override. Therefor these
actions are dismissed from the future search space.

D. Experimental setup
We tested our approach on a Matlab simulation of a small

office with one person working on his computer. The goal is
to heat up the office respecting the trade-off chosen between
energy efficiency and user comfort. The person simulated is
a standard user who will manually adjust the current target
temperature when it is 2◦C to warm or to cold. This manual
override will result in an immediate change to the wanted
temperature. When an override occurs, the reward for that
trajectory will be severely punished.

At the start of each day, the PGPE algorithms samples
a value from the distribution representing the 9 target tem-
peratures that must be reached. A full reference trajectory
is generated for every time-step (60 seconds) with a target
temperature. We use a MPCl controller to achieve those
temperatures. When a day is simulated, we calculate a reward
based on the energy consumption and the difference between
the wanted temperature and the target temperature.

The Gaussian distribution over the target temperatures re-
sults in an acceptable adjustment of maximum 2◦C colder or
warmer. The distribution over the time-step varies between 20
minutes less or more.

The experiments done for this paper use a stateless PGPE
algorithm without symmetric sampling, a learning rate of 0.8
and an initial σ of 0.8.

IV. RESULTS

We experimented with two different initial trajectories; a
cold and a warm trajectory. This means that the initial trajec-
tory is too cold or too warm to be in the comfort zone of the
simulated person.

In both cases, we compare the learned trajectory after 200
epochs with different weights while also comparing the energy
profit with a standard manual thermostat setting. This standard

559

manual setting refers to a thermostat that starts heating when
the person is at home (manual enabling) or when the thermostat
is heating a fixed amount of minutes in advance. Each run
consists of sampling a trajectory, applying it for the whole
day and gathering a reward based on the energy consumed in
a day and the different between the wanted temperature and
the room temperature. For the energy consumed we sum the
wattage over a day. The comfort is calculated only when the
person is in the room.

In Fig. 3 we see the evolution from the initial trajectory,
which in this case is to cold, to the learned trajectories for
the different trade-offs between comfort and energy efficiency.
We compare three different weight settings; comfort 0.9 and
energy 0.1, comfort 0.5 and energy 0.5 and comfort 0.1 and
energy 0.9. Each weight selection converges to a different
reference trajectory based on the focus of the reward function.
When focussing on energy consumption, the converged trajec-
tory finds the lowest temperature that is still in the comfort
zone of the user. In this environment, the comfort zone is
1◦C more or less then the wanted temperature. If we focus
on comfort we need to converge to a reference trajectory
that perfectly follows the wanted temperature when the user
is present. Logically when choosing for a divide focus on
comfort and energy efficiency, we want the learned trajectory
to find a good trade-off between reaching a perfect comfort
and decreasing energy consumption were possible.

Fig. 4 compares the different trajectories found by the rein-
forcement learning algorithm when starting from a reference
trajectory that is to warm for the user. We compare using the
same weight settings as the previous experiment and can easily
conclude that even when starting from a warm trajectory, we
still find a good trajectory that fit the different user comfort
and energy efficiency trade-offs.

In table I we compare the average energy consumption for
different settings. The fixed begin will always start heating 1h
in advance to reach the target temperature before the user is
supposed to be home. The manual setting will start heating
the room when the user is at home. These two settings are
compared with the learned trajectories for the three differente
weight settings. When using the fixed begin thermostat setting

TABLE I: Table with a comparison of the consumed energy (in
Watt) for different focusses (energy, comfort and 50/50) and
standard settings (Start heating 1h in advance and reference
temperature set when user is home).

Ref. Traj. Energy

Fixed begin 466370W
Manual set 451090W
Focus energy 430780W
Focus comfort 449710W
50/50 432530W

we achieve a perfect comfort when we start heating 1h in
advance but consume a lot of energy. Manually setting the
thermostat at the wanted temperature when the user is home
results in a lower energy consumption then the fixed one but
still higher then the average of the learned trajectories. There
is also a difference between the learned trajectories. Obviously

the focus has a big impact on the energy consumption. Up to
30000W can be saved when the user is focussing on energy
efficiency.

These experiments show us that we can converge to a good
reference trajectory after 200 days of simulating which in real
life means that we have to learn for more then half a year.
We cannot ask the user to provide feedback during the whole
learning stage this is why the number of overrides need to
reach zero as fast as possible. In Figures. 5 and 6 we notice that
the number of overrides decreases very fast for each learning
process. Only during the first few days (30) we have some
overrides but this decreases very fast to reach zero. When we
focus on energy efficiency we see that a sporadic override still
occurs later because we want to minimise energy consumption
and therefor flirting with the limits of the comfort zone.

When learning a reference trajectory fitted for the needs
of the user, we do not want to bother the user to much as
such that he does not get annoyed by the system. Therefor
we added a little domain knowledge that uses the user’s
override and discards all the samples which will lead to the
same override. When we look at the different experiments, we
noticed that after 2 months the algorithm is stable enough to
learn while not interrupting the user and staying in his comfort
zone. This algorithm will continue learning until it reaches the
best possible reference trajectory or until the user’s behaviour
changes.

V. DISCUSSION

In most cases, a programmable thermostat will be able to
reach a given target temperature that is set by the end user. To
enjoy the comfort of a pre-heated room at a given temperature,
the user must program the thermostat to start heating at a
fixed amount of time before he is presumed to be at home.
This amount will vary given the exterior temperature and the
inertia of the home. We introduce a learning aspect to the
thermostat such that the user can easily choose between a
comfort and energy consumption. This trade-off will influence
the learning process of our algorithm and will result in a
reference trajectory that can be used by different controllers.

When heating a room we rely on user feedback to indicate
the level of comfort the user is willing to accept. In this
simulated environment, we set the comfort level at +1 and
−1◦C of his wanted temperature. This can vary between users,
causing a larger or smaller gain in energy consumption when
focussing on energy efficiency.

VI. SUMMARY

In this paper, we introduced a learning aspect to the zone-
heating case to reach a reference trajectory for heating a room
given a trade-off between user comfort and energy efficiency.
We compared different trade-offs between energy efficiency
and comfort using a certain weight value in a weighted sum
over the two reward (one for the comfort and one for the energy
used). We noticed that when focusing on energy, the learned
trajectory will reach the comfort limit to save energy avoiding
the manual override of the user. Logically, when focusing on

560

0 500 1000 1500
13

14

15

16

17

18

19

20

21

22
Comparison different reference trajectories (starting from cold trajectory)

Begin

TrajCold Focus:Energy

TrajCold Focus:50/50

TrajCold Focus:Comfort

Fig. 3: Comparison of learned trajectories w.r.t. different weight settings.

comfort, a trajectory is learned that fully satisfies the users
comfort, disregarding the energy usage.

To speed up the learning process we added domain knowl-
edge as such that we easily prune the search space and quickly
minimise the users overrides. After a few runs, the number
of overrides decrease to zero and the algorithm will continue
learning without disturbing the user.

VII. FUTURE WORK

For future work we want to expand our learning to take
into account a series of days that vary in outside temperature
and user comfort. When simulating a week with 7 different
days w.r.t. the outside temperature and when the user demands
a different comfort for weekdays and weekends, we cannot
focus on one reference trajectory. Therefor we will extend our
approach to use several trajectories, each with the probability
of a certain day of the week.

Currently we are only adjusting the temperature after an
override, while if the user does an override before we reach a
certain target temperature we can limit the search space of the
targets time to earlier points in time.

ACKNOWLEDGEMENTS

This research is supported by IWT-SBO project PERPET-
UAL. (grant nr. 110041).

REFERENCES

[1] K. Miettinen and M. M. Mkel, “On scalarizing functions in multi-
objective optimization,” OR Spectrum, vol. 24, pp. 193–213, 2002,
10.1007/s00291-001-0092-9.

[2] R. Sutton and A. Barto, Reinforcement Learning: An Introduction, ser.
Adaptive Computation and Machine Learning. Mit Press, 1998.

[3] J. Peters and S. Schaal, “Policy gradient methods for robotics,” in
Proceedings of the IEEE Intl. Conf. on Intelligent Robotics Systems
(IROS), 2006.

[4] F. Sehnke, C. Osendorfer, T. Rückstieß, A. Graves, J. Peters, and
J. Schmidhuber, “Parameter-exploring policy gradients,” Neural Net-
works, vol. 23, no. 4, pp. 551–559, 2010.

[5] M. Gagliolo, K. Van Vaerenbergh, A. Rodriguez, A. Nowé, S. Goossens,
G. Pinte, and W. Symens, “Policy search reinforcement learning for
automatic wet clutch engagement,” in 15th International Conference
on System Theory, Control and Computing — ICSTCC 2011. IEEE,
2011, pp. 250–255.

[6] R. Munos and M. Littman, “Policy gradient in continuous time,” Journal
of Machine Learning Research, vol. 7, pp. 771–791, 2006.

[7] F. Sehnke, C. Osendorfer, T. Rückstiess, A. Graves, J. Peters, and
J. Schmidhuber, “Policy gradients with Parameter-Based exploration
for control,” in ICANN ’08: Proceedings of the 18th international
conference on Artificial Neural Networks, Part I. Berlin, Heidelberg:
Springer-Verlag, 2008, pp. 387–396.

[8] D. M. Roijers, P. Vamplew, S. Whiteson, and R. Dazeley, “A survey of
multi-objective sequential decision-making.” J. Artif. Intell. Res. (JAIR),
vol. 48, pp. 67–113, 2013.

[9] P. Vamplew, J. Yearwood, R. Dazeley, and A. Berry, “On the limitations
of scalarisation for multi-objective reinforcement learning of pareto
fronts,” in Proceedings of the 21st Australasian Joint Conference on
Artificial Intelligence: Advances in Artificial Intelligence, ser. AI ’08.
Berlin, Heidelberg: Springer-Verlag, 2008, pp. 372–378.

561

0 500 1000 1500
13

14

15

16

17

18

19

20

21

22
Comparison different reference trajectories (starting from hot trajectory)

Begin

TrajHot Focus:Energy

TrajHot Focus:50/50

TrajHot Focus:Comfort

Fig. 4: Comparison of learned trajectories w.r.t. different weight settings.

0 50 100 150 200 250
0

0.5

1

1.5

2

2.5

3
Overrides per day (starting from hot trajectory)

TrajCold Focus:Energy
TrajCold Focus:50/50
TrajCold Focus:Comfort

Fig. 5: Overrides per day starting from cold trajectory.

0 50 100 150 200 250
0

0.5

1

1.5

2

2.5

3
Overrides per day (starting from hot trajectory)

TrajCold Focus:Energy
TrajCold Focus:50/50
TrajCold Focus:Comfort

Fig. 6: Overrides per day starting from hot trajectory.

[10] S. Dickinson and A. Bradshaw, “Genetic algorithm optimisation and
scheduling for building heating systems,” in Genetic Algorithms in
Engineering Systems: Innovations and Applications, 1995. GALESIA.
First International Conference on (Conf. Publ. No. 414), Sep 1995, pp.
106–111.

[11] P. Salgado, J. Cunha, and C. Couto, “A computer-based fuzzy temper-
ature controller for environmental chambers,” in Industrial Electronics,
1997. ISIE ’97., Proceedings of the IEEE International Symposium on,
Jul 1997, pp. 1151–1156 vol.3.

[12] A. Afram and F. Janabi-Sharifi, “Theory and applications
of {HVAC} control systems ? a review of model
predictive control (mpc),” Building and Environment, vol. 72,
no. 0, pp. 343 – 355, 2014. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0360132313003363

[13] K. Dalamagkidis, D. Kolokotsa, K. Kalaitzakis, and G. Stavrakakis,
“Reinforcement learning for energy conservation and com-
fort in buildings,” Building and Environment, vol. 42,
no. 7, pp. 2686 – 2698, 2007. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0360132306001880

[14] C. E. Garcia, D. M. Prett, and M. Morari, “Model predictive control:
Theory and practice?a survey,” Automatica, vol. 25, no. 3, pp. 335 –
348, 1989.

[15] G. Geng and G. Geary, “On performance and tuning of pid controllers in
hvac systems,” in Control Applications, 1993., Second IEEE Conference
on, Sep 1993, pp. 819–824 vol.2.

[16] M. Anderson, M. Buehner, P. Young, D. Hittle, C. Anderson, J. Tu, and
D. Hodgson, “Mimo robust control for hvac systems,” Control Systems
Technology, IEEE Transactions on, vol. 16, no. 3, pp. 475–483, May

562

2008.

[17] J. Bai and X. Zhang, “A new adaptive {PI} controller and its application
in {HVAC} systems,” Energy Conversion and Management, vol. 48,
no. 4, pp. 1043 – 1054, 2007.

563

