
Temporal Difference Learning for the Game
Tic-Tac-Toe 3D: Applying Structure to Neural

Networks

Michiel van de Steeg
Institute of Artificial Intelligence

and Cognitive Engineering

University of Groningen, The Netherlands

Email: m.vd.steeg90@gmail.com

Madalina M. Drugan
Department of Computer Science

Technical University of Eindhoven

The Netherlands

Email: m.m.drugan@tue.nl

Marco Wiering
Institute of Artificial Intelligence

and Cognitive Engineering

University of Groningen, The Netherlands

Email: m.a.wiering@rug.nl

Abstract—When reinforcement learning is applied to large
state spaces, such as those occurring in playing board games, the
use of a good function approximator to learn to approximate the
value function is very important. In previous research, multi-
layer perceptrons have often been quite successfully used as
function approximator for learning to play particular games with
temporal difference learning. With the recent developments in
deep learning, it is important to study if using multiple hidden
layers or particular network structures can help to improve
learning the value function. In this paper, we compare five
different structures of multilayer perceptrons for learning to play
the game Tic-Tac-Toe 3D, both when training through self-play
and when training against the same fixed opponent they are tested
against. We compare three fully connected multilayer perceptrons
with a different number of hidden layers and/or hidden units,
as well as two structured ones. These structured multilayer
perceptrons have a first hidden layer that is only sparsely
connected to the input layer, and has units that correspond to the
rows in Tic-Tac-Toe 3D. This allows them to more easily learn the
contribution of specific patterns on the corresponding rows. One
of the two structured multilayer perceptrons has a second hidden
layer that is fully connected to the first one, which allows the
neural network to learn to non-linearly integrate the information
in these detected patterns. The results on Tic-Tac-Toe 3D show
that the deep structured neural network with integrated pattern
detectors has the strongest performance out of the compared
multilayer perceptrons against a fixed opponent, both through
self-training and through training against this fixed opponent.

I. INTRODUCTION

Games are a popular test-bed for machine learning al-
gorithms, and reinforcement learning [1], [2] in particular.
In many board games, the utility of an action is not clear
until much later, often the end of the game. For such games,
temporal difference learning (TD-learning) [3] can be very
useful, as shown for e.g. chess [4], [5], backgammon [6]–[8],
and Othello [9]–[11].

In many of these papers, e.g. [7], the multilayer perceptron
(MLP) is used as a function approximator to deal with the
huge state spaces. Furthermore, often the employed MLP is
fully connected, meaning the neural network has no inherent
preference for how the different inputs are treated with respect
to each other. However, it should be apparent that some spaces
on the board of almost any game are of more importance to

each other than others. Ideally, the neural network will still
find the important patterns, but often the game is too complex
for the neural network to learn them in a reasonable amount of
time, because the neural network relies on too many trainable
parameters, i.e. its weights. It would be useful to reduce the
number of weights in the neural network to mitigate this issue,
but losing valuable information should be avoided. The use of
prior information in the design of a function approximator can
be very helpful to improve learning an accurate value function.
For example, in [11], the author successfully eliminated many
of the trainable parameters in the function approximator (a set
of lookup tables) of the so-called LOGISTELLO program by
dividing the Othello board into regions (e.g., lines across the
board).

Structured Neural Networks Some famous structured
neural network approaches are the Neocognitron [12] and con-
volutional neural networks [13], [14]. These approaches work
differently than fully-connected neural networks: (1) They use
sparse connections between inputs and hidden layer units, (2)
They are made invariant to small translations of patterns in an
image. The Neocognitron makes use of unsupervised learning
techniques to learn position invariant receptive fields. Convo-
lutional neural networks learn translation invariant mappings
between patterns and class labels by supervised learning using
convolutional layers and sub-sampling layers. Convolutional
neural networks have obtained a lot of interest recently due to
their very good performance for image recognition applications
[15], [16]. Although these approaches use a structure, they
are different from our proposed structured topologies, since in
Tic-Tac-Toe 3D the neural networks should not be translation
invariant. In [10], the authors compare the performance of a
structured MLP with fully connected MLPs in the game Oth-
ello. The results showed that the structured MLPs significantly
outperform fully connected MLPs.

Recently, Google’s DeepMind obtained very good results
on learning to play many different Atari games using deep
reinforcement learning [17]. In this paper we want to find an
answer to the research question if using multiple hidden layers
or structured neural networks can help to improve learning to
play an unexplored game: Tic-Tac-Toe 3D.

Contributions In the current paper, we extend the idea
of the structured MLP from [10] to the game Tic-Tac-Toe

2015 IEEE Symposium Series on Computational Intelligence

978-1-4799-7560-0/15 $31.00 © 2015 IEEE

DOI 10.1109/SSCI.2015.89

564

3D. We do this by introducing a structured MLP that has a
second hidden layer after its structured hidden layer, that is
fully connected to both the structured hidden layer and the
output layer. This allows the neural network to integrate the
different patterns it detects on the board of Tic-Tac-Toe 3D.
In total we compare five different MLP structures, namely a
structured MLP without extra layer, a structured MLP with an
extra layer, as well as three fully connected MLPs of different
sizes or number of layers. We test each of these MLPs against
a benchmark player by either training through self-play, or by
training against the same benchmark player it is tested against.
We run 10 trials for all ten experiments, lasting 1,000,000
training games each. The MLP’s performance is computed
by testing it against the benchmark player after every 10,000
games. The results show that the second hidden layer in the
structured MLP gives it an enormous boost in performance
when training through self-play, compared to both the smaller
structured MLP and the unstructured MLPs. When training by
playing against the benchmark player, it is also the strongest
playing program.

Outline In Section II, we will briefly explain how the
game of Tic-Tac-Toe 3D works. In Section III we describe the
theoretical background behind reinforcement learning, and TD-
learning specifically. In Section IV we discuss the structures of
the different multilayer perceptrons we are using. In Section V
we describe our experiments and present their results, followed
by a brief discussion of the results. Finally, in Section VI we
provide a conclusion and outline some directions for future
work.

II. TIC-TAC-TOE 3D

In Tic-Tac-Toe 3D, the board consists of 4x4x4 spaces
and it has approximately the same size of the state space as
Othello: we estimate it to have more than 1020 states. We
chose this game especially because it has a clear structure
inside: the board is a cube in which winning combinations are
on particular lines of length four in the cube.

Following the physical game, we chose to incorporate
gravity, meaning that a piece will always be placed on the
lowest empty z-coordinate. Two players, white and black,
alternate turns in placing pieces of their color onto the board.
The first player to place four pieces in a row wins. This row
may be horizontal, vertical, or diagonal (in either two or three
dimensions). If all 64 spaces are filled without any of the rows
being fully occupied by pieces of the same color, the game
ends in a draw. Fig. 1 illustrates a game position in which
white just won.

In Tic-Tac-Toe 3D, there are 64 fields, each of which can
have 3 different possible values (occupied by the player, the
opponent, or unoccupied). While there are many restrictions
to the number of possible states due to alternated turns,
gravity, and winning states, the state space is much too large
to use lookup tables for storing state values. Because of
this, an alternative approach, such as a neural network, is
required for determining the value of different board states.
As the winning condition of Tic-Tac-Toe 3D is a row being
completely occupied by pieces of the same color, the patterns
in this game are very explicit, and therefore easily incorporated
into a neural network.

Fig. 1. An example of a final game state with a view from above. Larger
circles represent lower pieces. The white player just won by placing a piece
in the third row, fourth column, resulting in the third row being completed at
height 3.

III. REINFORCEMENT LEARNING

Reinforcement learning is used for the agent (in this case
the Tic-Tac-Toe 3D player) to learn from its experience from
interacting with the environment through positive and negative
feedback following its actions [2]. After enough experience,
the agent should be able to choose those actions that maximize
its future reward intake. To apply reinforcement learning, we
assume a Markov Decision Process (MDP) [18]. The MDP is
formally defined as follows:

(1) A finite set of states S = {s1, s2, s3, ..., sn}, st ∈ S
denotes the state at time t.

(2) A finite set of actions A = {a1, a2, a3, ..., am}, at ∈ A
denotes the action executed at time t.

(3) A transition function P (s, a, s′), specifying the probability
of arriving at any state s′ ∈ S after performing action a in
state s.

(4) A reward function R(s, a), specifying the reward the agent
receives upon executing action a while in state s, rt denotes
the reward obtained at time t.

(5) A discount factor 0 ≤ γ ≤ 1, which makes the agent value
immediate rewards more than later rewards.

With reinforcement learning we are interested in finding
the optimal policy π∗(s) for mapping states to actions, that
is, a policy that selects actions to obtain the highest possible
cumulative discounted expected reward. The value of a policy
π, V π(s), is the expected cumulative reward the agent will get
from following the policy, starting in state s. V π(s) is defined
in Equation 1, with E [.] denoting the expectancy operator:

V π(s) = E

[
∞∑
i=0

γiri|s0 = s, π

]
(1)

565

The value function can be used by a policy to choose the
best estimated action a in the following way, see Equation 2:

π(s) = argmax
a

∑
s′

P (s, a, s′)(R(s, a) + γV π(s′)) (2)

A. TD-learning

TD-learning [3] is a reinforcement learning algorithm that
uses a temporal difference error to update the state value for
state st after using action a to transition into state st+1 and
receiving a reward rt. It does so by using the update rule in
Equation 3:

V new(st)← V (st) + α(rt + γV (st+1)− V (st)) (3)

where 0 < α ≤ 1 is the learning rate. When TD-learning
is combined with a neural network as function approximator,
there is already a learning rate for the neural network, so the
TD-learning rate can be set to 1, resulting in a simplified rule
as in Equation 4:

V new(st)← rt + γV (st+1) (4)

As the state values are represented by the neural network,
we use the target output value V new(st) for the network input
corresponding to state st. If st is a terminal state the target
output is the final reward rt. The backpropagation algorithm
can then be used to update the value function in an online
manner.

B. Application to Tic-Tac-Toe 3D

The algorithm updates the values of afterstates (the state
resulting from the player’s move, before the opponent’s turn),
as these are the state values that are used for move selection.
Because Tic-Tac-Toe 3D is played against an opponent, we
must wait for our opponent to make its move before learning
an afterstate’s value. The TD-error is the difference between
subsequent afterstate values in between which the opponent
also makes a move. As we are using online TD-learning, the
update rule is applied on each of the player’s turns (except
the first one). In Tic-Tac-Toe 3D, there is only a reward at
the end of the game. The player receives a reward of 1 upon
winning, a reward of −1 upon losing, and a reward of 0 in case
the game ends in a draw (if the entire board is filled without
either player winning).

The TD-learning algorithm with a neural network as func-
tion approximator is applied to Tic-Tac-Toe 3D as described
in algorithm 1 . On the TD player’s first move, only steps 1,
2, and 6-8 are done, as there is no previous afterstate yet. The
policy π for selecting an action uses the ε-greedy exploration
algorithm, in which the agent chooses the (perceived) optimal
action for a proportion of 1 − ε of its moves, and a random
action otherwise. In our implementation, ε = 0.1.

When training against the fixed opponent, the above algo-
rithm is used and therefore the TD-player only learns from its
own moves. When the TD-player is trained by self-play it uses

Algorithm 1 Learn-From-Game

1: For every afterstate s′
t

reachable from st, use the Neural

Network to compute V (s′
t
)

2: Select an action leading to afterstate sa
t

using policy π

(with ε-greedy exploration)

3: Use Equation 4 to compute the target value of the previous

afterstate V new(sa
t−1)

4: Forward propagate the Neural Network to compute the

current value for the previous afterstate V (sa
t−1)

5: Backpropagate the error between V new(sa
t−1) (or the

obtained final reward rt) and V (sa
t−1)

6: Save afterstate sa
t

as sa
t−1

7: Execute the selected action leading to afterstate sa
t

8: Let the opponent perform an action and set t = t+ 1.

the above algorithm for both the white and the black player
with the same neural network. In this way, the afterstates of
the white player are trained on the values of afterstates of the
white player after two moves have been done, one for white
and one for black. The same is done for the positions of the
black player. Although learning from self-play has therefore
the advantage that two times more training data are generated
for each game, the disadvantage is that it does not directly
learn from playing games against the opponent against which
it is finally tested.

IV. MULTILAYER PERCEPTRONS

We are interested to find out the effects of design choices of
neural network architectures on the final playing performance.
The multi-layer perceptrons can have many hidden units or
more than one hidden layer, and can use sparse connections
between input and hidden layers. The effects of these choices
when the multi-layer perceptron is combined with reinforce-
ment learning have not often been studied, and never for the
game Tic-Tac-Toe 3D.

We compare the performance of five different multilayer
perceptrons (MLPs). These five MLPs have their input and
output layers in common. The input layer has 64 nodes,
corresponding to the spaces on the board. For a player’s own
pieces on a field the input is 1, for an opponent’s piece on a
field the input is -1, and for an unoccupied field the input is 0.
The output layer has only one node, representing the estimated
game position value. Except for the input layer, which is linear,
all layers follow a logistic function scaled to [-1, 1].

All weights in each of the MLPs are uniform randomly
initialized in the range [-0.5, 0.5). Each of the MLPs is
trained using the backpropagation algorithm together with TD-
learning for computing target values of afterstates, as described
in Section III.

As described before, winning configurations for Tic-Tac-
Toe 3D consist of having 4 fields of some line in the cube
occupied by the player’s stones. This prior knowledge is useful
to design particular structured neural networks. At the same
time, we want to understand the effect of using more than one
hidden layer in the MLP and using more or less hidden units.

Two of the five MLPs are structured and have only very
sparse connections between the input layer and the first hidden

566

� ��

�

�

��

��

�

��

�

��

�

�

�

�

����	
�
����
�����
���
�	���

����
�	���

���������	
��		�
�����

����
��		�
�����
���
�	���

 �����
�����
��
�	��

!
!
!

!
!
!

Fig. 2. This figure shows the structure of the deep structured MLP. The
64 board spaces are used as the input layer (1 for the player’s own pieces,
−1 for the opponent’s pieces, 0 for empty spaces). The first hidden layer
is structured, each of its units being connected to only the four input units
corresponding to the row it represents. For every row, there are four hidden
units in the structured layer. The second hidden layer is fully connected to
both the first hidden layer and the output node. The output node represents
the estimated game position value.

layer. The first hidden layer units represent the different rows
on the board. There is a total of 76 rows: 48 horizontal and
vertical rows, 24 diagonal rows that span two dimensions (XY,
XZ, or YZ), and 4 diagonal rows that span 3 dimensions
(XYZ). A hidden unit in the structured hidden layer is only
connected to the four fields of one such row. A row can
have different patterns, e.g. containing one white and 2 black
stones on the four different fields. These hidden units can
detect certain patterns in their corresponding row. However,
as there are multiple possible patterns in each row, it is useful
to have more than one detector per row. We chose to have
four detectors (hidden units) per row, as adding more did not
improve performance. This leads to a hidden layer of 304 units,
each of which is only connected to its four corresponding input
units.

The small structured MLP only has this one hidden layer
and connects all hidden units directly to the output unit.
The deep structured MLP has an additional hidden layer
that is fully connected to both the first (structured) hidden
layer and the output node, integrating the patterns detected
in the structured hidden layer. The deep structured MLP is
displayed for clarity in Fig. 2. The deep structured MLP has the
advantage compared to fully connected MLPs by using sparse
connections and thereby it can use more hidden units while
still having a similar number of total learnable parameters
(weights). Compared to the shallow structured MLP, it has the
advantage that the information of multiple patterns on different
rows of a position are combined in the second hidden layer.

Three of the MLP are fully connected (unstructured). There
is a small unstructured MLP (one small hidden layer), a
wide unstructured MLP (one large hidden layer), and a deep
unstructured MLP (two hidden layers). The wide and the deep
unstructured MLPs have a similar number of weights as the
deep structured MLP. The architectures of the five different
MLPs are listed in Table I.

TABLE I. THE DIFFERENT MLPS, THEIR LAYER SIZES, AND THE

TOTAL NUMBER OF WEIGHTS. THE DEEP AND WIDE UNSTRUCTURED

MLPS WERE CONSTRUCTED SUCH THAT THEIR NUMBER OF WEIGHTS IS

SIMILAR TO THAT OF THE DEEP STRUCTURED MLP.

MLP type Layer sizes Number of Weights

Small structured 64-304-1 1520

Deep structured 64-304-32-1 10976

Small unstructured 64-50-1 3250

Deep unstructured 64-95-51-1 10976

Wide unstructured 64-169-1 10985

V. EXPERIMENTS AND RESULTS

For each of the MLPs, two different experiments were
performed. In the first experiment, the MLPs learn the game
through self-play, after which it is tested against a fixed bench-
mark player described below. In the second experiment, the
MLPs learn the game by playing against the same benchmark
player they are tested against, without learning from the moves
of the opponent.

For both experiments, for every MLP, ten trials were
performed. In each trial, the MLP trained by TD-learning for a
total of 1,000,000 games. After every 10,000 training games,
the TD player was tested against the benchmark player for
1,000 games. This results in 100 test phases per trial. The
number of wins and draws are stored for each of these test
phases, resulting in 100 data points (draws counting as half a
win). During the training phases, the TD player had a learning
rate α of 0.005, a discount factor γ of 1, and a constant 0.1
exploration chance ε. During the testing phases, the TD player
did not learn or explore, but simply played the move with the
highest afterstate value.

A. Benchmark Player

In both experiments, the TD player is tested against a
benchmark player, and in one of them it also trains against
it. The benchmark player is a fixed player; its policy does not
change. The moves of the benchmark player are determined
by the following algorithm:

1: Get all possible moves in random order.
2: If there is a move that would win the game, do the first

one that does.
3: Otherwise, if the opponent has any way to win next turn,

block the first one found.
4: Otherwise, do the first possible move which does not allow

the opponent to win the game by placing a piece on top
of it.

This benchmark player incorporates the rule-based knowl-
edge of not making stupid mistakes. However, because it does
not use lookahead search mechanisms, it can be defeated if
the opponent places a stone to create two threats in which it
can win during the next move.

B. Self-training

Results Fig. 3 plots the resulting win rates of the MLPs
over time for the experiment where the TD player trained by
playing against itself. Table II shows the peak win rates and
the mean win rate over the last 40 measurements of all the
MLPs in this experiment, as well as their standard deviations.

567

� �� �� �� �� ���

�
��

��
��

��
	�

��

�������������������������������

�
��
��

��
�

��
�!

�

"��#�$%�� %���&
��&��'��%�� %���&
$��((�$%�� %���&

"��#�'��%�� %���&
$��((�'��%�� %���&

Fig. 3. This figure plots the performance of all five MLPs against the benchmark player while trained through self-play. There is a measurement point after
every 10,000 training games. Draws count as half a win. The shown performance is the average over 10 trials.

TABLE II. PERFORMANCE OF THE DIFFERENT MLPS AGAINST THE

BENCHMARK PLAYER WHILE TRAINING AGAINST ITSELF. PEAK WIN

PERCENTAGE IS THE HIGHEST WIN RATE PER TRIAL, AVERAGED OVER TEN

TRIALS. END WIN PERCENTAGE IS THE MEAN WIN RATE OVER THE LAST

40 (OUT OF 100) MEASUREMENT POINTS, AVERAGED OVER TEN TRIALS.
DRAWS COUNT AS HALF A WIN. STANDARD DEVIATIONS ARE ALSO

SHOWN.

MLP type Peak win % End win %

Small structured 50.6± 4.9% 29.4± 8.8%

Deep structured 65.9± 5.0% 52.7± 6.8%

Small unstructured 31.2± 6.2% 20.2± 4.3%

Deep unstructured 38.2± 5.4% 24.8± 4.9%

Wide unstructured 54.1± 5.5% 36.1± 7.1%

Discussion In Fig. 3 we can see that all of the MLPs
start with a win percentage close to 0%. A learning effect
can be immediately seen in each of them, and throughout
the whole learning period, the different MLPs can be clearly
distinguished from each other in their performance. The deep
structured MLP learns much faster than the other architectures
and is the only one that achieved an end win percentage
above 50% (see Table II). This is significantly higher than
the MLP with the second highest end win percentage, which
is the wide unstructured MLP, at 36.1%. Interestingly, the
small structured MLP outperforms the deep unstructured MLP,
despite its lower number of layers and weights. The small
unstructured MLP performs the poorest of the five. The wide
unstructured architecture outperforms the deep unstructured
MLP. The best average peak winning rate is also obtained
with the deep structured MLP, leading to a score of 65.9%.

TABLE III. PERFORMANCE OF THE DIFFERENT MLPS AGAINST THE

BENCHMARK PLAYER WHILE TRAINING AGAINST THE SAME BENCHMARK

PLAYER IT IS TESTED AGAINST. PEAK WIN PERCENTAGE IS THE HIGHEST

WIN RATE PER TRIAL, AVERAGED OVER TEN TRIALS. END WIN

PERCENTAGE IS THE MEAN WIN RATE OVER THE LAST 40 (OUT OF 100)
MEASUREMENT POINTS, AVERAGED OVER TEN TRIALS. DRAWS COUNT AS

HALF A WIN. STANDARD DEVIATIONS ARE ALSO SHOWN.

MLP type Peak win % End win %

Small structured 94.3± 3.1% 90.7± 2.4%

Deep structured 98.7± 0.3% 97.3± 0.8%

Small unstructured 93.3± 1.8% 90.4± 1.5%

Deep unstructured 98.1± 0.5% 96.2± 1.0%

Wide unstructured 96.8± 0.8% 94.4± 1.5%

C. Benchmark-training

Results Fig. 4 plots the resulting win rates of the MLPs
over time for the experiment where the TD player trained
by playing against the same benchmark player it was tested
against. Table III shows the peak win rates and the mean win
rate over the last 40 measurements of all the MLPs in this
experiment, as well as their standard deviations.

Discussion As can be seen in Fig. 4, in the benchmark-
training experiment the performances of the different MLPs
lie far closer to each other. All of their performances increase
rapidly at the start of the training period, approaching near
maximal performance after about 400,000 training games. The
structured MLPs seem to be able to longer improve their
performance levels compared to the unstructured MLPs.

While all of the MLPs easily outperform the benchmark

568

� �� �� �� �� ���

�
��

��
��

��
��

�

�������������������������������

�
��
��

��
�

��
�!

�

"��#�'��%�� %���&
"��#�$%�� %���&
��&��'��%�� %���&

$��((�'��%�� %���&
$��((�$%�� %���&

Fig. 4. This figure plots the performance of all five MLPs against the benchmark player while trained against it as well. There is a measurement point after
every 10,000 training games. Draws count as half a win. The shown performance is the average over 10 trials.

player when training against it, the deep MLPs clearly out-
perform the wide and the small ones. An unpaired t-test
reveals that the difference between the deep structured MLP
and the deep unstructured MLP is statistically very significant
for their peak win percentages (P < 0.01), and statistically
significant for their end win percentages (P < 0.05). Now
the deep unstructured MLP significantly outperforms the wide
unstructured MLP. There is no significant difference between
the performances of the small unstructured and the small
structured MLPs.

The clearest difference between the two experiments is that
the MLPs that were trained against the benchmark player itself
perform far better than those who were trained through self-
play. Interestingly, this conflicts with the conclusion from [9],
where the authors achieved the best results for TD-learning in
Othello by learning through self-play, rather than by training
against the same opponent it was tested against. This suggests
that these results are game dependent, or possibly dependent
on the benchmark player that was used.

The benchmark player was designed such that it was
impossible to win by simply placing pieces in a row. Because
of this, in order to win, the TD player had to learn to create
two threats simultaneously. However, besides dealing with
immediate threats, the benchmark player executes actions at
random. When training against the benchmark player, the TD
player managed to learn how to exploit the weaknesses of
the benchmark player regardless of which network structure
was used. However, in self-training, the TD player played
against an opponent (itself) that does not share this weakness,
so instead it had to learn by becoming a solid player overall,

which is much more difficult than learning how to outperform
a benchmark player with clear weaknesses. Only the deep
structured MLP accomplished this to the extent that it can
outperform the benchmark player without training against it.

VI. CONCLUSION

In the program LOGISTELLO [11], the influence of many
different patterns from the game Othello were stored by using
lookup tables. In [10], the authors expanded on this by using
neural networks to represent these patterns. In the current
paper, we extended this approach for the game Tic-Tac-Toe 3D,
where we also looked into the effect of adding a second hidden
layer behind the structured hidden layer, that is fully connected
to the structured hidden layer as well as to the output layer.
This extra layer enables the neural network to integrate the
patterns that are detected in the structured layer. This addition
showed very large improvements in playing strengths for the
game Tic-Tac-Toe 3D when training against itself, as well as
a small, but significant, improvement when training against
the benchmark player it is tested against. When examining the
number of hidden units, in the experiments better performances
are obtained with more of them. Although the results show a
clear benefit of using two hidden layers in the structured MLP,
for the unstructured MLP this benefit is not clearly shown in
the results.

For future work, more complex structures for the neural
network could be explored. It would be possible that the
structured MLP would perform even better with multiple
structured layers. Because there are a lot of symmetries in
Tic-Tac-Toe 3D, it would be a good idea to exploit these

569

with weight sharing. Finally, we want to study the importance
of design choices of multi-layer perceptrons when applied to
learning policies for other problem with large state spaces,
which can also be broken up in smaller pieces such as forest
fire control [19].

VII. ACKNOWLEDGEMENTS

Madalina M. Drugan was supported by ITEA2 project
M2Mgrid.

REFERENCES

[1] M. A. Wiering and e. M. van Otterlo, Reinforcement Learning: State-

of-the-Art. Berlin, Heidelberg: Springer-Verlag, 2012.

[2] R. Sutton and A. Barto, Introduction to reinforcement learning. Cam-
bridge, MA: MIT Press, 1998.

[3] R. S. Sutton, “Learning to predict by the methods of temporal differ-
ences,” Machine learning, vol. 3, no. 1, pp. 9–44, 1988.

[4] S. Thrun, “Learning to play the game of chess,” Advances in neural

information processing systems, vol. 7, pp. 1069–1076, 1995.

[5] J. Baxter, A. Tridgell, and L. Weaver, “Learning to play chess using
temporal differences,” Machine Learning, vol. 40(3), pp. 243–263,
2000.

[6] G. Tesauro, “Td-gammon, a self-teaching backgammon program,
achieves master-level play,” Neural computation, vol. 6, no. 2, pp. 215–
219, 1994.

[7] ——, “Temporal difference learning and td-gammon,” Communications

of the ACM, vol. 38, no. 3, pp. 58–68, 1995.

[8] M. A. Wiering, “Self-play and using an expert to learn to play
backgammon with temporal difference learning,” Journal of Intelligent

Learning Systems and Applications, vol. 2, no. 02, pp. 57–68, 1995.

[9] M. van der Ree and M. A. Wiering, “Reinforcement learning in the
game of othello: Learning against a fixed opponent and learning from
self-play,” in 2013 IEEE Symposium on Adaptive Dynamic Program-

ming And Reinforcement Learning (ADPRL), Apr. 2013, pp. 108–115.

[10] S. van den Dries and M. A. Wiering, “Neural-fitted td-leaf learning for
playing othello with structured neural networks,” Neural Networks and

Learning Systems, IEEE Transactions on, vol. 23, no. 11, pp. 1701–
1713, 2012.

[11] M. Buro, “The evolution of strong othello programs,” in Entertainment

Computing. Springer, 2003, pp. 81–88.

[12] K. Fukushina, “Neocognitron: A self-organizing neural network model
for a mechanism of pattern recognition unaffected by shift in position,”
Biological Cybernetics, vol. 36(4), pp. 193–202, 1980.

[13] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hub-
bard, and L. D. Jackel, “Back-propagation applied to handwritten zip
code recognition,” Neural Computation, vol. 1, no. 4, pp. 541–551,
1989.

[14] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient based
learning applied to document recognition,” in Proceedings of the IEEE,
vol. 86(11), 1998, pp. 2278–2324.

[15] J. Schmidhuber, “Deep learning in neural networks: An overview,”
Neural Networks, vol. 61, pp. 85–117, 2015.

[16] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in Neural

Information Processing Systems 25, F. Pereira, C. Burges, L. Bottou,
and K. Weinberger, Eds., 2012, pp. 1097–1105.

[17] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran,
D. Wierstra, S. Legg, and D. Hassabis, “Human-level control through
deep reinforcement learning,” Nature, vol. 518, no. 7540, pp. 529–533,
02 2015.

[18] R. A. Howard, Dynamic Programming and Markov Processes. Cam-
bridge, MA: MIT Press, 1960.

[19] M. A. Wiering and M. Dorigo, “Learning to control forest fires,” in
Proceedings of the 12th international Symposium on “Computer Science

for Environmental Protection”, ser. Umweltinformatik Aktuell, H.-D.
Haasis and K. C. Ranze, Eds., vol. 18. Marburg: Metropolis Verlag,
1998, pp. 378–388.

570

