
Bayesian reinforcement learning in Markovian and
non-Markovian tasks

Adnane Ez-zizi
School of Experimental Psychology

University of Bristol

Bristol, UK

Email: a.ez-zizi@bristol.ac.uk

Simon Farrell
Department of Psychology

University of Western Australia

Perth, Australia

Email: simon.farrell@uwa.edu.au

David Leslie
Department of Statistics

University of Lancaster

Lancaster, UK

Email: d.leslie@lancaster.ac.uk

Abstract—We present a Bayesian reinforcement learning
model with a working memory module which can solve
some non-Markovian decision processes. The model is
tested, and compared against SARSA(λ), on a standard
working-memory task from the psychology literature.
Our method uses the Kalman temporal difference frame-
work, and its extension to stochastic state transitions,
to give posterior distributions over state-action values.
This framework provides a natural mechanism for using
reward information to update more than the current state-
action pair, and thus negates the use of eligibility traces.
Furthermore, the existence of full posterior distributions
allows the use of Thompson sampling for action selection,
which in turn removes the need to choose an appropriately
parameterised action-selection method.

I. INTRODUCTION

Reinforcement learning (RL) provides a set of
techniques to solve the learning problem of an agent
that aims to maximise its long-term reward in an
unknown environment. The agent is assumed to
select actions depending on the current state of
the environment, and depending on the state of
the environment these actions may produce reward
feedback. The reward feedback can be used by the
agent to learn which actions in which states will
maximise long-run reward [1].

There exists now a well-established theory for
solving Markovian RL tasks. In fact, there are sev-
eral algorithms that are assured to converge to an op-
timal policy provided a certain set of conditions [2],
such as Q-learning [3], Actor-Critic [4] and SARSA
[5]. But, these algorithms cannot be directly applied
to tasks that do not satisfy the Markov property.

The standard generalisation of Markovian processes
is the partially observable Markov decision process
(POMDP). One approach that has been proposed to
deal with POMDPs is supplementing the agent with
a memory device that can store past observations,
allowing the agent to disambiguate the current state
based on past observations [6], [7].

Models based on this approach have been suc-
cessfully applied to working memory learning tasks
from the psychology literature such as the 12-AX
[8], T-maze [9] or n-back [10]. These working
memory tasks are non-Markovian in that reward is
contingent on both the current environmental state,
and the state that was present in the recent past.
The models that have been applied to such tasks are
often slow to learn and require setting the learning
parameters carefully in order to reasonably expect
convergence to an optimal policy. In particular, it is
crucial to allow the model to explore enough but not
excessively (i.e., balancing the trade-off between ex-
ploration and exploitation). Solving the exploration-
exploitation trade-off is especially critical in these
models, as the addition of a working memory to the
agent results in a sizeable state-action policy space.

Thompson sampling has received increasing in-
terest in recent years as a method for balancing
exploration and exploitation in bandit problems
[11]. It is self-tuning and automatically anneals
exploration–exploitation in response to the level
of information in the value estimates. However it
requires the estimation of posterior distributions of
action values instead of simply action values. Thus
a Bayesian approach to RL is required.

Despite its elegance, the Bayesian approach has

2015 IEEE Symposium Series on Computational Intelligence

978-1-4799-7560-0/15 $31.00 © 2015 IEEE

DOI 10.1109/SSCI.2015.91

579

only been used occasionally in modern RL. Among
the few model-free Bayesian RL models that have
been proposed in the literature are the SARSA
variant of the Kalman temporal difference model
(KTD-SARSA) and its extended version (XKTD-
SARSA), both of which use online value function
approximation along with Kalman filtering to estim-
ate the state-action value function of a given policy
[12]. A related algorithm is the SARSA-based Gaus-
sian process temporal difference (GPSARSA) [13],
which can be seen as a special case of the KTD-
SARSA model in stationary environments. These
models consider state-action values to be random
processes and compute their posterior distribution
given the observed rewards and transitions.

In this paper, we show that KTD-SARSA has the
same form of updates as SARSA(λ), but with time-
and state-dependent step-sizes that are governed
by the learned properties of the system instead
of arbitrary learning rates and eligibility traces.
We then show how to implement KTD-SARSA
and XKTD-SARSA alongside a working memory
module. This parallels the approach of [8], [9],
[14] in which SARSA or Actor-Critic methods have
been enhanced with working memory to solve non-
Markovian tasks. The advantages of introducing the
Bayesian approach are seen in the existence of a nat-
ive mechanism for sharing information across state-
action pairs, replacing eligibility traces, and a native
mechanism for balancing exploration and exploit-
ation, removing the need to use an appropriately
parametrised action-selection method. The next sec-
tion presents the RL framework that the Bayesian
models are based on. Section III introduces the
two Bayesian RL models and compares them with
the classical SARSA(λ) model. It also analyses the
updating scheme of the KTD-SARSA model in the
simple case of a two-armed bandit task, and shows
that it is equivalent to a simple Bayesian model
with unknown mean and known variance. Section
IV presents a modification of the two Bayesian
models capable of solving non-Markovian tasks, and
describes some initial experimental results.

II. BACKGROUND AND NOTATION

A. Reinforcement learning framework
We consider RL tasks with discrete time and

immediate rewards, where an agent is assumed to

interact with its environment with the objective of
maximising its expected future discounted rewards.
Let zt = (st, at) and rt be respectively the state-
action pair and reward at time t. We consider that
there are p possible state-action pairs denoted by
z1,...,zp. The future discounted return at time t of
an action-selection policy π is defined by:

Rπ
t =

∞∑
i=0

γirt+t

where γ is a discount factor which determines how
much future rewards are discounted. The expecta-
tion of this return Rπ

t , given a current initial state-
action pair z = (s, a) is known as state-action value
or Q-value of policy π, and is denoted by Qπ

t (z).
The higher the Q-value of an action, the more
rewarding it is in the long term. Thus, the agent
aims to find a policy that maximise these Q-values,
which implicitly requires the agent to effectively
estimate them. There are several algorithms that
can perform this estimation on-line, one of them
is SARSA, which will be introduced next.

B. SARSA model

One of the most well-known model-free RL
algorithms is SARSA [5]. It works by keeping
track of point estimates of state-action values of the
current policy, which are updated at each time step
t according to

Qt+1(zt) = Qt(zt) + αδt (1)

where α is a learning rate that scales the magnitude
of the updates, and δt is an error that represents the
discrepancy between the expected reward and the
observed reward at time t. δ-errors are computed
using the temporal difference equation:

δt = rt − (Qt(zt)− γQt(zt+1)) (2)

Denote the vector of all state-action pairs by Qt:

Qt =

⎛
⎝Qt(z

1)
...

Qt(z
p)

⎞
⎠

Thus, (2) can be written into a vectorial form as:

rt = FtQt + δt (3)

580

where, Ft =
(
0 . . . 0 1 . . . −γ 0 . . . 0

)
,

which has all its elements equal to 0 except the
jth1 and jth2 element such that zj1 = zt (hence the
value 1) and zj2 = zt+1 (hence the value −γ). This
vectorial formulation will be useful when we present
the Bayesian RL models.

For now we presented SARSA in its basic form,
but there is a more general form of the algorithm,
referred to as SARSA(λ), which uses eligibility
traces [15] to allow the learner to modify state-
action values other than the values of the currently
visited state and chosen action. This is particularly
useful when dealing with non-Markovian or par-
tially observable Markovian tasks [16].

Under SARSA(λ), all state-action values are up-
dated using a modified version of (1):

Qt+1(z) = Qt(z) + αδtet(z) (4)

where et(z) is the eligibility trace of the state-action
pair z, which decays over time by a decay parameter
λ ∈ (0, 1).

Finally, there remains the problem of how to
select actions based on the estimated Q-values.
There are several widespread methods for this prob-
lem, such as ε-greedy or softmax [1]. These basic
methods ensure that actions with the highest values
in a given state are selected more often. However,
we have found that the performance of any of
these methods is extremely susceptible to the tuning
parameters of the action-selection method. In this
paper, we address the action selection problem by
using Bayesian approaches to RL.

III. BAYESIAN REINFORCEMENT LEARNING FOR

MARKOVIAN TASKS

The two Bayesian RL models that we use in this
paper are based on the Kalman temporal difference
(KTD) framework [12]. The general idea behind
these models is to assume that the Q-values are
random variables, and then use the Kalman filter
framework [17] to compute posterior distributions
over the Q-values after each newly observed re-
ward. More specifically, we assume that the relation
between Qt and rt can be represented by a Kalman
filter type system, where Qt is the state vector and
rt is the observed variable:{

Qt = Qt−1 + Vt

rt = FtQt + δt
(5)

such that we assume that the state vector Qt, and the
noises Vt and δt satisfy the conditions of a stand-
ard Kalman filter system (see for example [17]).
However, when the underlying MDP is stochastic,
we loosen the white noise assumption for δt, and
consider it to be coloured instead (the reasons for
this choice are given below). We denote the covari-
ance matrix of Vt and variance of δt respectively by
PVt and Pδt—that is, we have Vt ∼ N (0,PVt) and
δt ∼ N (0, Pδt).

Next, we will present the original version of
the KTD-SARSA model, which assumes that the
transitions of the underlying MDP are deterministic.
Then, we will present the extended version of the
KTD-SARSA (XKTD-SARSA), which can handle
MDPs with stochastic transitions.

A. KTD-SARSA: A Bayesian RL model for determ-
inistic MDPs

1) Updating scheme: In a deterministic MDP,
the noise δt can be simply assumed to be white
[12], in which case the Kalman estimates of the Q-
values vector and its uncertainty can be derived in
a straightforward manner and are given by:⎧⎪⎨

⎪⎩
Q̂t = Q̂t−1 +Kt(rt − FtQ̂t−1)

P̂t = (P̂t−1 + PVt)

−Kt[Ft(P̂t−1 + PVt)F
T
t + Pδt]K

T
t

(6)
where:

Q̂t = E(Qt|r0, · · · , rt)

Kt =
(P̂t−1 + PVt)F

T
t

Ft(P̂t−1 + PVt)F
T
t + Pδt

P̂t = E[(Qt − Q̂t)(Qt − Q̂t)
T]

Kt is the Kalman gain and P̂t corresponds to the
variance associated with the estimation Q̂t of Qt.

2) Action-selection via Thomson sampling: To
finish the specification of our model, we must
determine how to select actions based on the es-
timated Q-values and their underlying uncertainty.
Given that we have the whole distributions of the
state-action values, one sensible approach, known
as Thompson sampling [18] is to sample action a
with the probability it has the highest Q-value in
the current state. That is, at time t, if the state is

581

st = s, we compute for each action a the probabil-
ity P(argmaxa′ Q(s, a′) = a | observations to date).
The resulting probability distribution can then be
used to sample an action. This can be efficiently
implemented by simply sampling Q-values from
their posteriors for each of the possible actions in
the current state, and then choose the action with
the highest sampled Q-value.

3) Comparison with classical SARSA(λ) model:
We have seen that KTD-SARSA and SARSA(λ) are
both constructed based on the temporal difference
equation (2), which is used in both cases, to relate
the observed rewards to the Q-values to estimate.
Here, we show that they are almost identical even
at the algorithmic level—that is, the individual state-
action values are updated similarly in both models.
First, denote kt(z, z

′) = Cov(Qt(z), Qt(z
′)) for any

state-actions pairs z, z′. Also, to simplify expres-
sions, let us also assume that PVt = 0 (this is a
valid assumption if we are dealing with stationary
environments as the ones captured by the tasks that
we are using in this paper). By developing the
equations in (6), we can write the posterior mean
of each state-action value and its covariance with
any other state-action pair as follows:

Q̂t+1(z) = Q̂t(z) + αt(z)δ̂
TD
t (7)

k̂t+1(z, z
′) = k̂t(z, z

′)− αt(z)[k̂t(z
′, zt) (8)

− γk̂t(z
′, zt+1)]

where:

Q̂t(z) = E(Qt(z)|r0, · · · , rt)
k̂t(z, z

′) = E[(Qt(z)− Q̂t(z))(Qt(z
′)− Q̂t(z

′))]

= E[Cov(Qt(z), Qt(z
′)|r0, · · · , rt)]

δ̂TD
t = rt + γQ̂t(zt+1)− Q̂t(zt)

αt(z) = (k̂t(z, zt)− γk̂t(z, zt+1))/

[k̂t(zt, zt)− 2γk̂t(zt, zt+1) + γ2k̂t(zt+1, zt+1) + Pδt]

The updating equation for the posterior mean of
a state-action value looks similar to that obtained
using a standard SARSA(λ) (see (4)), but with time-
and state-dependent learning rate αt(z) (here the
learning rate and eligibility trace terms have been
replaced with a variable learning rate). Here also,
all state-action values could potentially be updated
depending on their covariance (-estimate) with the

current expected reward. In fact, αt(z) can be re-
written in terms of variances and covariances as:

αt(z) =
E[Cov{Qt(z), rt|r0, · · · , rt}]
E[V ar(rt|r0, · · · , rt)] + Pδt

=
Ĉovt(Qt(z), rt)

V̂ art(rt) + Pδt

where rt = Qt(zt) − γQt(zt+1) is the expec-
ted reward at time t, and such that we denoted

E[Cov(X, Y |r0, · · · , rt)] as Ĉovt(X, Y) (estimator
of the covariance between X and Y at time t), and

E[V ar(X|r0, · · · , rt)] as V̂ art(X).
The formula for αt(z) means that the more pos-

itively related Qt(z) with rt is, the bigger is the
step-size αt(z) used to update Qt(z). This is more
true when both the estimated variance of rt and true
variance of δt are small (i.e., when the estimation of
the expected reward is more precise and the system
is less noisy). This is comparable to how eligibility
trace works—the more recently visited a state-action
pair, the more updated its corresponding Q-value.
Similarly, here, the more correlated a state-action
value to the current expected reward, the more it is
updated.

One striking finding here is that both the current
and coming state-action value are updated in two
opposite directions to move the expected reward
toward the observed one, rather than updating only
the value of the current state-action pair. In fact,
from the definition of the expected reward, rt will
be mostly positively correlated with Qt(zt) (thus,
αt(zt) > 0) and negatively correlated with Qt(zt+1)
(thus, αt(zt+1) < 0). For any other state-action
values Qt(z), the direction of the update, and hence
the sign of αt(z), depends on the difference between
the current covariance of Qt(z) with Qt(zt) and the
discounted covariance with Qt(zt+1). The fact that
the learning rate here can be negative is not common
in RL models, and needs to be explored even in
non-Bayesian settings.

Likewise, (8) can be re-written into a more inter-
pretable way as:

k̂t+1(z, z
′) = Ĉovt+1(Qt+1(z), Qt+1(z

′))

= Ĉovt(Qt(z), Qt(z
′))

− Ĉovt(Qt(z), rt)Ĉovt(Qt(z
′), rt)

V̂ art(rt) + Pδt

582

which, in the case of variances, becomes:

V̂ art+1(Qt+1(z)) = V̂ art(Qt(z))−Ĉovt(Qt(z), rt)
2

V̂ art(rt) + Pδt

This means that the uncertainty in a state-action
value estimate decreases as its covariance with the
expected reward increases, and that this is more
true when the estimate of the expected reward is
more precise or when the system noise is small. The
interesting thing is that this decrease in uncertainty
does not depend directly on the observed reward rt
as in the updating equation of the Q-value means.

In the following, we will apply KTD-SARSA to
a simple Markovian RL task—the two-armed bandit
task. The purpose of this exercise is not to propose
a new method for solving the bandit problem, but
to understand the behaviour of the KTD approach
and how it relates to standard bandit algorithms.

4) Application to the two-armed bandit task: To
investigate the relationship between this model and
more conventional frameworks, we briefly reduce it
to the two-armed bandit problem, where an agent
simply has to choose between two arms and max-
imise its instantaneous reward. Each arm provides
random rewards which are independent of the other
arm. Because there is only one state, z refers now
to the selected action. We also assume that the
discount rate γ is equal to 0. Hence, the true value
of each arm is equal to its reward mean. Finally, we
consider that the δ-errors have the same variance Pδ

(Pδt = Pδ, for all t), and that the prior covariance
between the Q-values of the two arms is equal to 0
(because rewards in both arms are independent). In
this setting, (7) and (8) are simplified to

Q̂t+1(zt) = Q̂t(zt) + αt(zt)(rt − Q̂t+1(zt)) (9)

k̂t+1(zt, zt) = k̂t(zt, zt)− αt(zt)k̂t(zt, zt) (10)

where

αt(zt) =
k̂t(zt, zt)

k̂t(zt, zt) + Pδ

.

Here, only the mean and variance of the Q-value of
the selected arm are updated (because the learning
rate of the non-selected arm remains always equal
to 0). These updating equations are similar to those
obtained using a simple Bayesian updating model
where reward r(z) in each arm z is considered to

be Gaussian with unknown mean Q(z) and known
variance Pδ, that is, r(z)|Q(z) ∼ N (Q(z), Pδ) [19].

We see both that the KTD framework results
in conventional temporal differencing in the bandit
problem, and that the standard temporal difference
approach in bandit problems is in fact an efficient
implementation of full Bayesian inference in a
simple model.

B. XKTD-SARSA: An extension of KTD-SARSA for
stochastic MDPs

The previous model is only suitable for tasks
where the transitions of the underlying MDP are
deterministic. In the stochastic case, the δt’s can
no longer be assumed independent. In fact, Geist
and Pietquin [12] showed that ignoring this would
result in biased Kalman estimates. To deal with
this, they proposed to use a coloured noise as was
previously suggested by Engel et al. [13]. Here, we
present their extended model, where again we adapt
it to be used without parametrised state-action value
functions.

1) Updating scheme: In the extended version of
the KTD-SARSA model, the δ-noise is assumed to
be a moving average of two white noises (for a
motivation for this choice, see [12] or [13]):

δt = −γut + ut−1 with ut ∼ N (0, σ2)

Under this new assumption, the Kalman estimates
cannot be obtained directly as was done in the
KTD case. A solution for extending Kalman filter to
moving average noises is given in [20]. The basic
idea of their solution is to transform the moving
average noise into a vectorial autoregressive noise
by adding an auxiliary random process wt that
stores the occurrences of ut at each time step. More
specifically, with wt = ut, we can write:(

wt

δt

)
=

(
0 0
1 0

)(
wt−1
δt−1

)
+

(
1
−γ

)
ut

The Kalman filter problem can then be easily solved
using the resulting autoregressive noise, by re-
writing (5) as:{

Xt = LXt−1 + V ′
t

rt = F ′tXt

(11)

583

where:

Xt =
(
QT

t wt δt
)T

V ′
t =

(
V T

t ut −γut

)T
,F ′t =

(
Ft 0 1

)
L =

⎛
⎝Ip 0 0
0T 0 0
0T 1 0

⎞
⎠ ,PVt =

⎛
⎝PVt 0 0

0T σ2 −γσ2

0T −γσ2 γ2σ2

⎞
⎠

The posterior mean and covariance of the augmen-
ted vector Xt are given by:⎧⎪⎨
⎪⎩
X̂t = LX̂t−1 +K′

t(rt − F ′t X̂t−1)

P̂ ′t = (LP̂ ′t−1L
T + P ′Vt

)

−K′
t[F

′
t (LP̂ ′t−1L

T + P ′Vt
)F ′T

t]K ′T
t

(12)

where X̂t =
(
Q̂T

t ŵt δ̂t
)T

and K′
t is the Kalman

gain of the new system. The estimates of the mean
and covariance matrix of the vector of state-action
values Qt can be obtained from X̂t and P̂ ′t by
respectively extracting the first p elements of X̂t

and the first p× p matrix block of P̂ ′t. Notice also
that δt and wt are now part of the state to estimate.

2) Comparison with KTD-SARSA and SARSA(λ):
Let us extract the scalar updating equations for
the posterior mean and covariances of the Q-values
from (12) as we did with KTD-SARSA:

Q̂t+1(z) = Q̂t(z) + αt(z)(δ̂
TD
t − δ̂t) (13)

k̂t+1(z, z
′) = k̂t(z, z

′) (14)

− Ĉovt(Qt(z), rt + wt)Ĉovt(Qt(z
′), rt + wt)

V̂ art(rt + wt) + γ2σ2

where:

δ̂t+1 = δ̂t + αt(δ)(δ̂
TD
t − δ̂t)

αt(z) =
Ĉovt(Qt(z), rt + wt)

V̂ art(rt + wt) + γ2σ2

αt(δ) =
Ĉovt(wt, rt + wt) + γ2σ2

V̂ art(rt + wt) + γ2σ2

The updating equations (13) and (14) for computing
the posterior mean and covariance of the Q-values
are not as different from those obtained in the
deterministic case (see (7) and (8)) as it might look
like. In fact, we expect that the posterior mean δ̂t
would converge toward 0 (the true mean of δt).
Also, given that wt is equal to the white noise ut,

the posterior variance V̂ art(wt) and posterior cov-

ariance Ĉovt(wt, Qt(z)) are expected to converge
respectively towards σ2 (the true variance of ut)
and 0 (the true covariance between Qt(z) and ut,
because ut is a priori independent from all state-
action values). Hence, (13) and (14) should become
very similar to (7) and (8) in the long run, and
the differences between XKTD-SARSA and KTD-
SARSA are in the early phases of learning.

IV. BAYESIAN REINFORCEMENT LEARNING FOR

NON MARKOVIAN TASKS

A. KTD-WM and XKTD-WM models
To allow KTD-SARSA and XKTD-SARSA to

be applied effectively to non-Markovian tasks, we
follow [8] and supplement the agent with a work-
ing memory (WM). The WM allows the agent to
consider observations from the past, along with the
current one, when selecting actions. We assume that
it has C WM slots, and that each slot can store one
of the previously encountered observations from the
environment. The agent can modify the content of
WM slots at each time step via memory updating
actions called gating actions. The agent can choose
to store the new observation in one of the slots
while maintaining the content of the other ones;
or maintain the content of all memory slots. These
actions need to be chosen by the agent along with
the motor actions (i.e, the actions that act on the
environment to potentially produce a reward).

The inclusion of the additional WM state does
not change the main dynamics of KTD-SARSA and
XKTD-SARSA—that is, the updating equations in
(6) and (12) remain the same. There are only two
slight modifications: the first one consists of the
current state st now being composed of the current
observation ot and the current memory content mt =
(m1

t , . . . ,m
C
t), where mj

t is the observation held in
the jth WM slot at time t. The second modification
is that action at now includes a motor action (aMt)
and a gating action (aGt). Hence, each state-action
pair z can be written z = (m, o, aM , aG), where m,
o, aM , and aG are respectively the current memory
content, observation, motor action and gating action.
The steps followed by the agent in the augmented
KTD-SARSA (resp. XKTD-SARSA) model, which
we refer to as KTD-WM (resp. XKTD-WM) can be
summarised as follows:

584

Figure 1. A sequence of observations from the 12-XY task. The
correct response and the associated reward is given bellow each
observation. Letters X and Y in bold are used to highlight when
action ‘R’ is required.

1) Choose the prior mean and covariance of the
Q-value vector.

2) Observe current state st = (mt, ot).
3) Select a motor action aM and a gating ac-

tion aG based on state-action values Q(s,.):
(aM , aG)← Thomson(Q, s).

4) Observe reward rt and go to next state st+1.
5) Update the mean and covariance matrix of

the Q-values using (6) (resp., using (12) for
XKTD-WM).

6) Repeat steps 2-5 until termination.

B. Example: 12-XY task

To evaluate the Bayesian WM-based RL models
presented here, we used a very basic version of the
12-AX task [10], where we kept only the observa-
tions 1, 2, X and Y (Figure 1). In this task, digits
are presented (1 vs 2), interspersed with letters (X
or Y). The task is structured such that responses
to the letters are rewarded depending on the last
digit seen. The rules of the new task to be learned
are as follows: if the last digit was 1 (resp. 2) and
the current letter is X (resp. Y), then choose the
‘R’ response. In all other cases, choose ‘L’. Reward
is either 1 for correct responses or 0 for incorrect
responses. (No reward was given in response to
actions when the current observation was a digit).
The task is structured such that a model without
access to information from previous observations
would perform at chance level, and hence we can
easily assess the usefulness of our models.

We simulated the 12-XY using KTD-WM,
XKTD-WM and SARSA(λ) with WM as presented
in [14]. We simulated each model for 50 times, each
run consisting of N = 10000 trials, and tracked
the learning curves as shown in Figures 2. For all
three models, we set the number of WM slots to
C = 1 and the discount factor to γ = 0.5. The

other parameters were chosen using an extensive
grid search to find the best parameters for each
model:

• for KTD-WM, the prior mean Q̂0 = 0, the prior
covariance P̂0 = 10I64 (where I64 is the identity
matrix of dimension 64—the number of possible
state-action pairs), δ-errors variance Pδt = 1 and
the covariance of the state noise PVt = 0.

• for XKTD-WM, the prior mean X̂0 = 0, the
prior covariance P̂ ′0 = 10I66, the variance of
the white noise ut, σ

2 = 0.2, which implies that
Pδt = (1 + γ2)σ2 = 0.25, and PVt = 10−6I64
(we did not use a null matrix to avoid numerical
stability issues).

• for SARSA(λ)-WM, the learning rate α = 0.05,
the decay parameter λ = 0.9, and we used
Boltzmann action selection [1] with temperature
parameter T = 0.2.

Results show that XKTD-WM outperformed
SARSA(λ)-WM both in terms of the final average
accuracy and the time required to reach their top
performance. For example, XKTD-WM could learn
an optimal policy in all runs, resulting in an almost
maximal average accuracy, whereas SARSA(λ)-
WM sometimes failed to find an optimal policy
or converged to a suboptimal policy, resulting in
an average accuracy of about 92.5% over in the
last block. KTD-WM could not solve the 12-XY
in any run, but performed substantially better than
chance, which is the level of accuracy expected to
be achieved with a model without WM. This low
performance is not very surprising given that the
transitions are stochastic in the 12-XY, and hence
XKTD-WM is more suitable than KTD-WM in this
particular task.

V. DISCUSSION AND CONCLUSION

We have investigated the Kalman temporal dif-
ference (KTD) approach to Bayesian reinforcement
learning, and its extension XKTD. We have shown
how they relate to the standard SARSA(λ) al-
gorithm. We noted that the full Bayesian framework
results in a natural replacement for eligibility traces,
and allows the use of Thompson sampling, which
also removes the need to parametrise the action-
selection mechanism. We then tested the methods in
a non-Markovian decision-problem, enhancing each
method with a working memory module as in [8],

585

2 4 6 8 10 12 14 16 18 20
0.5

0.6

0.7

0.8

0.9

1
Average accuracy in blocks of 500 trials

Trial block

A
cc

ur
ac

y
at

 X
/Y

 tr
ia

ls

XKTD−WM
KTD−WM

SARSA(λ)−WM

Figure 2. Learning curves for KTD-WM, XKTD-WM and
SARSA(λ)-WM on the 12-XY task. Accuracy was averaged over
blocks of 500 trials and over the 50 simulation runs. Error bars
represent standard errors.

[9], [14]. Our preliminary results demonstrate the
potential of the approach.

Perhaps one of the most interesting findings in
this paper is the novel updating scheme used by
these Bayesian models: Q-values of both the cur-
rent and future state-action pair can potentially be
updated so as to bring the expected reward closer to
the observed one. This is different from the updating
scheme in SARSA and other temporal difference-
based methods, where the value of the next state-
action pair is not updated until it is visited. This idea
could be easily implemented in the non-Bayesian
framework, for example, by assigning a positive
learning rate for updating the value of the current
state-action pair and a negative one for updating the
value of the coming pair.

Simulations results showed that the proposed
XKTD-WM model outperformed SARSA(λ) with
WM on the 12-XY—a moderately challenging WM
learning task. Future research should compare it
with other standard WM-based RL models like the
Actor-Critic on more challenging non-Markovian
tasks. It also remains to be seen whether XKTD-
SARSA with Thompson sampling achieves compar-
ably performance to a carefully-tuned SARSA(λ)
algorithm in a wider range of problems.

REFERENCES

[1] R. Sutton and A. Barto, Reinforcement learning: An introduc-
tion. Cambridge, MA: MIT Press, 1998.

[2] C. J. Watkins and P. Dayan, “Q-Learning,” Machine Learning,
vol. 8, no. 3, pp. 279–292, 1992.

[3] C. J. Watkins, “Learning from delayed rewards,” Ph.D. disser-
tation, 1989.

[4] A. Barto, R. Sutton, and C. Anderson, “Neuronlike adaptive
elements that can solve difficult learning control problems,”
Systems, Man and Cybernetics, IEEE Transactions on, vol.
SMC-13, no. 5, pp. 834–846, Sept 1983.

[5] R. S. Sutton, “TD models: Modeling the world at a mixture
of time scales,” in Proceedings of the Twelfth International
Conference on Machine Learning, 1995, pp. 531–539.

[6] M. L. Littman, “Memoryless policies : theoretical limitations
and practical results,” Proceedings of the third Conference on
Simulation of Adaptive Behavior, pp. 238–245, 1994.

[7] L. Peshkin, N. Meuleau, and L. Kaelbling, “Learning policies
with external memory,” Machine Learning: Proceedings of the
Sixteenth International Conference, pp. 307–314, 1999.

[8] M. T. Todd, Y. Niv, and J. D. Cohen, “Learning to use working
memory in partially observable environments through dopam-
inergic reinforcement,” Neural Inform Process Syst, vol. 21, pp.
1689–1696, 2009.

[9] E. A. Zilli and M. E. Hasselmo, “Modeling the role of working
memory and episodic memory in behavioral tasks,” Hippocam-
pus, vol. 18, no. 2, pp. 193–209, 2008.

[10] R. C. O’Reilly and M. J. Frank, “Making working memory
work: A computational model of learning in the prefrontal
cortex and basal ganglia,” Neural Computation, vol. 18, pp.
283–328, 2006.

[11] B. C. May, N. Korda, A. Lee, and D. S. Leslie, “Optimistic
bayesian sampling in contextual-bandit problems,” J. Mach.
Learn. Res., vol. 13, pp. 2069–2106, Jun. 2012.

[12] M. Geist and O. Pietquin, “Kalman temporal differences,”
Journal of Artificial Intelligence Research, vol. 39, pp. 483–
532, 2010.

[13] Y. Engel, S. Mannor, and R. Meir, “Reinforcement learning with
Gaussian processes,” Proceedings of the 22nd international
conference on Machine learning, pp. 201–208, 2005.

[14] K. Lloyd, N. Becker, M. W. Jones, and R. Bogacz, “Learn-
ing to use working memory: a reinforcement learning gating
model of rule acquisition in rats,” Frontiers in Computational
Neuroscience, vol. 6, no. 87, 2012.

[15] R. S. Sutton, “Temporal credit assignment in reinforcement
learning,” Ph.D. dissertation, 1984.

[16] J. Loch and S. Singh, “Using eligibility traces to find the
best memoryless policy in partially observable markov decision
processes,” in Proceedings of the 15th International Conference
on Machine Learning. Morgan Kaufmann, 1998, pp. 323–331.

[17] G. Welch and G. Bishop, “An Introduction to the Kalman
Filter,” Dept. Comput. Sci.,Univ. North Carolina, Chapel Hill,
Tech. Rep., 2000.

[18] W. R. Thompson, “On the likelihood that one unknown probab-
ility exceeds another in view of the evidence of two samples,”
Biometrika, vol. 25, no. 3/4, pp. pp. 285–294, 1933.

[19] A. Gelman, J. Carlin, H. Stern, D. Dunson, A. Vehtari, and
D. Rubin, Bayesian Data Analysis, 3rd Edition, ser. Chapman
& Hall/CRC Texts in Statistical Science, 2013.

[20] M. Geist and O. Pietquin, “Kalman filtering & colored noises:
the (autoregressive) moving-average case,” Workshop Proceed-
ings of ICMLA 2011, no. 9, 2011.

586

