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Abstract—A novel Q-learning approach is presented for the
design of an adaptive optimal regulator for linear large-scale
interconnected system. The subsystems communicate among each
other through a communication network while another commu-
nication network is inserted within the feedback loop of each sub-
system. The network induced random delays and data dropouts
of the network in the feedback are modelled along with the system
dynamics. Stochastic Q-learning is used to adaptively learn the
Q-function parameters with periodic and intermittent feedback.
For efficient parameter learning with event-sampled feedback, a
novel hybrid learning algorithm is proposed. Boundedness of the
estimated parameters and asymptotic convergence of state vector
in the mean square is achieved and it is demonstrated using
Lyapunov stability analysis. Moreover, if the regression function
of the QFE is persistently exciting (PE), the estimated parameters
converge to their expected target values. The proposed analytical
design is validated using a numerical example via simulation.

I. INTRODUCTION

Large scale systems [1]–[3] such as electric power grids,

transportation and automotive systems, in general consist of

geographically distributed subsystems. From the control point

of view, these systems require substantially higher computa-

tional and communication resources to ensure stable operation

with a desired performance. The conventional design approach

for a decentralized controller is to decouple the interconnected

subsystems by assuming that subsystems have weak coupling

[3] and use only the local state vector to obtain the control

policy. In some cases, an additional learning mechanism is

designed at each subsystem to adaptively learn the coupling

terms to counter the effect of interactions [2].

If the interactions between the subsystems are neglected

during control design, they may destabilize the overall system

when uncertainties or disturbances are present [1], [2]. For

large scale systems, the effect of interconnection is difficult

to know beforehand. In [2], the importance of communication

between the subsystems is discussed and it is reported that

when the subsystems do not share their sensor measurements

with each other and instead use reference models to obtain the

state information of other subsystems, unsatisfactory transient

performance can be observed.

The event-based sampling and controller execution is demon-

strated to have advantageous over periodic time-driven sam-

pling counterpart in terms of communication and compu-

tational costs [3]–[5]. The aperiodic event-based sampling

time-instants are dynamically decided using an event-sampling

condition such that stable operation of the system is preserved.

Similar event-sampled framework for the design of controllers

was extended to large scale interconnected systems in [3]

with the objective to stabilize the subsystems assuming weak

interconnections and known subsystem dynamics.

Optimal control [6] based on adaptive dynamic programming

(ADP) [5], [7], [8] can be utilized to obtain forward-in-

time solution for the optimal control problems when the

system dynamics are uncertain. Among the ADP based Q-

learning schemes, the authors in [5], [8] proposed a time-based

algorithm to solve the ADP and Q-learning based optimal

control, in an on-line manner without using iterations. Such

a formulation for a large scale system with interconnected

subsystems requires the inclusion of a communication net-

work through which the information of state vector of each

subsystem will be shared among them.

Networked control systems [8]–[10] (NCS) integrates the

effects of communication with the control systems. The com-

munication network in the feedback loop introduces random

time delays and packet data dropouts, which might degrade

the control performance. In [9], various issues related to NCS

are discussed in detail. To the best knowledge of the authors, a

time-based Q-learning scheme with intermittent feedback for a

large-scale interconnected system with network induced losses

is not reported.

In view of the above, in this paper, the sampled data

modelling approach which uses augmented states and past

input values introduced in [9] to include network induced

delays, and extended in [8] to include the packet data drop

outs is used to model the large-scale interconnected system.

Stochastic Q-learning technique [8] is used to compute the

control gains without a priori knowledge of the large scale

system dynamics including the interconnection terms with

periodic and intermittent feedback. Due to the network losses

and aperiodic parameter updates, the learning process of the
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Q-function slows down and to counter this effect a novel

hybrid learning algorithm is introduced. Analytical results are

presented for the proposed design and they are verified with

a numerical example via simulation. In this paper, Euclidean

norm for the case of vectors and Frobenius norm for matrices

are used.

II. SYSTEM DESCRIPTION

Consider a linear time invariant continuous-time system

having N interconnected subsystems, each of the form

ẋi(t) = Aixi(t) +Biui(t) +
∑N

j=1
j �=i

Aijxj(t), (1)

where � denotes the set of all real numbers. xi, ẋi ∈ �ni×1

are the states and state derivatives of the ith subsystem respec-

tively. ui ∈ �mi , Ai ∈ �ni×ni , Bi ∈ �mi×1, Aij ∈ �ni×nj

denote control input, internal dynamics and control gain ma-

trices of the ith subsystem, Aij represents the interconnection

dynamics between the ith and jth subsystem. The overall

system description can be expressed in a compact form as

Ẋ(t) = AX(t) +BU(t), X(0) = X0, (2)

where X ∈ �n, U ∈ �m, B ∈ �n×m, A ∈

�n×n, Ẋ = [ẋ1, ., ẋN ]
T

, A =

⎛
⎝ A1 ... A1N

: ... :
AN1 ... AN

⎞
⎠ , B =

diag[B1, ., BN ], U = [u1, ., uN ]
T

. The system dynamics are

considered uncertain with the following assumption.

Assumption 1. The system in (2) is considered controllable
and the states are measurable with the control coefficient
matrix satisfying ‖B‖ ≤ Bmax, where Bmax > 0 being a
known constant. Further, the order of subsystems is considered
known.

Fig. 1: Large-scale interconnected system

The Fig. 1 shows the block diagram of the large-scale system

considered in this paper. The effects of the network induced

delays and dropouts can be modelled along with the system

dynamics, with the standard assumptions [8], [9]. With the

network induced delays and data-dropout in Network 2, the

original plant can be represented as,

Ẋ(t) = AX(t) + γca(t)BU(t− τ(t)) (3)

where γca(t) indicates if the control input is lost in the

transmission or not and τ(t) is the total loop delay.

Integrating the system (3) as in [8], we can define an

augmented state vector consisting of states and past control

inputs as X̄(k) = [XT
k ...U

T
k−d] ∈ �n+lm.The new augmented

system representation is given as

X̄k+1 = AzkX̄k +BzkUk (4)

with the matrices

Ax̄k =

⎡
⎢⎢⎢⎣
Ad γca,k−1B

k
1 · · · γca,k−lB

k
d

0 · · · 0 0
... Im

...
...

0 · · · Im 0

⎤
⎥⎥⎥⎦ , Bx̄k =

⎡
⎢⎢⎢⎣
γca,kB

k
0

Im
...

0

⎤
⎥⎥⎥⎦

Remark 1. If the delay is constant and there are no data

dropouts, the system description will still be linear time-

invariant. Since the system matrices in (4) are no longer linear

time-invariant, the assumptions regarding the controllability

and observability are now dependent upon the respective

Grammian functions [6], therefore, we need the following

assumption to proceed further.

Assumption 2. [6] The system is uniformly completely
observable and uniformly completely controllable.

The Q-learning and adaptive optimal regulation for the NCS

is presented next.

III. PROBLEM FORMULATION

For the stochastic system dynamics (4), now represented

with the matrices which are functions of stochastic variables,

the cost function over the infinite time horizon, is defined as

Jk = E
τ,γ

[∑∞
t=k

X̄T
t Px̄X̄t + UT

t Rx̄Ut

]
(5)

where, Px̄ = diag(P, R
d , ..,

R
d ), Rx̄ =

R
d .The penalty matrices

are positive semi-definite and positive definite respectively

with P,R being the penalty matrices of the original system

states and control input defined in (2), E
τ,γ

(β) denotes the

expected value of the stochastic process β which is a function

of stochastic variables γ, τ .

The stochastic cost function [6] can be represented as

Jk = E
τ,γ

[X̄T
k SkX̄k] with Sk being the symmetric positive

semi-definite solution of the stochastic Riccati equation. Since,

the system now is no longer described by the linear time-

invariant dynamics, the existence of the unique solution for

the Riccati equation is not guaranteed by the controllability

of (Ax̄k, Bx̄k) and observability of (Ax̄k,
√
Px̄) and requires

Assumption 2. Now, defining the optimal action dependent

value function or the Q-function for the stochastic system

described in (4) with the cost to go function of the form (5)

Q(X̄, U) = E
τ,γ

[r(X̄k, Uk) + Jk+1

∣∣X̄k ]

= E
τ,γ
{[X̄T

k UT
k ]Gk[X̄

T
k UT

k ]
T } (6)

where r(X̄k, Uk) = X̄T
k Px̄X̄k + UT

k Rx̄Uk and Gk is a

time-varying matrix. Using the Bellman equation (6) and the
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definition of the stochastic cost function (5), and the system

dynamics (4), we get

Q(X̄, U) =

[
X̄k

Uk

]T ⎡
⎣Px̄ + E

τ,γ
(AT

x̄kSk+1Ax̄k) E
τ,γ

(AT
x̄kSk+1Bx̄k)

E
τ,γ

(BT
x̄kSk+1Ax̄k) Rx̄ + E

τ,γ
(BT

x̄kSk+1Bx̄k)

⎤
⎦[

X̄k

Uk

]

(7)

E
τ,γ

(Gk) =

⎡
⎣ E

τ,γ
(Gx̄x̄

k ) E
τ,γ

(Gx̄U
k )

E
τ,γ

(GUx̄
k ) E

τ,γ
(GUU

k )

⎤
⎦

From the matrix equation (7), the time varying control gain

can be expressed, without using the system dynamics as

Kk = E
τ,γ
{(GUU

k )
−1

GUx̄
k } (8)

Traditionally, the sequence of control policies, U(k), which

minimizes the value function (5) can be obtained by solving

the Riccati equation (RE) [6]. The control policy is given by

U∗(k) = −E
τ,γ
{Kk

∗X̄(k)} (9)

where K∗
k = (Rx̄ +Bx̄k

TSkBx̄k)
−1

Bx̄k
TSkAx̄k. In the Q-

learning based ADP algorithms, the initial control policy

is assumed to be admissible to keep the cost function (5)

finite and the control policy is obtained using (8) without

the system dynamics. For the case of interconnected systems,

the overall cost function (5) for the system given by (4), can

be represented as the sum of the individual cost of all the

subsystems as

J (k) =
∑N

i=1
Ji (k) (10)

where Ji(k) = E
τ,γ
{ 12

∑∞
s=k x̄

T
i (s)Px̄,ix̄i(s) + uT

i (s)Rx̄,iui(s)}
is the quadratic cost function for ith subsystem. The

relation (10) will hold by choosing the penalty matrices

Px̄ = diag{Px̄,1 · · ·Px̄,N} and Rx̄ = diag{Rx̄,1 · · ·Rx̄,N}.
The optimal control problem with the objective to minimize

the quadratic cost function (10), for the large scale intercon-

nected system, in a decentralized framework is non- trivial due

to the interconnection dynamics. The optimal control policy

for each subsystem which minimizes the cost function (10), is

obtained by using the Riccati equation of the overall system

given the system dynamics Ax̄k and Bx̄k. It is given by

u∗i (k) = −K∗
i x̄i(k)−

∑N

j=1,j �=i
K∗

ij x̄j(k) (11)

where K∗
i are the diagonal elements, and K∗

ij are the off

diagonal elements of the overall gain matrix K∗
k in (9).

In the following lemma, it is shown that, with the control

law (11) designed at each subsystem, the overall system is

asymptotically stabilized in the mean square.

Lemma 1. Consider the ith subsystem of the large scale

interconnected system (4). The optimal control policy obtained

from (11), which uses the system dynamics, renders the

individual subsystems asymptotically stable in mean-square.

Proof: Note that the optimal control input (11) is stabiliz-

ing [6]. Therefore, the closed-loop system matrix (Ax̄k −
Bx̄kK

∗
k) is Schur. The Lyapunov equation is given by

(Ax̄k −Bx̄kK
∗
k)

T
P̄ (Ax̄k − Bx̄kK

∗
k) − P̄ = −F̄ , has a

positive definite solution F̄ . The matrix F̄ can be chosen

diagonal. Consider the Lyapunov function candidate L(k) =

E
τ,γ

(X̄T (k)P̄ X̄(k)), with P̄ being a positive definite matrix of

appropriate dimension. The first difference, along the overall

system dynamics and the optimal control input

ΔL(k) = −E
τ,γ

(X̄T (k)F̄ X̄(k)) (12)

Since, F̄ is a diagonal matrix, the first difference in terms of

the subsystems can be expressed as

ΔL(k) = −∑N
i=1 E

τ,γ
(xT

i (k)F̄ixi(k)) ≤ −
∑N

i=1 q̄minE
τ,γ
‖xi(k)‖2

(13)

where q̄min is the minimum singular value of F̄i. The results

of this lemma will be used in the stability analysis of the

interconnected system and the requirement of the system

dynamics will be relaxed. Thus, the problem is now reduced

to the following objective, which is to design a controller for

the overall system by minimizing (10), so that each subsystem

control policy is of the form (11) with event-sampled feedback.

IV. CONTROLLER DESIGN

To address the above mentioned issues, a Q-learning scheme

can be designed for the interconnected system by estimating

the values of the Q-function of the overall system at each

subsystem. Since, subsystems broadcast their state vector,

every subsystem can adaptively learn the optimal Q-function

of the overall system. The estimation of the Q-function at

every subsystem increases the computation. This additional

computation can be viewed as a trade-off for relaxing the as-

sumption on strength of interconnection terms and estimating

optimal control.

With the following assumption, the Q-function estimator

design will be presented for periodic and intermittent feedback.

Assumption 3. [11] The unknown parameters are assumed
to vary slowly.

A. Periodic feedback

The Q-function (6) in parametric form is given by

Q∗(X̄(k), U(k)) = E
τ,γ

(zT (k)Gkz(k)) = E
τ,γ

(ΘT
k ξ(k)) (14)

where, z(k) = [γsc(k)X̄
T (k) UT (k)]

T ∈ �l̄ with l̄ =
m + n + ml, ξ(k) = z(k) ⊗ z(k) is a quadratic polyno-

mial or regression vector, ⊗ denotes Kronecker product and

Θk ∈ ΩΘ ⊂ �lg is the Q-function parameter vector formed by

vectorization of the parameter matrix Gk , γsc(k) is packet loss

indicator from sensor to controller with appropriate dimension.

The estimate of the Q-function is expressed as

Q̂(X̄(k), U(k)) = E
τ,γ

(zT (k)Ĝkz(k)) = E
τ,γ

(Θ̂T (k)(ξ(k)))

(15)
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where,Θ̂(k) ∈ �lg is the estimate of Q-function parameter

vector. By Bellman’s principle of optimality, the optimal value

function satisfies

0 = E
τ,γ

(r(X̄(k), U(k))) + E
τ,γ

(ΘT
kΔξ(k)) (16)

where, Δξ(k) = ξ(k + 1) − ξ(k). Since the estimated Q-

function does not satisfy (16), the temporal difference (TD)

or the Bellman error will be seen which is given by

eB(k) = E
τ,γ

(r(γsc(k)X̄(k), U(k)) + Θ̂T (k)(Δξ(k))) (17)

The QFE parameter vector Θ̂i(k), at the ith subsystem, is

tuned by using the history of the Bellman error. Therefore, the

auxiliary Bellman error at the sampling instants k is expressed

as

ΞB
i(k) = E

τ,γ
(Πi(k)) + E

τ,γ
(Θ̂iT (k)Zi(k)) (18)

where Πi(k) = [r(Xi(k), U i(k)) r(Xi(k − 1), U i(k −
1)) · · · r(Xi(k − ν − 1), U i(k − ν − 1))] ∈ �1×ν and

Zi(k) = [Δξi(k) Δξi(k−1) · · · Δξi(k−1− v)] ∈ �lg×ν

with 0 < ν < l. The auxiliary Bellman error (18) uses

the current estimated QFE parameter vector Θ̂i(k) ∈ �lg to

evaluate the error.

Next, the update law [12] for the QFE parameter vector

Θ̂i(k), is given by

Θ̂i(k) = Θ̂i(k − 1) +
W i(k−2)Zi(k−1)ΞiT

B (k−1)

1+ZiT (k−1)W i(k−2)Zi(k−1)
(19)

where

W i(k) =W i(k − 1)− W i(k−1)Zi(k−1)ZiT (k−1)W i(k−1)

1+ZiT (k−1)W i(k−1)Zi(k−1)
(20)

with W i(0) = βI , β > 0, a large positive value and I is the

identity matrix of appropriate dimension.

Remark 2. The estimator should wait for all the subsystems

to broadcast their feedback information. If γsc is unity, the

Q-function estimator is updated and control law is sent to the

actuator, as soon as it is computed. The broadcast scheme re-

quires a suitable scheduling mechanism and acknowledgment

signals. The computational delay can be added with controller-

to-actuator delay.

Remark 3. The number of history values ν is not fixed and a

value ν ≤ lg is found suitable during simulation studies. For

the computation of Z(k − 1), the past values are required to

be stored at the value function estimator.

Next, the case were subsystems broadcast their feedback

information only at event-sampled instants is presented.

B. Event-based Feedback

In the case of event-sampled feedback, the system state

vector X̄(k) is sent to the controller only at the event-sampled

instants. To denote the event-sampling instants, we define

a subsequence kl, k and l ∈ N with k0 = 0 being the

initial sampling instant. The system state vector X̄(kl), sent

to the controller, is held by a zero-order-hold (ZOH) until

the next sampling instant and it is expressed as X̄e(k) =
X̄(kl), kl ≤ k < kl+1. The corresponding error referred

to as event sampling error can be expressed as

eET (k) = X̄(k)− X̄e(k), kl ≤ k < kl+1, l = 1, 2, · · · (21)

Our objective is to design an optimal controller by minimizing

(5) with the event sampled state vector. The event sampled

optimal control input sequence, when used with a Q-function,

can be re-written as

U∗(k) = −E
τ,γ

((Guu)
−1

Gux(X̄(k)) + eET (k)) (22)

for kl ≤ k < kl+1, l = 1, 2, · · · . This optimal control

input (22) is governed by the error eET (k). Further, since the

estimation of K∗ or G must use event sampled state vector,

X̄e(k) , the Q-function estimate can be expressed as

Q̂(X̄e(k), U(k)) = E
τ,γ

(zeT (k)Ĝkz
e(k)) = E

τ,γ
(Θ̂T (k)ξe(k))

(23)

for kl ≤ k < kl+1, where ze(k) =

[γsc(k)X̄
eT (k) UeT (k)]

T ∈ �l and ξe(k) = ze(k) ⊗ ze(k)
being the event sampled regression vector. The Bellman error

with event sampled state can be represented as

eB(k) = E
τ,γ

[
r(γsc(k)X̄

e(k), U(k)) + Θ̂T (k)Δξe(k)
]
,

(24)

where, kl ≤ k < kl+1, r(X̄e(k), U(k)) = X̄eT (k)Px̄X̄
e(k)+

UT (k)Rx̄U(k) and Δξe(k) = ξe(k+1)−ξe(k). The Bellman

error (24) in terms of the periodic system state is rewritten as

eB(k) = E
τ,γ
{r(X̄(k), U(k)) + Θ̂T (k)Δξ(k)

+Ξs

(
X̄(k), eET (k), Θ̂(k)

)
}

(25)

where Ξs

(
X̄(k), eET (k), Θ̂(k)

)
= r(X̄(k) −

eET (k), U(k))−r(X̄(k), U(k)) + Θ̂T
k (k)(Δξe(k)−Δξ(k)).

Remark 4. By comparing (25) with (17), the Bellman error in

(25) includes an additional term, which is driven by the event

sampling error eET (k). Hence, the accuracy of the estimation

of QFE parameters depends upon the frequency of the event

sampling instants.

The Q-function at ith subsystem can be expressed as in

(23). The QFE estimated parameter vector Θ̂i(k) is tuned only

at the event sampling instants. The superscript i denotes the

overall system parameters at the ith subsystem and the overall

estimated control input can be computed at each subsystem as

U i(k) = −K̂i(k)X̄ie(k) = −{(Ĝi,uu(k))}−1Ĝi,ux(k)X̄ie(k)
(26)

By using (26), the event-based estimated control input for the

ith subsystem can be written as

ui(k) = −K̂ix̄
e
i (k)−

∑N

j=1,j �=i
K̂ij x̄

e
j(k), (27)

for kil ≤ k < kil+1, i ∈ {1, 2, ..N} and ∀l ∈ N.
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With the event sampled feedback, the QFE is updated

only at event-sampled instants. This increases the parameter

convergence time, as the updates are aperiodic. In order to

facilitate the learning process, an event-sampling condition

which uses a mirror estimator and designed such that it

explicitly increases the sampling instants was proposed in [5].

In the following section, a novel hybrid learning algorithm is

proposed to improve the learning process in the event-sampled

framework without explicitly increasing the event-sampling

instants without using a mirror estimator.

C. Hybrid-learning algorithm

In the traditional event-driven Q-learning scheme, the Q-

function is updated at every event-sampling instant. These

events are generally spaced out and dynamically decided.

Since the events are spaced out, there are sampling instants

where the Q-function is idle.

In the proposed hybrid-learning algorithm, the time-driven

Q-learning based ADP [5], [8] is used along with the proposed

iterative parameter updates within the inter-event period. The

Q-function is updated at the event-sampling instant and the

control law is updated at the actuator. Between the event-

sampling instants, the Q-function is not idle, but iterative

parameter updates are performed.

Whenever there is a new event, the Q-function which is

updated iteratively is passed on to the QFE to calculate

the new target and the Bellman error. By this approach,

the convergence of the parameters should be faster than the

traditional Q-learning algorithms.

Next, the error dynamics is defined and the Lyapunov

analysis is used to analyze the stability of the closed loop

system.

The Bellman error E
τ,γ

(eB
i(k)), in terms of E

τ,γ
(Θ̃i(k))

can be computed as E
τ,γ

(eB
i(k)) = −E

τ,γ
(Θ̃i,T (k)Δξi(k))

and the auxiliary Bellman error is given by E
τ,γ

(Ξi
B
(k)) =

−E
τ,γ

(Θ̃i,T (k)Zi(k)). Defining the QFE parameter estimation

error E
τ,γ

(Θ̃i(k)) = E
τ,γ

(Θ)− Θ̂i(k), the error dynamics using

(19), can be represented as

E
τ,γ

(Θ̃i(k + 1)) = E
τ,γ

[
Θ̃i(k) +

W i(k)Zi(k)ΞiT

B (k)

1 + ZiT (k)W i(k)Zi(k)

]
(28)

Remark 5. The QFE parameter estimation error Θ̃i
k

will

converge to zero if the augmented matrix Zi(k) satisfies the

PE condition. A PE like condition for the regression vector

ξ(k) can be satisfied by adding an exploration noise to the

control input U(k) during the estimation process [11].

Before going to the main results, the request based event-

sampling algorithm proposed is presented next.

For estimating the overall Q-function locally, we will use the

following request based broadcast scheme and event-sampling

algorithm. Consider an event-sampling instant kl
i at the ith

subsystem. The ith subsystem generates a request signal and

it is broadcast along with the sensor measurements to the

other subsystems. On receiving the request signal, all the other

subsystems broadcast their respective sensor measurements to

all the subsystems. This can be considered as a forced event

at the other subsystems. For the event sampling algorithm,

consider a quadratic function f i(k) = x̄i(k)
T
Γix̄i(k), for

the ith subsystem. The event sampling condition satisfies the

following inequality at every subsystem

f i(kl
i) ≥ f i(k) ∀k ∈ [kli + 1, kl+1

i) (29)

Remark 6. It is important to mention that the subsystems

broadcast their states whenever there is a local event or when

there is a request from the other subsystem. The request signal

is considered to be broadcast without any delay in Network 1.

The stability of the closed-loop system with the proposed

distributed control scheme using event-sampled feedback in-

formation is presented next.

Theorem 1. Consider the closed-loop system (4), QFE and
QFE parameter estimation error dynamics (28) along with
the control policy (26). Let all the Assumptions 1 through
3 hold, U(0) ∈ Ωu be an initial admissible control policy.
Suppose the QFE parameter vector, Θ̂(k) are updated at
event-sampling instants by using (19) and (20), at every
subsystem and the event-sampling condition satisfies (29).
Then, there exists a constant Γmin > 0 such that the closed-
loop system state vector E

τ,γ
(X̄(k)) for all x0 ∈ Ωx converge

to zero asymptotically and the QFE parameter estimation error
E
τ,γ

(Θ̃(k)) for all Θ̂(0) ∈ ΩΘ remain bounded, provided the

inequalities Γmin > μ and π̄ > C1 are satisfied. Further, with
the PE condition, the estimated Q-function Q̂(X̄(k), U(k))→
E
τ,γ

(Q∗(X̄(k), U(k))) and estimated control input U(k) →
E
τ,γ

(U∗(k)) as event-sampling instants l→∞.

Outline of the proof: During the event-sampled instant,

due to the updated control policy (26), the Lyapunov func-

tion decreases. Due to the event-sampling condition (29),

the Lyapunov function is bounded during the inter-sampling

period. When the new event occurs, the controller is updated

and the Lyapunov function decreases further leaving a new

threshold which is lesser than the previous threshold. This

process continues until the Lyapunov function converges to

zero.Therefore, it can be concluded that as the event-sampled

instants kl
i →∞, E

τ,γ
{L(x̄, Θ̃)} → 0.

Remark 7. The inequalities Γmin > μ and π̄ > C1 required for

the stable operation of the closed-loop system will be satisfied

by choosing W and Γi appropriately.

Remark 8. For the time-driven Q-learning algorithm, the

QFE is not updated in the inter-event period. Therefore the

parameter error is constant and hence the Lyapunov function

is negative semidefinite. For the hybrid learning algorithm, due

to the iterative parameter update, the parameter error decreases

in the inter-event period, giving a stronger condition, which

helps in faster parameter convergence.

591



Fig. 2: Time history plot of states and control inputs

The proposed control scheme is tested with a numerical

example in the next section.

V. SIMULATION ANALYSIS

A system of 3 interconnected inverted pendulums,

coupled by spring is considered for the verification of the

analytical design described in this paper. The dynamics is

ẋ(t) =

[
0 1

g
l − aik

ml2 0

]
xi (t) +

[
0
1

ml2

]
ui (t) +

∑
j∈Ni

[
0 0

hijk
ml2 0

]
xj (t)

where l = 2,g = 10,m = 1,k = 5 and hij = 1,

∀j ∈ {1, 2, .., N}. The system is open loop unstable. The

system is discretized with a sampling time of 0.1 sec. The

cost function was chosen with Pi = I2×2 and Ri = 1 for

∀i = 1, 2, 3. The initial states for the system was selected as

x1 = [2 − 3]
T

,x2 = [−1 2]
T

and x3 = [−1 1]
T

.The initial

value of W in the update law is chosen to be 106 . For the

PE condition Gaussian white noise with zero mean and 0.2

standard deviation, was added to the control inputs. Fig. 2

presents the system response with periodic feedback when

there are no network induced losses.

The simulations were carried out with the random loop

delays with an upper bound of 200 ms. The delay was charac-

terized by normal distribution with 0.8 as expected values and

packet losses were characterized with Bernoulli distribution.

Monte-Carlo analysis was carried out for 500 iterations. In

the simulations, the PE condition was removed as soon as the

Bellman error is reduced to 10−3. Simulation figures for all

the cases are not included due to space consideration.

The parameter estimation error comparison between time-

driven ADP and proposed hybrid algorithm is given in Fig.3.

The hybrid learning algorithm facilitates faster convergence

compared to the traditional time-driven ADP algorithm. The

decentralized event-sampling algorithm in Figure 4 shows that

there is a reduction in the communication and computational

cost.

Fig. 3: Parameter estimation error for case1

Fig. 4: Total number of feedback instants

VI. CONCLUSION

The Q-learning based scheme is extended to a large scale

system by modeling the system as a centralized system and es-

timated the Q-function parameters for the entire system at each

subsystem. No assumptions on the interconnection strengths is

required for this control scheme. The mirror estimator is not

used in the event sampling mechanism. The network induced

losses and the aperiodic weight tuning increases the learning

period and therefore, a novel hybrid Q-learning algorithm is

proposed. The proposed algorithm gives a stronger stability

results in the inter event period due to the iterative parameter

updates. This improves the convergence time of the QFE at

each subsystem.
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