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Abstract—Stochastic multi-objective multi-armed bandit
problem, (MOMAB), is a stochastic multi-armed problem
where each arm generates a vector of rewards instead of a
single scalar reward. The goal of (MOMAB) is to minimize
the regret of playing suboptimal arms while playing fairly
the Pareto optimal arms. In this paper, we consider Gaussian
correlation across arms in (MOMAB), meaning that the
generated reward vector of an arm gives us information not
only about that arm itself but also on all the available arms.
We call this framework the correlated-MOMAB problem.
We extended Gittins index policy to correlated (MOMAB)
because Gittins index has been used before to model the
correlation between arms. We empirically compared Gittins
index policy with multi-objective upper confidence bound policy
on a test suite of correlated-MOMAB problems. We conclude
that the performance of these policies depend on the number
of arms and objectives.

I. INTRODUCTION

The Multi-Objective Optimization (MOO) problem with
conflicting objectives is omnipresent in the real-world. For
instance, in shipping firm, the conflicting objectives might
consist of the shipping time and the cost. At the same
time, a short shipping time is needed in order to improve
customer satisfaction and a few number of used ships is
required in order to reduce the operating cost. It is obvious
that adding more ships will reduce the needed shipping time
but will increase the operating cost. The goal of the MOO
with conflicting objectives is to trade off the conflicting
objectives [1].

The Multi-Objective Multi-Armed Bandit (MOMAB)
problem [2], [3] is a straightforward synergy between multi-
objective optimization and stochastic Multi-Armed Bandits
(MAB) in the sense thatMAB is adapted to reward vectors
and all Pareto optimal arms are considered equally important.
Similarly with MAB, MOMAB is a sequential stochastic
learning problem. At each time step n, an agent pulls one
arm a from an available set of arms A and receives a reward
vector rrra from the arm a with D dimensions (or objectives)
as a feedback signal. The reward vector rrra is drawn from a
corresponding stationary probability distribution vector, for
example from a normal probability distribution N(μμμa,σσσ

2
a),

where μμμa is the unknown true mean vector and σσσ2
a is

the known variance vector parameters of the arm a. The
reward vector rrra that the agent receives from the arm a
is independent from all other arms and independent from
the past reward vectors of the selected arm a. Moreover, the

mean vector of the arm a has independent D distributions.
For each objective d ∈ D, we assume that the agent has
a prior multivariate normal distribution belief across all the
available arms.

The MOMAB problem has a set of Pareto optimal
arms (Pareto front) A∗, that are incomparable, i.e. can not
be classified using a designed partial order relations [4].
The agent has to trade off between minimizing the Pareto
regret, i.e. the total loss of not pulling the optimal arms and
thus exploring the sub-optimal arms, and selecting fairly the
optimal arms in the Pareto front that minimizes the unfairness
loss, i.e. exploiting the Pareto optimal arms [5]. At each time
step n, the Pareto regret is defined as the distance between the
reward vectors of the Pareto optimal arms and the selected
arm [2]. The unfairness regret is the Shannon entropy on
the frequency of selecting the optimal arms in the Pareto
front [6].

Linear scalarized function [7] is a simple and intuitive
method to identify the Pareto front, i.e. the set of Pareto
optimal reward vectors, in MOO. Each linear scalarized
function has a predefined corresponding weight vector. Given
a predefined weight vector www, the linear scalarized function
weighs each value of the mean vector μμμa of each arm
a, converts the Multi-Objective (MO) space to a single-
objective one by summing the weighted mean values and
selects the optimal arm a∗ that has the maximum scalarized
function. Since solving a MOO problem means finding the
Pareto front A∗, we need a set of linear scalarized functions
to generate a representative set on the Pareto front. For
a discrete Pareto front, there is no guarantee that linear
scalarized functions can find all the optimal arms in the
Pareto front A∗ [7]. To improve the performance of the linear
scalarized functions in finding and playing fairly the optimal
arms, the authors in [2] have used upper confidence bound
(UCB1) policy [8] in the MOMAB problems.

In this paper, we introduce the Correlated Multi-Objective
Multi-Armed Bandit (CMOMAB) problem where selecting
an arm a gives us information about all the available arms
A. The CMOMAB can be applied in a lot of MOO
problems, e.g. in wireless ad hoc networks [9] when there
are shared paths among ways in sending packets from a
source node to a destination node or in the shipping firm
when there is an overlap among ship’s ways. We extend
Gittins Index (GI) [10] policy to the CMOMAB in order
to find and select fairly the optimal arms (i.e. trade off
between exploration and exploitation) since GI policy has
been used before to model the correlation in the single-
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objective Multi-Armed Bandit with normal correlated beliefs
across arms (CMAB) [11]. In CMOMAB, GI policy
computes for each arm and objective a GI index that will be
added to the corresponding mean of the multivariate normal
distribution belief in order to trade off between exploring
suboptimal arms and fairly selecting the optimal arms. GI
policy performs linear scalarized function on the GI index
plus the mean of the multivariate normal distribution belief to
transform the multi-objective problem into a single-objective
one. Finally, we compare GI and UCB1 policies on a
test suite of CMOMAB problems and we conclude that
the performance of GI and UCB1 policies depend on the
amount of correlation across arms, the number of arms and
objectives, and the used parameters.

The rest of the paper is organized as follows: Sec-
tion II discusses single-objective multi-armed bandit with
normal correlated beliefs across arms, and Gittins index in
CMAB and UCB1 policies in the CMAB. Section III
introduces the correlated multi-objective multi-armed bandit
across arms framework. Section IV extends the GI policy
to the CMOMAB problems. Section V extends the UCB1

policy to the CMOMAB problems. Section VI describes
the experiments set up followed by experimental results.
Section VII concludes the paper and discusses future work.

II. BACKGROUND IN MULTI-ARMED BANDIT WITH
GAUSSIAN CORRELATED BELIEFS (CMAB)

In this section, we discuss: 1) The multi-armed bandit
with Gaussian correlated beliefs (CMAB) [11] problem
to understand the framework of the CMOMAB. CMAB
arises in a lot of applications such as drug treatments for
human patients when the treatments consist of overlapping
sets of drugs, [11], [12]. See [12] for more applications on
the CMAB. 2) Gittins index policy for the CMAB [11],
and 3) UCB1 policy for the CMAB [11].

The standard single-objective multi-armed bandit with
Gaussian correlated beliefs (CMAB) is a stochastic MAB
problem. At each time step n, an agent selects one arm
a ∈ A from the arm set A and observes a scalar reward
ra from the arm a. The observed reward ra is independent
from all other arms and independent from the past rewards
of the arm a. The reward ra is drawn from a corresponding
normal probability distribution N(μa, σ

2
a) with unknown

mean μa and known variance σ2
a. Since the true mean

μa is unknown, it is a normal random variable according
to Bayesian view [13]. The agent has a prior multivariate
normal distribution belief N(μμμn,ΣΣΣn) across the arms A,
where μμμn = [μ1, · · · , μa, · · · , μA]

T is the prior mean vector
belief of size |A| and ΣΣΣn is the prior covariance matrix
belief of size |A| × |A|. The number of arms is |A| and
T is the transpose. After observing the reward ra, the agent
updates its prior belief distribution to get the posterior belief
distribution N(μμμn+1,ΣΣΣn+1) which is a multivariate normal
distribution according to Bayesian view [13]. The mean
belief vector μμμn+1 and the covariance matrix belief ΣΣΣn+1 of
the posterior belief distribution can be updated recursively

as [13]:

μμμn+1 = μμμn +
ra − μa, n

σ2
a + σ2

a, n

ΣΣΣn eeea

ΣΣΣn+1 = ΣΣΣn − ΣΣΣn eeea eee
T
a ΣΣΣn

σ2
a + σ2

a, n

(1)

where eeea is a unit vector corresponding to arm a, ra ∼
N(μa, σ

2
a) is the observed reward, and μa, n and σ2

a, n are
the mean and variance of the arm a of the belief distribution
N(μa, n, σ

2
a, n) at time step n.

The goal of the agent is to maximize the total expected

cumulative reward R = E[
∑N

n=1 rn] by finding the optimal
arm a∗ = argmaxa∈A μa and , where N is the total number
of time steps that the agent played and rn is the observed
reward at time step n. Maximize the total expected reward
is equivalent to minimizing the total regret (or total loss)

L = N μa∗ −∑A
a=1 E[na]μa, where na is the total number

of pulling an arm a, μa is the true mean of the arm a and
μa∗ is the true mean of the optimal arm a∗.

A exploration/exploitation policy decides which arms to
pull next to maximize the total expected cumulative reward.
Here, we consider the Gittins index policy and the UCB1-
Tuned policy to select the next arm to pull with the CMAB
problem.

A. Gittins Index Policy for CMAB

The approximated Gittins index (GI) policy [10] is used
for CMAB because it is based on the current beliefs about
all the available arms. At each time step n, the GI policy
calculates for each arm a, a corresponding index V GI

a . The
index of an arm a depends only on the mean belief μa, n and
the variance belief σ2

a, n (σa, n is the standard error belief) of
the arm a. Given the normal belief distribution N(μμμn,ΣΣΣn),
the GI policy selects the arm that has the maximum mean
belief plus its GI index as [10]:

a∗GI = argmax
a∈A

(μa, n + V GI
a ) (2)

= argmax
a∈A

(
μa, n + σa

√
− log γ b(− σ2

a, n

σ2
a log γ

)

)
,

where σ2
a is the known variance of the reward distribution

for selecting arm a, γ is the discount rate, and the function
b(s) is approximated as [10]:

b(s) =

⎧⎪⎪⎨
⎪⎪⎩

s√
2

for s ≤ 1
7

e−0.02645(log s)2+0.89106 log s−0.4873 for 1
7 < s ≤ 102√

s(2 log s− log log s− log 16π)
1
2 for s > 100

(3)

B. UCB1 Policy for CMAB

UCB1 [8] is a very popular index policy. UCB1 is
a family of policies of which we only consider UCB1-
Tuned [8]. Since UCB1-Tuned takes into account the
variance beside the mean of the normal belief distribution,
it performs well in practice. Like all UCB1, UCB1-Tuned
(or UCBT for short) plays initially each arm a once. UCBT
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Fig. 1: A correlated A-armed 2-objective bandit problem
across arm. In each objective, the agent has a multivariate
normal distribution belief.

computes for each arm a the corresponding index V UCBT
a ,

and adds it to the mean belief of the arm a. The index
V UCBT
a of an arm a is computed as:

V UCBT
a =

√√√√ lnn

na
min

(
1

4
, (σa, n +

√
2 lnn

na
)

)
(4)

where na is the number of times arm a has been pulled, n is
the current time step, and σa, n is the standard error belief of
the belief distribution N(μa, n, σ

2
a, n) for the arm a at time

step n. UCBT selects the arm that has the maximum mean
belief μa, n plus its UCBT index (V

UCBT
a ) as [8]:

a∗UCBT
= argmax

a∈A
(μa, n + V UCBT

a ) (5)

III. THE CORRELATED MULTI-OBJECTIVE
MULTI-ARMED BANDIT PROBLEM (CMOMAB)

In this section, we combine the framework of corre-
lated single-objective multi-armed bandit with the multi-
objective optimization problem to introduce the correlated
multi-objective multi-armed bandit (CMOMAB) problem
in which the correlation is considered across arms only.

Let us consider the CMOMAB across arms with |A| ≥
2 dependent arms and with D independent objectives per
arm. At each time step n, an agent pulls one arm a and
observes a reward vector rrra. The reward rda ∼ N(μd

a, σ
2
a)

in each objective d ∈ D is drawn from a corresponding
normal probability distribution, where μd

a is the unknown
mean and σ2

a is the known variance of the reward distribution
for the arm a in the objective d. We assume that the agent
has a prior multivariate normal distribution belief across the
arms. Since the objectives are independent and the agent
has a prior multivariate normal distribution belief across the
arms, each objective is a CMAB. For each objective d, the
multivariate normal prior distribution belief is N(μμμd

n,ΣΣΣ
d
n),

where μμμd
n is the mean vector of size of |A| and ΣΣΣd

n is
the covariance matrix of size |A| × |A| of the multivariate
normal prior distribution for the objective d at time step
n. Figure 1 shows a correlated 2-objective A-armed bandit
problem across arms. After observing the reward vector rrra,
the agent uses the observed reward rda in each objective d to
update its prior multivariate normal distribution belief using
Equation 1.

When the objectives are conflicting, the mean μd
a of an

arm a corresponding with objective d, can be better than the

component μd
a′ of another arm a′ but worse if we compare the

components for another objective d′: μd
a > μd

a′ but μd′
a < μd′

a′
for objectives d and d′, respectively. The agent has a set of
optimal arms (Pareto front) A∗ which are (partially) ordered
either by the Pareto dominance relation (PDR) [4], or linear
scalarization dominance (LSF ) [7].

Pareto dominance relation PDRPDRPDR identifies the Pareto
front A∗ directly in the multi-objective space [4]. It uses the
following relations between the mean vectors of two arms:
1) Arm a dominates a′, a � a′, if there exists at least one
objective d for which μd

a � μd
a′ and for all other objectives

d′ we have μd′
a � μd′

a′ . 2) Arm a is incomparable with a′,
a ‖ a′, if and only if there exists at least one objective d
for which μd

a � μd
a′ and there exists another objective d′ for

which μd′
a ≺ μd′

a′ . 3) Arm a is not dominated by a′, a′ � a,
means that either a � a′ or a ‖ a′. Using these relations,
Pareto front A∗ ⊂ A is the set of arms that contains not
dominated arms.

Linear scalarization dominance LSFLSFLSF converts the
MOO problem into a single-objective one [7]. Given a
predefined weight vector www = [w1, · · · , wD]T such that∑D

d=1 w
d = 1, LSF assigns to each value of the mean vector

μμμa of an arm a a weight wd and sums these weighted mean
values as:

f(μμμa) = w1μ1
a + · · ·+ wDμD

a (6)

where f(μμμa) is a LSF on the mean vector μμμa of the
arm a. After transforming the multi-objective problem to
a single one, the LSF selects its optimal arm a∗ =
argmax1≤a≤A f(μμμa) that has the maximum LSF value.

To find all the optimal arms in the Pareto front, we need
a set of scalarized functions FFF = {f1, · · · , fS} to generate
a variety of elements belonging to the Pareto front A∗. Each
scalarized function fs ∈ FFF has a corresponding predefined
weight vector wwws ∈ WWW , where WWW = [www1, · · · ,wwwS ] is a
predefined total weight matrix. It is common practice in
MOO to generate the matrix WWW uniformly random spread
in the weighted space [14]. LSF is very popular due to its
simplicity but it cannot identify all the rewards in a concave
shape Pareto front A∗ [14].

A. Measuring the Performance of CMOMAB

As in theMOMAB, the agent has to find both the Pareto
front A∗ (exploring the optimal arms) and play the optimal
arms fairly (exploiting the optimal arms). There are two
regret measures: Pareto regret measure (RP ) and unfairness
regret measure (RSE).

Pareto regret [2] measures the distance between a mean
vector of an arm a that is pulled at time step n and the Pareto
front A∗. The RP is calculated by finding firstly the virtual
distance dis∗. The virtual distance dis∗ is defined as the
minimum distance that will be added to the mean vector μμμa

of the pulled arm a at time step n in each objective to create
a virtual mean vector μμμ∗v = μμμa+εεε∗ that is incomparable with
all the arms in Pareto set A∗, i.e. μμμ∗v||μμμa∗∀a∗∈A∗ . Where εεε∗ is
a vector, εεε∗ = [dis∗,1, · · · , dis∗,D]T . Then, the Pareto regret
RP = dis(μμμa,μμμ

∗
v) = dis(εεε∗,000) is the Euclidean distance

between the mean vectors of the virtual arm μμμ∗v and the pulled
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arm μμμa at time step n. Note that the regret of the Pareto front
is 0 for optimal arms.

The unfairness regret measure [6] is the Shannon
entropy RSE . It is a measure of disorder on the frequency of
pulling the optimal arms in the Pareto front A∗. The higher
the entropy, the higher the disorder. The RSE(n) at time step
n is:

RSE(n) = − 1∑
a∗∈A∗ na∗

∑
a∗∈A∗

pa∗ ln(pa∗),

where pa∗ = na∗/
∑

a∈A na is the frequency of pulling an
optimal arm a∗, na∗ is the number of times the optimal arm
a∗ has been pulled,

∑
a∈A na is the number of times all

arms a = 1, · · · , A have been pulled, and
∑

a∗∈A∗ na∗ is
the number of times the optimal arms, a∗ = 1, · · · , |A∗|
have been pulled at time step n.

IV. GITTINS INDEX POLICY FOR CMOMAB

In a CMOMAB across arms problem, each objective is
a CMAB problem with a given prior multivariate normal
distribution belief. Gittins index policy computes which arm
to pull next using CMAB. For each objective, for each
arm, Gittins index GI computes the corresponding index
and adds it to the prior mean belief of that arm. It performs
linear scalarized function to convert the MOO into a single-
objective one and selects the optimal arm that has the
maximum scalarized value. The pseudo-code of the GI
policy for the CMOMAB is given in Algorithm 1.

1. Input: Action setA;Scalarized function set
FFF = {f1, · · · , fS};Number of objectiveD;Horizon of
a runN;Discount rate γ;Reward distributions.

2. Initialize: For objective d = 1, · · · , D
Prior mean μμμd

0;Prior covariance ΣΣΣd
0

End

3. For time step n = 1, · · · , N
4. For objective d = 1, · · · , D
5. For arm a = 1, · · · , |A|
6. Compute: V GI, d

a, n

7. V -GIda, n ← μd
a, n + V GI, d

a, n

8. End
9. End
10.Select fs uniformly, randomly from FFF
11.fs(VVV -GIGIGIa,n) = w1V -GI1a, n + · · ·+ wDV -GIDa, n
12.Select: the optimal arm a∗ that maximizes

the scalarized function fs

13.Observe: reward vector rrra∗ , rrra∗ = [r1a∗ , · · · , rDa∗ ]T;
Update: na∗ ← na∗ + 1

14. For objective d = 1, · · · , D
15. ra = rda∗
16. Update: μμμd

n and ΣΣΣd
n

17. End
18. Compute: Pareto& unfairness regrets
19. End

20. Output: Pareto& unfairness regrets

Algorithm: 1 (GI algorithm for CMOMAB).

In Algorithm 1, let A be the arm set, D be the number
of objectives, N be the horizon of a run, γ be the discount

rate, FFF = {f1, · · · , fS} be the given scalarized function
set, each scalarized function fs ∈ FFF has a corresponding
predefined weight vector www ∈ WWW of size D, where WWW is
the total predefined weight matrix of size D × S, and the
observed reward vector rrra of each arm a ∈ A be drawn
from a corresponding normal distribution rrra ∼ N(μμμa,σσσ

2
a),

where μμμa = [μ1
a, · · · , μD

a ]T is the unknown mean and σσσ2
a =

[σ2,1
a , · · · , σ2,D

a ]T is the known variance vectors of size D
(Step 1).

As initialization step, for each objective d ∈ D, we have a
prior multivariate normal distribution belief N(μμμd

0,ΣΣΣ
d
0) since

we have correlation across arms only, the objectives are
independent with each other, see Section III. The μμμd

0 is the
prior mean belief vector and ΣΣΣd

0 is the prior covariance belief
matrix of the belief distribution of the objective d (Step 2).

At each time step n, for each objective d, the algo-
rithm computes for each arm a the corresponding GI index

V GI, d
a, n = σd

a

√− log γ b(− σ2,d
a, n

σ2,d
a log γ

), where σ2,d
a, n is the

variance of the arm a in the objective d of the normal
belief distribution. The function b(.) can be calculated using
Equation 3 (Step 6). It adds the index V GI, d

a, n of an arm a
in the objective d to the mean belief μd

a, n of that arm to

compute the final value V -GIda, n (Step 7). The scalarized
function fs ∈ FFF that has a predefined weight vector wwws

is selected uniformly at random (Step 10). Algorithm 1
performs linear scalarized function on the final value vector
VVV -GIGIGIa, n = [V -GI1a, n, · · · , V -GIDa, n]

T of each arm a at
time step n (Step 11). It selects the optimal arm a∗ =
argmaxa∈AVVV -GIGIGIa, n that has the maximum scalarized value
(Step 12), observes the corresponding reward vector rrra∗ and
updates the number of times na∗ arm a∗ is selected (Step
13). For each objective d, the parameters of the prior belief
can be updated using Equations 1 (Steps 14-17). Algorithm 1
computes the Pareto and unfairness regrets, see Section III.
This procedure is repeated until the end of playing N time
steps.

V. UCBT POLICY FOR CMOMAB

As GI policy, UCBT finds the Pareto front A
∗ and plays

fairly the optimal arms in the set A∗ by considering each
objective is a CMAB problem with a given prior multivari-
ate normal distribution belief. At each time step n, for each
objective d, UCBT computes for each arm the corresponding
index V UCBT ,d

a, n , see Equation 4, and adds it to the prior mean
belief of that arm a in the objective d. For each arm a, it
performs linear scalarized function on the prior mean belief
vector μμμa, n = [μ1

a, n, · · · , μD
a, n]

T plus the corresponding

UCBT index VVV UCBT
a, n = [V UCBT , 1

a, n , · · · , V UCBT , D
a, n ]T to

convert the MOO problem into a single-objective one and
selects the optimal arm a∗ that has the maximum scalarized
value. UCBT policy observes the corresponding reward
vector rrra∗ and increases the number of pulling the arm a∗.
For each objective d, the parameters of the prior belief can
be updated using Equations 1.

Note that, Algorithm 1 can be used as a pseudo-code of
the UCBT policy for the CMOMAB by computing the
UCBT index VVV

UCBT
a, n instead of the GI index VVV GI

a, n (Step 6
and 7) and applying linear scalarized function on the UCBT
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index plus the mean belief instead of the GI index plus the
mean belief (Step 11) for each arm a at each time step n.

VI. EMPIRICAL COMPARISON

In this section, we compare Gittins index policy (Sec-
tion IV) with UCBT policy (Section V) on a test set of
correlated multi-objective multi-armed bandit problem where
we have correlation across arms only with number of arms
|A| and number of objectives D.

A. Performance Measures and Parameters Setting

The used performance measures are:

1) The average cumulative Pareto regret at each time
step t.

2) The cumulative average unfairness regret at each
time step t.

The above performance measures are the average ofM runs.

Parameters setup:

The number of runsM = 100 and the horizon of each run
N = 10000 as [2]. For each run, the reward vector rrra of each
arm a is drawn from a corresponding normal distribution
vector N(μμμa,σσσ

2
a), where μμμa is the unknown mean vector

and σσσ2
a is the known variance vector of the reward of arm

a. For simplicity, we assume that each arm a has an equal
variance vector, i.e. σσσ2

a = σσσ2
ε and each objective has the same

variance, i.e. σσσ2
ε = [σ2,1

ε , · · · , σ2,D
ε ]T . For each objective d ∈

D, σ2,d
ε = σ2

ε = 100 as [11]. We assume that we have
correlation across arms only. Since the objectives of an arm
are independent, we consider each objective is a correlated
single-objective MAB problem. We assume that we have
a multivariate normal distributed belief N(μμμd

0,ΣΣΣ
d
0) for each

objective d, where μμμd
0 is the prior mean belief vector and ΣΣΣ

d
0

is the prior covariance matrix belief for the objective d.

We follow [11] in setting the prior belief parameters and
the true mean of the reward distribution. The prior covariance
matrix belief ΣΣΣd

0 for each objective d is set by the power-
exponential rule:

σd
a,a′, 0 = σ2

ε e
−λ(a−a′)2 (7)

where σd, 2
a,a′, 0 is the prior covariance value for the row a

and the column a′ in the matrix ΣΣΣd
0, σ

2
ε is the variance of

the reward distribution and λ is a constant. The correlation
parameter λ is set to 0.01. The prior mean belief μd

a, 0 for
each arm a and objective d is generated from a normal
distribution N(0, σ2

ε ). The true mean of the reward distri-
bution μd

a for each arm a and objective d is generated from
the prior belief parameters. The μd

a is taken from the prior

normal distribution N(μd
a, 0, σ

2, d
a,a, 0). Since the true mean is

generated for each run, each run has a specific Pareto front
A∗ which is unknown. We find the Pareto front A∗ for each
run to compute the cumulative Pareto regret. Each arm is
drawn initially once time to compute the unfairness regret.

We consider 11 scalarized function fs that are uniformly
randomly spread [14], see Section III. For instance, for
number of objectives equals 2, the total weight matrixWWW can
be set to WWW = [[1, 0]T , [0.9, 0.1]T , · · · , [0.1, 0.9]T , [0, 1]T ].
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Fig. 2: The average cumulative Pareto regret performance
measure of the GI using different values of the discount rate
on a correlated 10-armed 2-objective bandit problem across
arms.

B. Experimental Results

1) Parameters effect on GI and UCBT policy: With
number of objectives D equals 2, number of arms |A| equals
10, we examine the effect of the parameters setting on the
performance of GI and UCBT policy.

The effect of the discount rate γ: Firstly, we examine the
consequence of changing the discount rate γ on the perfor-
mance measures of the GI policy, i.e. the discount rate γ is
a tunable parameter. The best value of the discount rate γ∗ is
determined using cross-validation, i.e. γ∗ is selected empir-
ically from the set {0.89, 0.9, 0.91, · · · , 0.98, 0.99, 0.999}.
The best γ∗ is the one that performs better than all the others
discount rate according to the average cumulative Pareto
regret performance measure, i.e. the average cumulative
Pareto regret is decreased using the best discount rate γ∗.

Figure 2 gives the cumulative Pareto regret performance
measure using different discount rate γ. The y-axis is the
average cumulative performance measure. The x-axis is the
time step. Figure 2 shows the cumulative Pareto regret of GI
policy is decreased when the discount rate γ equals to 0.92,
i.e. the best discount rate γ∗ = 0.92.

Secondly, we compare GI policy using the best discount
rate γ∗ = 0.92 with the UCBT policy. Figure 3 gives
the average cumulative Pareto regret and unfairness regret
performance measures. The y-axis is the average cumulative
performance measure. The x-axis is the time step. Figure 3
shows that GI policy performs better than the UCBT policy
according to average cumulative Pareto and unfairness regret
performance measures.

The effect of the variance σ2
ε : To examine the result of

changing the variance value σ2
ε of the reward distributions,

we compare GI policy with the UCBT policy using different
values of the variance σ2

ε , σ
2
ε = 0.001, 0.01, 0.1, 10, and

100. For each σ2
ε , we simulate GI and UCBT policies and

compare GI with UCBT using the performance measure at
10, 000 time step. We used the best discount rate γ∗ = 0.92
for GI . The performance measure is the average cumulative
Pareto regret. Figure 4 gives the average cumulative Pareto
regret performance measure of GI and UCBT using dif-
ferent value of σ2

ε . The y-axis is the performance measure.
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Fig. 3: Performance comparison of GI policy using γ∗ =
0.92 and UCBT policy on 2-objective, 10-armed bandit
problem. Upper-figure shows the cumulative Pareto regret
performance measure. Lower-figure shows the cumulative
unfairness regret performance measure.
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Fig. 4: The average cumulative Pareto regret performance
measure for different values of the variance σ2

ε of the reward
distributions on a correlated 10-armed 2-objective bandit
problem across arms.

The x-axis is the variance σ2
ε of the reward distributions.

Figure 4 shows: 1) for σ2
ε ≤ 1 (small value), GI policy

performs as same as UCBT policy, 2) for 1 < σ2
ε ≤ 10,

UCBT policy performs slightly better than the GI policy,
and 3) for σ2

ε > 10, UCBT policy performs slightly better
than the GI policy.

The effect of the correlation parameter λ: To examine
the effect of changing the correlation parameter value λ, we
compare GI and UCBT policy using different values of the

0.001 0.01 0.1 1 10
0

10

20

30

40

50

60

70

80

90

λ

C
um

ul
at

iv
e 

P
ar

et
o 

re
gr

et

 

 
UCB

T

GI

Fig. 5: The average cumulative Pareto regret performance
measure for different values of the correlation parameter λ
on a correlated 10-armed 2-objective bandit problem across
arms.

λ, λ = 0.001, 0.01, 0.1, 1, and 10. For each λ, we simulate
GI and UCBT policies and compare GI with UCBT

using the performance measure at 10, 000 time step. The
variance σ2

ε of the reward distribution is set to 100. The best
discount rate γ∗ = 0.92 for GI . The performance measure
is the average cumulative Pareto regret. Figure 5 gives the
average cumulative Pareto regret performance measure of
GI and UCBT using different value of λ. The y-axis
is the performance measure. The x-axis is the correlation
parameter λ. Figure 5 shows the performance of the GI
and UCBT policies depend on the correlation parameter λ.
The UCBT policy performs better than GI when there is a
weak correlation across arms (high values of the correlation
parameter λ means weak correlation across arms since the
negative sign in the power exponential rule, see Equation 7).

Discussion: The above experiments on 10-armed 2-
objective bandit problems show that: 1) the performance
measures (the cumulative average Pareto regret and the
cumulative average unfairness regret) of the GI and UCBT

policies depend on the used parameters. As the variance of
the reward distribution σ2

ε is increased, GI policy performs
better than UCBT policy. The intuition is that, the approx-
imated index V GI

a of the GI policy takes into account the
value of the variance belief σ2

a, n of arm a, each value of
the variance belief has a specific GI index V GI

a calculation,
see Equation 2. As the correlation parameter λ is increased
(, i.e. when the arms are lightly correlated), UCBT policy
performs better than GI policy. The intuition is that, the
approximated index V UCBT

a does not consider the effect of
the correlation parameter. We also see that, the performance
of GI policy decreases as the discount rate γ is increased and
this is because GI policy is a myopic policy which considers
the current rewards only.

2) Adding Arms: We add extra arms to the 2-objective
10-armed bandit problem to examine the effect of increasing
the number of arms |A|. We compare GI policy with the
UCBT policy using |A| = 50. We set the discount rate
γ to 0.92 for GI policy, the correlation parameter λ to
0.01, and the variance of the reward distributions σ2

ε to 100.
Figure 6 gives the cumulative Pareto and unfairness regret
performance measures. The y-axis is the average cumulative
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Fig. 6: Performance comparison on 2-objective, 50-armed
bandit problem. Upper-figure shows the cumulative Pareto
regret performance measure. Lower-figure shows the cumu-
lative unfairness regret performance measure.

performance measure. The x-axis is the time step. Figure 6
shows UCBT policy performs better than the GI policy
according to the average cumulative Pareto and unfairness
regret.

Discussion: When the number of arms is increased (i.e.
|A| = 20) UCBT policy outperforms GI policy, although
we used the best parameters values for the GI policy (i.e.
the discount rate γ = 0.92, see Figure 3, the variance of
the reward distributions σ2

ε = 100, see Figure 4, and the
correlation parameter λ = 0.01, see Figure 5). The intuition
is that the index of the UCBT policy considers the number
of times each arm a is selected.

3) Adding Objectives: We add extra objectives to the 2-
objective 10-armed bandit problem to examine the effect of
increasing the number of objectives D. We compare GI
policy with the UCBT policy using D = 5 and number
of arms |A| = 10. We used the best parameters values
for the GI policy (i.e. the discount rate γ = 0.92, see
Figure 3, the variance of the reward distributions σ2

ε = 100,
see Figure 4, and the correlation parameter λ = 0.01,
see Figure 5). Figure 7 gives the cumulative Pareto and
unfairness regret performance measures. Figure 7 shows GI
policy performs better than the UCBT policy according to
the average cumulative Pareto and unfairness regrets.

Discussion: The performance measures of GI policy
is increased when the number of objectives is increased,
D = 5, while the performance measures of UCBT policy
is decreased. The intuition is that the index of the UCBT
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Fig. 7: Performance comparison on 5-objective, 10-armed
bandit problem. Upper-figure shows the cumulative Pareto
regret performance measure. Lower-figure shows the cumu-
lative unfairness regret performance measure.

policy does not consider the number of objectives.

4) Adding Arms and Objectives: We add extra arms and
objectives to the 2-objective 10-armed bandit problem to
examine the effect of increasing the number of arms |A|
and objectives D. We compare GI policy with the UCBT

policy using D = 5 and number of arms |A| = 50. We used
the best parameters values for the GI policy (i.e. the discount
rate γ = 0.92, see Figure 3, the variance of the reward distri-
butions σ2

ε = 100, see Figure 4, and the correlation parameter
λ = 0.01, see Figure 5). Figure 8 gives the cumulative
Pareto and unfairness regret performance measures. Figure 8
shows GI policy performs better than the UCBT policy
according to the average cumulative Pareto and unfairness
regrets. While according to the average cumulative unfairness
regret, GI and UCBT policies have the same performance.

Discussion: As the number of objectives and arms is
increased GI policy outperforms UCBT policy. This means
that using the best parameters values for GI policy, increas-
ing the number of objectives and arms will not change the
performance of GI policy.

5) Conclusion of the above Experiments: The perfor-
mance (the cumulative Pareto regret and the cumulative
unfairness regret performance measure) of the UCBT and
GI policies depend on:

• The used parameters (i.e., the discount rate γ, the
correlation parameter λ and the variance of the
reward distributions σ2

ε ). GI policy does not need
high discount rate γ, the performance of GI policy is
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Fig. 8: Performance comparison on 5-objective, 50-armed
bandit problem. Upper-figure shows the cumulative Pareto
regret performance measure. Lower-figure shows the cumu-
lative unfairness regret performance measure.

decreased for high values of the discount rate. As the
correlation across arms or the variance of the reward
distributions is increased, GI policy outperforms
UCBT policy.

• The number of arms |A| and objectivesD. For |A| =
10 andD = 2, GI policy outperforms UCBT policy
using the best parameters values for the GI policy.
As the number of arms is only increased, UCBT

policy performs better than GI policy although we
used the best parameters values for the GI policy. As
the number of objectives is only increased GI policy
outperforms UCBT policy. As the number of arms
and objectives is increased GI policy outperforms
UCBT policy.

VII. CONCLUSION

We introduced the correlated Gaussian multi-objective
multi-armed bandit problem, where the objectives are inde-
pendent and the arms are correlated. We extended UCB1-
Tuned (or UCBT ) and Gittins index (or GI) policies to
the Gaussian CMOMAB across arms. We empirically com-
pared UCBT and GI policies on a test set of CMOMAB
problems. We concluded that: the performance measures of
GI and UCBT policies depend on the parameters values,
and the number of arms and objectives.

REFERENCES

[1] S. Q. Yahyaa, M. M. Drugan and B. Manderick, ”Thompson Sampling
in the Adaptive Linear Scalarized Multi Objective Multi Armed

Bandit”, in Proc. International Conference on Agents and Artificial
Intelligence (ICAART’15), Lisbon, Portugal, 2015.

[2] M. M. Drugan and A. Nowe, ”Designing Multi-Objective Multi-Armed
Bandits Algorithms: A study”, in Proc. International Joint Conference
on Neural Networks (IJCNN’13), Texas, USA, Aug. 2013.

[3] S. Q. Yahyaa, M. M. Drugan and B. Manderick, ”Knowledge
Gradient for Multi-Objective Multi-Armed Bandit Algorithms”, in
Proc. International Conference on Agents and Artificial Intelligence
(ICAART’14), Angers, France, 2014.

[4] E. Zitzler, L. Thiele, M. Laumanns, C. M. Fonseca and V. G. Da
Fonseca, ”Performance Assessment of Multiobjective Optimizers: An
Analysis and Review”, IEEE Trans. on Evolutionary Computation, vol.
7, no. 2, pp. 117-132. 2002.

[5] S. Q. Yahyaa, M. M. Drugan, B. Manderick, ”The Scalarized Multi-
Objective Multi-Armed Bandit Problem: An Empirical Study of its
Exploration vs. Exploration Tradeoff”, in Proc. International Joint
Conference on Neural Networks (IJCNN’14), Beijing, China, July
2014.

[6] S. Q. Yahyaa, M. M. Drugan and B. Manderick, ”Annealing-Pareto
Multi-Objective Multi-Armed Bandits Algorithm”, in IEEE Sympo-
sium on Adaptive Dynamic Programming and Reinforcement Learning
(ADPRL15), Orlando, Florida, USA, December 2014.

[7] G. Eichfelder, ”An adaptive scalarization method in multiobjective
optimization”, SIAM Optimization, vol. 19, no. 4, pp. 1694-1718, Jan.
2009.

[8] P. Auer, N. Cesa-Bianchi and P. Fischer, ”Finite-Time Analysis of the
Multiarmed Bandit Problem”, Machine Learning, vol. 47, no. 2-3, pp.
235-256, 2002.

[9] K. Jaffrès-Runser, M. R. Schurgot, C. Comaniciu and J.-M. Gorce,
”A Multiobjective Performance Evaluation Framework for Routing in
Wireless Ad Hoc Networks”, in Proc. International Symposium on
Modeling and Optimization in Mobile, Ad-Hoc and Wireless Networks
(WiOpt’10), Avignon, France, 2010.

[10] S. E. Chick and N. Gans, ”Economic Analysis of Simulation Selection
Problems”, Management Science, vol. 55, no. 3, pp. 421-437, 2009.

[11] I. O. Ryzhov, W. B. Powell and P. I. Frazier, ”The Knowledge-gradient
policy for a general class of online learning problems”, Operations
Research, vol. 60, no. 1, pp. 180-195, 2012.

[12] P. I. Frazier, W. B. Powell and S. Dayanik, ”The Knowledge Gradient
Policy for Correlated Normal Rewards” INFORMS, vol. 21, no. 4, pp.
599-613, 2009.

[13] A. Gelman, J. B. Carlin, H. S. Stern, and D. B. Rubin, Bayesian Data
Analysis. Chapman and Hall/CRC, 2003.

[14] I. Das and J. E. Dennis, ”A closer look at drawbacks of minimizing
weighted sums of objectives for Pareto set generation in multicriteria
optimization problems”, Structural Optimization, vol. 14, no. 1, pp.
63-69, 1997.

600


