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Abstract—Monitoring the indoor air quality is one of the
most critical activities within a smart building environment. The
introduction of contaminant sources inside the building envelope
can compromise the air quality and possibly endanger the lives
of the inhabitants. In this paper, a new contaminant-detection
system is proposed for the prompt and effective detection (and
isolation) of contaminant sources. Specifically, we address the
challenging scenario where the contaminant of interest is also
naturally present in the indoor building environment (e.g. CO2).
A key feature of the proposed system is that it does not require
a model of the contaminant propagation, but relies instead in its
ability to exploit the temporal and spatial relationships present
in the datastreams acquired by the sensors deployed within the
smart building. The effectiveness of the proposed system has been
evaluated on a reference testbed.

I. INTRODUCTION

Smart homes/buildings1 represent an important and chal-

lenging application scenario for new Internet-of-Things (IoT)

technologies and solutions. These cyber-physical systems that

are typically composed of networks of units equipped with

sensors and actuators interacting with the environment in

which they operate, require intelligent mechanisms to improve,

guarantee or maintain the application performance in real-

world conditions. In a smart building application, sensors are

typically used for measuring the temperature, the humidity and

the concentration of various contaminants of interest (e.g., car-

bon dioxide), while actuators are envisioned for automatically

opening the doors and windows, controlling the exhaust fans

and the Heating, Ventilation and Air Conditioning (HVAC)

units.
Within a smart building environment, a critical activity for

the safety and comfort of the occupants is the assessment

and control of the Indoor Air Quality (IAQ). Note that the

IAQ can be easily compromised from a contaminant source

(e.g., chemical, biological or radioactive substance) introduced

inside the building envelope as a result of an accident (e.g.,

CO released from a faulty furnace) or a terrorist attack

(e.g., anthrax). Moreover, the IAQ could be affected by the

abnormally high concentration of a contaminant (i.e. CO2)

in a particular zone of the building due to increased occu-

pancy and/or inappropriate ventilation conditions. Note that

G. Boracchi and M. Roveri are with the Dipartimento di Elettron-
ica, Informazione e Bioingegneria, Politecnico di Milano, Milan, Italy,
{giacomo.boracchi,manuel.roveri}@polimi.it; M. Michaelides is with the
Department of Electrical Engineering, Computer Engineering and Informatics,
Cyprus University of Technology, 30 Archbishop Kyprianos Str., CY-3036
Lemesos, Cyprus, {michalis.michaelides}@cut.ac.cy
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detecting this situation is particularly challenging, since the

contaminant is also naturally present in the atmosphere. Under

all the aforementioned safety-critical conditions, it becomes

of paramount importance to promptly detect the presence of

the contaminant source and estimate its location, in order

to take the necessary actions for ensuring the safety of the

occupants. These could involve simple actions like opening

doors/windows or controlling the HVAC system, up to the

complete evacuation of the building when this is deemed

necessary.

In this paper, we target the challenging problem of detecting

sources of contaminants and/or pollutants that are also nor-

mally present in the atmosphere (e.g., CO2), thus also inside

the building environment. To this purpose, we propose the

Contaminant-Detection System (CDS) portrayed in Figure 1,

which is meant for smart homes that are equipped with appro-

priate sensors for measuring the contaminant concentration at

different locations. The stream of measurements from all these

sensors are first gathered by an ad-hoc sensor network and then

analyzed by the CDS. The key idea is to exploit both the tem-

poral correlation that characterizes each stream of contaminant

measurements, and the spatial correlation that characterizes

streams of measurements acquired in different zones. These in-

clude rooms that are directly connected by doors, windows or

air handling units, which exhibit causal relationships between

their measurements. Thus, under nominal conditions, we learn

the relationships characterizing the streams of measurements

in these particular zones by means of Input-Output predictive

models. During the contaminant-detection activity, we analyse

the discrepancy (residuals) between the measured and the

predicted output in each zone of the smart home to detect

the presence of the contaminant sources. In particular, con-

taminants are detected through a suitable Change-Detection

Test (CDT), which assesses changes in the statistical behaviour

of the residuals. When a contaminant event is detected and

validated (through an additional statistical analysis), the zone

containing the contaminant source is isolated and emergency

procedures can be activated.

Examples of CDSs in the literature can be found in [1],

[2]. In their simplest form, these systems are composed of

a triggering mechanism, which detects contaminants as soon

as the concentration measurement of any sensor exceeds a

threshold. This threshold is usually defined to allow the CDS

to operate at a pre-specified false alarm rate based on the

sensor noise or the natural fluctuation of the contaminant, both

of which are often difficult to model/estimate in real-world

scenarios. Therefore, these systems are limited in sensitivity978-1-4799-7560-0/15/$31 c©2015 IEEE
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Fig. 1. Overview of the Contaminant Detection System.

by the choice of the threshold, which is often chosen large

enough to avoid frequent false alarms. Note that frequent false

alarms can lead to the occupants’ reluctance to follow the

emergency procedures with catastrophic sequences (e.g., the

cry-wolf effect). More sophisticated CDSs employ a contami-

nant propagation model in an attempt to utilize all the available

information coming from the building to improve the detection

performance and isolate the contaminant source (i.e., estimate

its location). These include the adjoint probability method [3],

the state space method [4] and the Bayesian updating method

[5]. They differ in the assumptions they make about the source

characteristics, the noise and the uncertainty and the way they

build the model. In particular, the Bayesian method implicitly

“learns” a model by constructing a large-scenario database

before the event. Note that, in a real-world setting, these

models are very difficult to compute accurately because of the

various environmental uncertainties involved in estimating the

propagation of contaminants in indoor building environments

(i.e., the wind velocity and direction, the temperature and the

various leakages). To address this problem, a new generation

of CDSs following a cognitive approach has been recently

proposed in the literature [6]. Cognitive CDS (also referred to

as intelligent CDS) are able to promptly detect variations in the

contaminant under monitoring by using appropriate statistical

tools (change-detection tests, change-point methods), as well

as distinguish between the actual presence of the contaminant

and a fault affecting one of the sensors deployed within the

building.

The CDS proposed in this paper falls in this last category as

it uses similar statistical tools for detection. It is fundamentally

different in concept, however, from what was presented in

[6] for the following reasons: (i) in nominal conditions, the

concentration of the monitored contaminant can naturally fol-

low a time-varying evolution, (ii) most relevant relationships

between pairs of sensors are identified by constructing a

propagation graph from topological and airflow information

(iii) Input-Output Predictive Models are used to model the

temporal and spatial relationships characterizing the stream

of measurements, and (iv) the contaminant is detected by

monitoring the discrepancy between the acquired and the pre-

dicted measurements using the estimated relationships. A wide

experimental campaign encompassing data from a well-know

testbed (i.e., the Holmes’s house), validate the effectiveness of

the proposed approach.

The paper is organized as follows: Section II states the

problem; the proposed CDS for smart buildings is detailed

in Section III; experiments are presented in Section IV and,

finally, conclusions are drawn in Section V.

II. THE PROBLEM STATEMENT

Let us consider an intelligent building composed of N
zones. Each zone is equipped with a sensor measuring the

concentration of a specific contaminant of interest. At time T ∗

(onset time), a contaminant source is introduced at zone i∗ with

1 ≤ i∗ ≤ N , which we denote as the source zone. Our goal is

to process all the sensor measurements to promptly detect the

presence of the contaminant source and to effectively estimate

the onset time T ∗ and the source zone i∗.

We model the measurement mi(t) of sensor in zone i at

time t as

mi(t) = ci(t) + Δi(t) + η(t), (1)

where ci(t) is the natural concentration of the contaminant

present in each zone, Δi(t) ≥ 0 is the amount of contaminant

introduced in the i-th zone by the contaminant source and η(t)
accounts for independent and identically distributed (i.i.d.)

measurement noise. Note that in our previous work [6], ci(t)
was assumed to be zero or constant. Here, we do not make

any assumption on ci(t) (thus, ci(t) can be time-varying, e.g.,

a time-series).

We define τi ≥ T ∗ as the time instant at which the

contaminant first appears in the i-th zone, i.e.,{
Δi(t) = 0, t < τi

Δi(t) > 0, t ≥ τi.
(2)

It should be noted that Δi(t) > 0, could be attributed to

two different reasons: (i) the contaminant source was inserted

in zone i (and in this case, τi = T ∗) or (ii) the contaminant

source was inserted in a zone j located “upstream” w.r.t. i,
such that the i-th zone receives flow from the j-th zone (and

in this case τi > T ∗).

In general, the propagation of a contaminant inside the

building envelope depends on the airflows among the various

building zones, which are influenced by a number of different

factors including (i) the building structure (e.g., the intercon-

nections of the various zones through doors and openings),

(ii) environmental conditions (e.g., temperature, wind direction

and velocity), (iii) and the HVAC operational mode (or any

other type of fan causing a forced flow). For the purposes of

this paper, we assume that these airflows can be measured
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(or suitably estimated), which is a reasonable assumption in

the context of smart buildings. In particular, we define a flow
matrix accounting for the magnitude of the airflows among

the different zones of the building:

Z =

⎡⎢⎣z1,1 · · · z1,N
...

. . .
...

zN,1 · · · zN,N

⎤⎥⎦ , (3)

where zi,j ∈ R
+ ∪ {0} indicates the magnitude of the

flow from the i-th zone to the j-th zone, which can be

positive when a flow exists or 0 otherwise; for this reason

zi,i(t) = 0, i = 1, . . . , N . An example of a flow matrix is

given in Figure 3 corresponding to the Holmes’s house case-

study shown in Figure 2. Note, that in this paper, we are

assuming steady-state airflow conditions, even though in the

more general case, Z can also be made time-varying. Also, it

is important to stress that the proposed CDS does not need to

accurately know the flows, since it can operate provided rough

estimates of the flow magnitude and direction.

III. THE PROPOSED INTELLIGENT CONTAMINANT

DETECTION SYSTEM

The core of the proposed intelligent CDS lies in the ability

to model the relationships among the streams of contaminant

measurements acquired by the N sensors of the smart building.

To achieve this goal, the proposed system relies on a training

set of measurements from each sensor, which is arranged in a

matrix

TS =

⎡⎢⎣m1(1) · · · m1(t0)
...

. . .
...

mN (1) · · · mN (t0)

⎤⎥⎦ , (4)

that is acquired without contaminant sources inside the build-

ing (i.e., T ∗ > t0). First, the training set is used to esti-

mate predictive Single-Input/Single-Output models between

the streams acquired in interconnected building zones (i.e.,

where flow exists from one zone to the other). Then, the

presence of contaminant sources is monitored in each zone by

analyzing the discrepancy between what the sensor in the zone

is measuring and the estimate provided by the corresponding

predictive model. Finally, once a substantial increase in the

discrepancy has been detected, a further level of analysis is

activated to confirm the change, isolate the zone in which the

contaminant has been inserted and estimate the onset time.

The proposed CDS is summarized in Figure 1, while the

corresponding algorithm is detailed in Algorithm 1. Next, we

explain each of the algorithm steps in detail.

A. Creating the propagation graph

The first step of the proposed CDS consists in analyzing

the flow matrix Z to create a propagation graph that contains

those pairs of zones that are the most relevant for building

predictive models of the sensor measurements.To this purpose,

we select pairs of building zones that are connected by a

sufficiently large airflow. In particular, we first build a directed

graph G0 = {N 0, E0} whose node set N 0 contains all the N

INPUT: Flow matrix Z, Training set TS, Threshold Γf ;

Creation of the dependency graph G = {N , E} based on

Γf and the analysis of the flow matrix Z;

for (Each arc e(i,j) ∈ E) do
Estimate fθ

i,j on the training set TS
(i,j)
rel ;

Compute the training residual sequence

{ri,j(t)t = ts + 1, . . . , t0};
Configure the CDT on the training residual sequence;

end
while (1) do

Each unit: acquire mi(t);
for (Each arc e(i,j) ∈ E) do

Compute ri,j(t) = mj(t)− m̂i,j(t);
Run the CDT on ri,j(t);

if Detection at time T̂ then
Run the refinement procedure to estimate T̂ ∗

the time instant the change started;

Run the statistical hypothesis test to validate

the difference in the statistical behaviour

between the training residual sequence and

{rī,j̄(t), t = T̂ ∗, . . . , T̂};
if (Detection is validated) then

Isolated zone:

î = argmaxk={ī,j̄}
∑

t=̂T∗,̂T mk(t);

end
end

end
end

Algorithm 1: The proposed Contaminant-Detection System

for smart buildings.

sensors of the smart home and E0 is the set of all the arcs

connecting the nodes according to the building propagation

paths. Then, we remove arcs from E0 accoriding to the

following rule: the arc e(i,j) connecting sensor i to sensor

j is removed when the flow from zone i to zone j falls below

a user-defined threshold Γf , i.e., zi,j < Γf . Next, we also

remove all the isolated nodes from N 0. The resulting final

propagation graph, which we define as G = {N , E}, is made

available to the next phases of the intelligent CDS.

An example graphically portraying the construction of a

propagation graph is presented in Figure 2 for the Holmes’s

house case-study, while the corresponding flow matrix Z is

shown in Figure 3 (here Γf = 5). From Figure 2(c), it becomes

evident that only large-flow relationships are retained in the

final graph, while nodes {6, 7, 10, 11} cannot be monitored

using the proposed method.

B. Modeling the Relationships Among Zones

For each arc e(i,j) ∈ E , we estimate fθ
i,j , an Input-Output

predictive model in the form

m̂i,j(t) = fθ
i,j(mj(t− 1),mj(t− 2) . . . ,mj(t− kj),

mi(t),mi(t− 1),mi(t− 2), . . . ,mi(t− ki)), (5)
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Fig. 2. The Holmes’s house case study: from the building map to the construction of the propagation graph. (a) The map of the building; (b) The airflows
between zones of the building when the wind direction is from North to South. The direction and the length of the green lines on the building map represent
the direction and the magnitude of the respective airflows. The corresponding flow matrix Z is shown in Figure 3; (c) the associated propagation graph
computed as described in Section III-A. Here, Γf has been set to 5.
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Fig. 3. The flow matrix Z for the Holmes’s house case study shown in Figure 2(a) when the wind direction is from North to South.

where m̂i,j(t) is the predicted value of the sensor j at time

t, and fθ is the predictive model having parameter set θ; ki
and kj represent the order of the input and output component,

respectively. Note that fθ can be linear (e.g., Auto Regres-

sive with eXogenous input -ARX- models, Auto Regressive

Moving Average with eXogenous input -ARMAX- models,

Output Error -OE- models) or non linear (e.g., Non-linear

ARX models, Hammerstein-Wiener models) [7], and that it

takes as input also the measurements in zone i. Parameters θ

are estimated from a training set TS
(i,j)
rel that is composed as

follows:

TS
(i,j)
rel =

[
mi(1) · · · mi(ts)
mj(1) · · · mj(ts)

]
, (6)

with ts < t0 representing the first ts samples of the i-th and

j-th row of TS.

The choice of the model family is application-dependent

and might follow the intuitive principle where simple models

(whenever effective) should be preferred to more complex

ones (which generally require more samples to be effectively

trained). The model orders can be either user defined or

automatically identified through a system identification phase:

in the latter case TS
(i,j)
rel will be further partitioned into two

subsets for training and order estimation, respectively. As

shown in the next section, the rest of the training set TS
will be used to configure the CDT. The partitioning between

training samples for model estimation and CDT configuration

is meant to prevent overfitting, which might occur when the

CDT is configured on data used for model estimation. For the

specific scenarios investigated in this paper, we opted for linear

input-output Auto-Regressive with eXogenous input (ARX)

predictive models, as they revealed to be very effective in

characterizing the relationships present in the acquired streams

of measurements (a preliminary analysis of the fitness ability

has been carried out).

For each estimated predictive model, we compute the resid-
uals, as the discrepancy between the acquired contaminant

measurement mj(t) and m̂i,j(t), its prediction from fθ
i,j , i.e.,

ri,j(t) = mj(t)− m̂i,j(t). (7)

These residuals measure the fitness of the estimated model
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fθ
i,j on each of the incoming data, and are monitored to detect

contaminant sources.

C. Monitoring Residuals

When no contaminant sources are present in the building

and the prediction provided by fθ
i,j in (7) is accurate, the

residuals ri,j(t) are expected to form an i.i.d. sequence.

Therefore, we monitor the statistical behaviour of each residual

sequence ri,j(t) by means of CDTs, namely sequential tech-

niques to detect changes in datastreams. More specifically, we

considered the ICI-based CDT [8] for its effectiveness and low

computational load. The ICI-based CDT extracts Gaussian-

distributed features from datastreams (i.e., the sample mean

and a power-law transformation of the sample variance) and

relies on the Intersection-of-Confidence-Intervals (ICI) rule

to detect changes [9]. In this CDT, the trade-off between

detection promptness and false-positive rate is regulated by the

parameter Γ (large values of Γ reduce the false-positive rate at

the expense of an increased detection delay, while small values

of Γ reduce the detection delay at the expense of an increase

in the false-positive rate). The ICI-based CDT associated to

the prediction model fθ
i,j is trained on the residual sequence

{ri,j(t), t = ts + 1, . . . , t0}. (8)

After the training phase (i.e., for t > t0), the ICI-based

CDT continuously inspects the stream of residuals ri,j(t) to

detect changes in their distribution. Remember that a change

in the residual indicates that the estimated model fθ
i,j is no

more able to accurately predict the measurements coming from

zone i, and therefore this signifies a possible variation in the

relationship due to the presence of a contaminant source inside

the building. Note that the residuals (8) used for configuring

the CDT are assumed to be computed in nominal conditions,

hence they are representative of the residual distribution in

stationary conditions.

D. Validation Layer

Assume that at time T̂ a CDT raises a detection.

Then, change-validation procedures are activated to determine

whether the detection corresponds to an actual change in the

residual distribution or a false alarm. When the change is

validated, the source zone and the onset time are estimated. To

achieve this goal, the refinement procedure [8] of the ICI-based

CDT is at first executed to compute T̂ ∗, an estimate of the time

instant when the change started in the sequence. The detection

is then validated by an hypothesis test that determines whether

the residuals between T̂ ∗ and T̂ have been generated from

the same distribution that generated the residuals inside the

initial training sequence. When the change is confirmed, all

the measurements acquired after T̂ ∗ from the zones involved

in the relationship detecting the change are further analyzed

to isolate the zone in which the contaminant source has been

inserted.

In more detail, let e(̄i,j̄) be the relationship yielding the

stream of residuals where the change was detected. We then

compute an estimate T̂ ∗ of the time instant when the contam-

inant source has been inserted in the building (in either zone

ī or j̄), by the refinement procedure of the ICI-based CDT

(Algorithm 3 in [8]), which is applied to the juxtaposition

of a suitable buffer containing the most recent residuals of

the stream r(̄i,j̄), and the initial ones. Alternatively, T̂ ∗ can

be computed by an ensemble of change-point methods [10]

to cope with correlation within the residual stream. Here, we

are implicitly assuming that the first relationship detecting a

change involves the source zone.

Afterwards, following the solution presented in [6], we

consider a statistical hypothesis test (i.e., the Hotellings T 2

statistic [11] on the features extracted by the ICI-based CDT)

to assess whether the features extracted from the initial training

sequence (8) and from {rī,j̄(t), t = T̂ ∗, . . . , T̂} have a

different expectation, provided a predefined confidence level

α (which is typically set to 0.01 or 0.05).

When the change in the residual is validated, the isolation

phase is activated; otherwise, the change raised by the CDT

is considered to be a false positive detection, hence discarded,

and the contaminant-detection activity proceeds. In the isola-

tion phase, the contaminant measurements in zones ī and j̄
after T̂ ∗ are inspected to estimate the zone î in which the

contaminant source has been inserted as follows:

î = argmax
k={ī,j̄}

̂T∑
t=̂T∗

mk(t). (9)

In other words, the estimated isolation zone î is the one

(between ī and j̄) characterized by the largest amount of

accumulated contaminant after the estimated onset time T̂ ∗.

IV. EXPERIMENTAL RESULTS

The effectiveness of the proposed CDS has been assessed

on a dataset generated by the Matlab-CONTAM toolbox [12],

that is a software specifically designed to simulate the presence

of a contaminant in intelligent buildings. In particular, in our

experiments, we considered the Holmes’s house [13] depicted

in Figure 2(a), which comprises of 14 zones (Z1 to Z14) as

well as 30 leakage path openings corresponding to windows

and doors (P1 to P30). The contaminant of interest (i.e., CO2)

is present in the atmosphere with a mean concentration of

50g/m3/h modeled as a pseudorandom sequence. The time

interval between the transitions (jumps) follows a Markov

process with 0.1 transition probability, while the magnitude of

the sequence after a transition is a random number between

[45, 55]2.

In our simulations we consider two different scenarios

characterized by wind speed of 10m/s and fully open leakage

path openings; in particular

• Scenario 1: a contaminant source of emission rate 100

g/h is placed in Zone 5 with wind direction 0o at sample

2000;

2Note that the specific numbers are simply chosen for simulation purposes.
In reality, we expect the contaminant of interest to be described by a stochastic
process whose parameters will depend on the specific environment.
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Fig. 4. An example of acquired measurements in all the 14 zones of the Holmes’s house in Scenario 1 and with σ = 2.

• Scenario 2: a contaminant source of emission rate 100 g/h

is placed in Zone 9 with wind direction 90o at sample

2000;

Each simulation lasts 10000 samples.

Following the model in (1), we assume that contaminant

measurements are affected by random noise η(t) distributed

as a zero-mean Gaussian distributionN (0, σ2), with σ ranging

from 0.5 to 2. Furthermore, we assume there is a sensor in

each of the 14 zones of the building. The considered predictive

model fθ
i,j is the linear ARX model, while the orders ki and

kj have been experimentally fixed to 3 and 3, respectively.

The parameter Γ of the ICI-based CDT ranges from 2 to 3.5,

while t0 and ts are 1000 and 500 samples, respectively.

We emphasize that, in this experimental section, we sig-

nificantly extend what was presented in [6] by considering a

scenario where we have the natural presence of a contaminant

within the building before the introduction of the contaminant

source inside the building envelope.

We compare the proposed intelligent CDS against (i) a

solution based on residuals computed from AutoRegressive
models (AR), i.e., models that rely only on data coming from

the specific monitored zone and that do not leverage any

relationship among different zones, and (ii) a solution based

on Exogenous-Input models (X), i.e., models similar to ARX

but without the autoregressive component, thus relying only on

data coming from a different zone to predict the contaminant

in another zone. The isolation phase of the AR solution simply

considers as source zone the first one detecting a change (there

is no ambiguity since it does not involve measurements from

other zones). Differently, the X solution relies on the same

isolation mechanism of the proposed CDS (Section III-D).

To compare the aforementioned solutions, the following

figures of merit are computed over 250 runs:

• False Positive Rate (FPR), the percentage of experi-

ments in which the change was detected before T ∗;

• False Negative Rate (FNR), the percentage of experi-

ments in which the change was not detected;

• Detection Delay (DD), that is the average value (in

samples) of T̂ − T ∗ for changes correctly detected (i.e.,

when T̂ > T ∗);

• εiso, the percentage of experiments in which the source

zone has not been correctly estimated.

Figure 4 shows examples of the measurements in all the

zones of Scenario 1 when σ = 2, while Figure 5 depicts the

computed residual for the relationship (Input Z3-Output Z5).

The experimental results that are presented in Table I and

II, show the advantages provided by the proposed solution.

By looking at Table I and II, several comments arise. First,

the proposed system is truly able to promptly detect the

occurrence of a contaminant source within the building for

both considered Scenarios. In fact, the FNR is zero for all the

configurations meaning that the contaminant source is always

detected. Remarkably, this ability does not come at the expense

of the FPRs that are close to zero in both the scenarios where

Γ > 2. We also emphasize that the DD is relatively small

meaning that the contaminant sources are promptly detected
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Proposed Autoregressive (AR) Exogenous Inputs (X)
Noise σ Gamma FNR FPR DD εiso FNR FPR DD εiso FNR FPR DD εiso

2.00 0.000 0.796 73.7 0.000 0.880 0.000 5604.0 0.833 0.000 0.944 68.6 0.000
0.5 2.50 0.000 0.252 86.0 0.000 0.952 0.000 5200.0 0.750 0.000 0.400 77.2 0.007

3.00 0.000 0.024 107.8 0.000 0.992 0.000 NaN NaN 0.000 0.064 96.4 0.000
3.50 0.000 0.000 138.7 0.000 0.996 0.000 NaN NaN 0.000 0.016 124.9 0.000
2.00 0.000 0.120 116.4 0.000 0.876 0.008 2170.0 0.931 0.000 0.324 100.9 0.047

1 2.50 0.000 0.032 144.9 0.004 0.968 0.000 3830.0 0.750 0.000 0.068 128.3 0.017
3.00 0.000 0.004 184.9 0.000 1.000 0.000 NaN NaN 0.000 0.008 165.4 0.000
3.50 0.000 0.000 226.1 0.000 0.996 0.000 NaN NaN 0.000 0.000 206.1 0.004
2.00 0.000 0.004 208.5 0.004 0.824 0.000 4864.0 0.886 0.000 0.060 187.1 0.030

2 2.50 0.000 0.000 259.6 0.000 0.968 0.000 4666.7 0.625 0.000 0.012 236.3 0.012
3.00 0.000 0.000 314.5 0.000 0.988 0.000 NaN NaN 0.000 0.000 290.0 0.004
3.50 0.000 0.000 366.1 0.000 1.000 0.000 NaN NaN 0.000 0.000 342.2 0.000

TABLE I
EXPERIMENTAL RESULTS ON SCENARIO 1.

Proposed Autoregressive (AR) Exogenous Inputs (X)
Noise σ Gamma FNR FPR DD εiso FNR FPR DD εiso FNR FPR DD εiso

2.00 0.000 0.628 116.5 0.117 0.828 0.004 5580.0 0.929 0.000 0.844 114.2 0.050
0.5 2.50 0.000 0.136 133.3 0.009 0.944 0.000 6780.0 0.929 0.000 0.256 128.8 0.011

3.00 0.000 0.012 150.3 0.000 0.996 0.000 NaN NaN 0.000 0.036 143.1 0.008
3.50 0.000 0.004 168.8 0.000 0.996 0.000 NaN NaN 0.000 0.012 160.2 0.000
2.00 0.000 0.020 163.8 0.033 0.856 0.000 3900.0 0.861 0.000 0.128 155.6 0.077

1 2.50 0.000 0.000 191.1 0.004 0.948 0.000 4240.0 0.923 0.000 0.024 182.5 0.008
3.00 0.000 0.000 222.2 0.000 0.984 0.000 3460.0 0.750 0.000 0.008 211.0 0.000
3.50 0.000 0.000 249.4 0.000 0.996 0.000 NaN NaN 0.000 0.000 235.1 0.000
2.00 0.000 0.008 253.2 0.008 0.844 0.000 5673.3 0.923 0.000 0.024 235.9 0.045

2 2.50 0.000 0.004 301.0 0.000 0.964 0.000 640.0 0.889 0.000 0.000 280.5 0.008
3.00 0.000 0.000 354.9 0.000 0.980 0.000 3600.0 0.800 0.000 0.000 334.2 0.000
3.50 0.000 0.000 395.0 0.000 0.996 0.000 NaN NaN 0.000 0.000 371.8 0.000

TABLE II
EXPERIMENTAL RESULTS ON SCENARIO 2.

by our CDS. Second, the AR solution suffers from a very

high number of FN due to the peculiar structure of the

predictive model that encompasses only data coming from a

single sensor. Here, the autoregressive component of the model

might shadow the additive component of the contaminant

source leading to a large amount of false negatives. Differently,

the X solution achieves a performance that is similar to the

proposed solution even if it is characterized by a larger FPR,

that are probably due to the inability to effectively model

the datastreams (the autoregressive component here is not

considered). Third, the isolation error εiso of the proposed

solution is close to zero meaning that in almost all of the

cases, the contaminant source is correctly isolated. Differently,

the AR solution does not provide satisfactory results, while

the X one guarantees results slightly worse than the proposed

CDS. Forth, as expected, increasing the parameter Γ of the ICI-

based CDT results in a decrease of the FPR at the expense

of an increase of FNR and DD for all the solutions. Finally,

as expected, FNR, FPR, DD and εiso increase with σ for

all the solutions.

Figure 6 compares the distributions of the contaminant

measurements in the source zone at the detection time T̂ (the

blue solid line) and in the training set TS (the red dotted

line). Here, we considered only runs where the contaminant

was correctly detected and isolated in the runs over Scenario 1

Fig. 5. An example of computed residual for the relationship (Input Z3-
Output Z5) in Scenario 1 with σ = 2.

dataset with Γ = 2.5 and σ ranging from 0.5 to 2. The overlap

between the two distributions indicates that a threshold-based

approach would not be very effective, as this would induce

either many false positive detections or many false negatives.

As expected, the overlapping area between the two distribution

increases with σ, meaning that contaminant detection becomes

more challenging at when noise increases (Figure 6 (c)).
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V. CONCLUSIONS

We present a novel CDS that, differently from what is

currently present in the literature, addresses the challenging

problem of detecting contaminant sources inside a smart

building even when the contaminant of interest is also naturally

present in the building environment (e.g., the CO2). Our exper-

iments show that the proposed system can effectively detect

and isolate contaminants sources, and that, to this purpose,

it is essential to exploit both the temporal and the spatial

correlations characterizing the streams of measurements in

different zones of the building. Remarkably, the proposed CDS

does not require a detailed model of the contaminant/airflows

propagation inside the building.

In the future, we plan to extend the proposed methodology

to the detection and isolation of sensor faults within smart

buildings, which is a particularly challenging scenario that

involves the simultaneous presence of both sensor faults and

contaminant sources. In addition, we are also considering

cognitive reasoning on the affected relationships of the prop-

agation graph in order to differentiate between the two cases.
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Fig. 6. Distribution of the contaminant measurement at detection time ̂T for
all the experiments where the contaminant has been correctly detected and
isolated (blue solid line) and distribution of the contaminant measurements up
to time t0 = 1000 (i.e., the training set) for the zone where the contaminant
source has been inserted (i.e., the source zone). The considered scenario is
number 1 and Γ = 2.5. Figure (a), (b) and (c) refer to σ = 0.5, σ = 1, and
σ = 2, respectively.
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