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Abstract— Intelligent embedded systems can be found 
everywhere in a variety of innovative applications. The main 
challenge consists in developing small-size single-chip embedded 
systems with low power consumption, capable of processing data 
and intelligent algorithms with the required speed. These key issues 
are normally carefully analyzed during the design process of 
embedded systems with the aim of meeting the required 
specifications. However, the problem of accuracy is hardly ever 
explored in the early stages of the design flow, even though too low 
accuracy could limit digital hardware performance in a crucial 
way. This piece of work proposes a controlled accuracy 
approximation scheme of nonlinear functions based on Taylor’s 
Theorem and the Lagrange form of the remainder. A hardware co-
processor based on a Field Programmable Gate Array (FPGA) is 
developed. The co-processor is suitable for efficient computation of 
nonlinear functions involved in typical soft computing techniques 
such as: activation functions (neural netwoks); membership 
functions (fuzzy systems); or kernel functions (support vector 
machines). The method is applied to the development of an 
intelligent embedded system for a smart scenario. Experimental 
results are provided for both online training and feed-forward 
computation of a single-layer feed-forward neural network. 

I. INTRODUCTION 
Many embedded platforms have emerged in the market and 

are in use in our daily activities. With the aim of promoting an 
autonomous and flexible lifestyle, with new levels of comfort, 
safety and productivity, embedded systems are being introduced 
in almost all areas. They can be found everywhere in a variety of 
applications, from control systems in automotive sectors, to 
consumer and multimedia products, among others. An embedded 
system is a special-purpose computing platform able to perform 
dedicated functions. It is often designed for a particular kind of 
application that is required to work under a certain constraints. 
An increasing number of these applications require certain degree 
of knowledge and intelligence to perform properly. Soft 
computing techniques, such as artificial neural networks (ANNs) 
or neuro-fuzzy systems (NFSs), provide a rich and powerful 
framework in order to endow embedded system with intelligence. 

The main challenge consists in developing small-size single-chip 
intelligent embedded systems, with low power consumption, 
capable of processing data and algorithms with the required 
speed and without loss of accuracy [1]-[3]. 

It is well known that there is a trade-off between computation 
time and hardware size. In addition, high operation frequencies 
and large amounts of hardware resources contribute to increasing 
power consumption [4]. These key issues are normally carefully 
analyzed during the design flow of an embedded system with the 
aim of meeting the required specifications. However, the problem 
of accuracy is hardly ever explored in the early stages of the 
design flow, even though it could limit hardware performance in 
a crucial way. Moreover, the functionality of most embedded 
systems is designed using floating-point arithmetic and 
computer-aided design tools. Meanwhile, the hardware 
implementation of the system is carried out using fixed-point 
arithmetic and finite word-length. For these reasons, the 
degradation of the system performance, due to signal and system 
quantization, should be considered in the design of cutting-edge 
applications. The main problem consists in designing fixed-point 
hardware able to provide the required accuracy. Quantization 
errors are easy to manage in common arithmetic operations (e.g. 
sums or products). However, the implementation of nonlinear 
functions, such as the activation function of ANNs, or the 
membership functions of NFSs, is not an easy task, mainly when 
online training algorithms are involved. 

Despite the importance of proper specification of the 
accuracy of this kind of nonlinear functions, very few methods 
incorporate it as a design parameter [5], [6]. In this paper, a 
controlled-accuracy scheme, suitable for the implementation of 
nonlinear functions is proposed. The scheme is based on Taylor’s 
Theorem and the Lagrange form of the remainder. A systematic 
design methodology which guarantees the accuracy of the 
approximation is provided. The development of a hardware co-
processor that implements the proposed scheme using a field 
programmable gate array (FPGA) is presented. In addition, the 
method is applied to the development of an individualized 
monitoring system for real-time support of a smart environment. 

This work has been partially funded by the Basque Government under Grant
IT733-13, and the Spanish Ministry of Economy and Competitiveness under 
Grant TEC2013-42286-R. 
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Experimental results are provided for both online training and 
feed-forward computation.  

The rest of the paper is organized as follows: Section II 
presents the proposed method. The approximation of two 
nonlinear functions, widely used in soft computing algorithms, 
the sigmoid function and the hyperbolic tangent, is explained in 
detail. Section III addresses the development of an efficient 
hardware co-processor that computes the proposed scheme and 
presents the implementation performance using an FPGA of the 
Xilinx Virtex 6 device family. In Section IV representative 
experimental results are provided. Finally, some concluding 
remarks are presented. 

II. COMPUTATION OF NONLINEAR FUNCTIONS IN INTELLIGENT 
EMBEDDED SYSTEMS 

Most soft computing techniques involve the computation of 
nonlinear functions. Thereby, artificial neural networks (ANNs) 
use nonlinear activation functions for weighting the neuron 
outputs. The class of S-functions, such as the sigmoid and 
hyperbolic tangent, is commonly used. Fuzzy systems (FSs) and 
hybrid neuro-fuzzy systems (NFSs) use membership functions to 
define fuzzy sets. Gaussian and S-shaped functions have proven 
very useful for modelling fuzzy information. Gaussian and S-
functions are also widely used in kernel-based algorithms such as 
support vector machines (SVMs) or deep-learning architectures, 
among others. 

The calculation of the above functions involves the 
computation of exponentiations, sums, products and divisions. 
Exponentiation and division are costly to implement in digital 
hardware, mainly if high precision is required. Several 
implementation methods have been proposed over the years. The 
most commonly used are look-up tables (LUTs) [7], bit-level 
mapping [8], piecewise linear methods [9], [10], [11], Taylor 
series expansion [12], and hybrid methods [13], [14]. 

The selection of the approximation method and its hardware 
implementation are key aspects that constrain the accuracy and 
the performance of the algorithm. Thus, too low accuracy 
produces poor performance, while an excess of it unnecessarily 
increases hardware resources and reduces the processing speed. 
Even though some researchers report the accuracy provided by 
their approximation methods, only a few of them provide a 
systematic design methodology able to guarantee the accuracy of 
the approximation. 

Another important aspect to be considered is the 
differentiability of the approximated function. This is because 
meaningful learning and adaptation methods, based on gradient 
evolution, involve both the function and its derivative. 

The approximation scheme could be applied to any 
differentiable function suitable for Taylor approximation. In 
particular, S-shaped and Gaussian curves present additional 
properties that allow further simplifications of the method. 
These families of curves have a bounded output range and a 

bounded active input range where Taylor theorem is used to 
approximate the function (i.e. Taylor regions). Outside the active 
input range, the function derivatives vanish and the function 
saturates to a constant value (i.e. saturation regions). 

Let f(x) : →� �  be a (k+1)-times differentiable function 
around a given point a∈� . Then, f(x) can be approximated in 
any interval I containing a by means of a kth order Taylor 
polynomial: 
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The approximation error (i.e. remainder) in I can be bounded 
using the Lagrange form of the remainder or error 
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Equation (2) provides a means of dealing with the maximum 
allowable approximation error (i.e. ( )= kR xε ) as a design 
parameter. The proposed scheme can be organized into the 
following steps: 

1) The allowed error, ε , that provides the required 
approximation accuracy is to be defined. 

2) Both the Taylor regions and the saturation regions are to be 
determined. For simplicity, consider a single positive Taylor 
region [0, ]t , and a single saturation region [ , ]+∞t . The 
precise boundary between the Taylor region and the 
saturation region, t, is obtained as follows: 

 ( ) − =f t s ε , (3) 

with s being the value of the function inside the saturation 
region. 

3) The Taylor range [0, ]t  is split into a number of intervals of 
width 2r and centre a where a local approximation of the 
function is computed. Using (2), and taking into account 
that − ≤x a r , [ , ]∀ ∈ = − +x I a r a r , 
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k k
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where Mk is selected to be equal to the maximum of the 
absolute value of the (k+1)-order derivative of the function, 
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( 1)max ( )+= k
kM f x . 

4) If nk is the number of intervals, then / 2=r t n . Replacing in 
(4), the minimum number of intervals is: 
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The scheme has been implemented using a fixed-point 
fractional data format. Therefore, the word-length has to be able 
to provide the required precision. If Ni is the number of bits used 
to represent the integer part of the input data and Nf is the 
corresponding fractional part, then 1 0 1... ... ,− −= ⋅

i fN Nx x x x x  where 
Ni depends on the width of the Taylor region: 

  (6) 

In addition, Nf should be able to represent those changes in 
the input Δx that produce changes in the function Δf equal to the 
maximum allowable error, that is to say: 

 ,
2−

Δ =
Δ fN

f
x

ε  (7) 

for small increments, (1)/ ( ).Δ Δ ≅f x f x  Therefore, introducing 
the maximum absolute value of the first order derivative in (7), 
the number of fractional bits can be obtained as follows: 

 (1)1 ln ln(max ( ) ) .
ln 2

� 	≥ +
 �fN f xε  (8) 

In sum, given the desired error ε , and the order of the 
polynomial, k, the frontier of the Taylor region, t, is obtained 
using (3), the minimum number of intervals is provided by (5), 
and the local approximation of the function in each interval 
[ , ]− +a r a r  is obtained by means of (1). The data word-length 
should be selected accordingly. 

Next, the approximation of two representative functions, 
widely used in soft computing methods, is provided: the sigmoid 
function and the hyperbolic tangent. The sigmoid is defined as 
follows: 

 1( )
1 −=

+S xf x
e

, (9) 

and the hyperbolic tangent is: 

 ( )
−

−

−=
+

x x

T x x

e ef x
e e

. (10) 

The above functions and their first three derivatives are 
shown in Fig. 1 and Fig. 2, respectively. As can be seen, (9) and 
(10) share some common characteristics. Both functions exhibit 
some kind of symmetry with respect to the y-axis, the sigmoid 
verifies ( ) 1 ( )− = −S Sf x f x , while the hyperbolic tangent is strictly 
symmetric, that is to say, ( ) ( )− = −T Tf x f x . In addition, their output 
ranges are bounded; the sigmoid is bounded within (0,1) and the 
hyperbolic tangent within (-1,1). Moreover, both functions 
concentrate their main “activity” in a limited range of the x-axis 
(i.e. Taylor regions). Outside these ranges the functions saturate 
to constant values (i.e. saturation regions). 

 

  
Fig. 1. Sigmoid function and its first three derivatives.  

 

 

Fig. 2. Hyperbolic tangent and its first three derivatives. 
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A. Approximation of the Sigmoid 
Different accuracies will be investigated, so, let ε  be the 

maximum allowable approximation error. Then, to determine 
where the positive saturation region starts (see Fig. 1) we have to 
apply (3) with s=1, 

 1 1
1 − − =

+ te
ε ,  (11) 

Solving (11) results in 1ln( 1)−= −t ε , with t being the 
boundary between the Taylor region and the saturation region. 

Using (5) for a k-order Taylor scheme, 

 

1
( 1) 11 max ( )ln( 1)

2 ( 1)!

+ +− � �− � �≥
� �+� �

k k

k

f x
n

k
ε

ε
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The number of intervals for a first order scheme is: 

 
1

1 2 1/ 2 1
1

ln( 1) 0.096 0.109 ln( 1)
2 2

−
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� �
n ε ε ε

ε
, (13) 

where the maximum value of the second order derivative is 
0.096. For a second order scheme: 

 
1

1 3 1/ 3 1
2

ln( 1) 0.125 0.138 ln( 1)
2 6

−
− −− � �≥ = −� �

� �
n ε ε ε

ε
, (14) 

with the maximum absolute value of the third order derivative 
being equal to 0.125 (see Fig.1). 

Table I provides the boundary of the Taylor region and the 
minimum number of intervals for different errors using a first 
order and a second order Taylor approximation scheme, 
according to (13) and (14), respectively. In addition, this scheme 
provides suitable word-lengths, obtained by means of (6) and (8). 
As can be seen, the larger the order of the polynomial, the lower 
the required number of intervals in the Taylor region. In other 
words, the accuracy of the approximation scheme can be 
improved by using more terms in (1) or by refining the Taylor 
region segmentation. The first option would need more 
computation time and hardware resources, while the second one 
would increase memory size. 

B. Approximation of the Hyperbolic Tangent 
The positive saturation region starts where f(x) satisfies (3) 

with s=1, 

TABLE I.  APPROXIMATION OF THE SIGMOID FUNCTION 

Error
( )ε  

Parameters of the approximation scheme 

Taylor 
region 

width (t) 

Number of 
intervals 
(n1) 1st 
order 

scheme 

Number 
of 

intervals 
(n2) 2nd 

order 
scheme 

Ni Nf 

0.1 2.20 1 1 2 2 

0.01 4.60 6 3 3 5 

0.001 6.91 24 10 3 8 

0.0001 9.21 101 28 4 12 
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The boundary between the Taylor region and the saturation 
region is 10.5 ln(2 1)−= −t ε . Using (5) for an k-order Taylor 
scheme, 
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The number of intervals for a first order scheme is: 

 
1
21 1/ 2 1

1
0.7700.25ln(2 1) 0.155 ln(2 1)

2
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� �
n ε ε ε

ε
,(17) 

where the maximum of the second order derivative is 0.770. For 
a second order scheme: 

 
1
31 1/ 3 1

2
20.25ln(2 1) 0.177 ln(2 1)

6
− − −� �≥ − = −� �

� �
n ε ε ε

ε
, (18) 

with the maximum absolute value of the third order derivative 
being equal to 2 at x=0 (see Fig.2). 

Table II provides the results obtained for a first order and a 
second order approximation of the hyperbolic tangent according 
to (17) and (18). Minimum word-lengths computed by means of 
(6) and (8) are also included. As can be seen, given the 
approximation error, the Taylor region is wider for the sigmoid 
function than for the hyperbolic tangent. However, the second 
function needs more intervals than the first one, and, therefore, 
more bits are required. In other words, the computation of the 
hyperbolic tangent requires larger word-lengths than the sigmoid 
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function. It can be concluded that the digital implementation of 
the sigmoid function will use less resources and will require less 
computation time than the hyperbolic tangent, for the same 
accuracy. Fig. 3 shows the approximation of the sigmoid function 
obtained by applying the proposed method with an 
approximation error 0.01=ε  (see Table I). 

TABLE II.  APPROXIMATION OF THE HYPERBOLIC TANGENT 

Error
( )ε  

Parameters of the approximation scheme 

Taylor 
region 

width (t) 

Number of 
intervals 
(n1) 1st 
order 

scheme 

Number 
of 

intervals 
(n2) 2nd 

order 
scheme 

Ni Nf 

0.1 1.47 2 2 2 3 

0.01 2.65 9 5 2 7 

0.001 3.80 39 14 3 10 

0.0001 4.95 157 37 3 14 
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Fig. 3. Approximation of the sigmoid function (‘---‘) and approximation error 
magnified by 100 for a maximum allowable error ε=0.01. The reference full-
precision sigmoid is included in the background. 

III. HARDWARE IMPLEMENTATION OF THE SECOND ORDER SCHEME 
The architectural and technological features of FPGAs make 

them especially suited to developing single-chip embedded 
systems or hardware co-processors for algorithm acceleration. 
Current FPGA families combine logic blocks and interconnects, 
typical of traditional reconfigurable devices, with embedded 
cores, peripherals, and memory blocks. FPGA technology 
continues to be improved, bringing new challenges to the scope 
of intelligent embedded systems. 

Fig. 4. Internal architecture of the circuit that performs the computation of a 
second order scheme. The main input to the circuit is the value of x (D). The 
output is the approximated function f(x), (F). 

Fig. 4 depicts the block diagram of the implementation of a 
nonlinear function using a second order approximation scheme. 
The proposed architecture is specially suited for high 
performance FPGA implementation. The main computation unit 
is a typical Digital Signal Processing (DSP) core. This embedded 
core is very useful for implementing computations like the one in 
(1) because it is faster and occupies a smaller area than a logic-
based implementation. In this piece of work, without loss of 
generality, the Xilinx DSP48 has been used [15]. It is an 18x18 
bit two-complement multiplier followed by a 48-bit sign-
extended adder/subtracter and accumulator. These arithmetic 
operations are widely used in digital signal processing (e.g. 
digital filters). The DSP unit can be dynamically changed by 
enabling the specification of multiple operations using a set of 
user-defined arithmetic expressions (i.e. instructions). The 
specified operations are enumerated and can be selected through 
a single port on the generated core. As can be seen, the main 
input to the circuit is the (Ni+Nf)-bit data D. The output signal is 
the approximated function F. 

Two ROM memories are used: ROM1 stores the function 
derivatives (f(1)(a),f(2)(a)), while ROM2 is used to store the pairs 
of values (a,f(a)) for every Taylor interval. The memory words 
are addressed by means of the most significant bits of the input 
data. In addition, a 4-input multiplexer (MUX) is used to 
configure one of the DSP inputs (register B). Only three MUX 
inputs are required to implement a second order scheme: the 
value of the first order and second order derivative computed in 
the centre of the interval, and a feedback signal. The derivatives 
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are read from ROM1, while the feedback signal comes from the 
DSP core output. 

Three different instructions are configured to compute the 
approximation: 

 
(2)

(1) 2( )( ) ( ) ( )( ) ( ) .
2

= + − + −f af x f a f a x a x a  (19) 

The sequence of computations involved in (19) requires 7 
clock cycles with the following configuration: 

Cycle 1: Instruction = 00, MUX_sel = 10 

Cycles 2, 3 and 4: Instruction = 00, MUX_sel = 00 

Cycles 5 and 6: Instruction = 01, MUX_sel = 01 

Cycle 7: Instruction = 10, MUX_sel = 01 

The second order scheme was developed in VHDL language 
with the aid of the ISE Design Suite. The circuit was 
implemented using a Xilinx Virtex 6 family device. It requires 
only 1 embedded DSP block. Slice resources depend on the 
required word-length, which in turn depends on the allowed 
error. For example, the implementation of the sigmoid for a 
maximum allowable error 0.01=ε  depicted in Fig. 3 requires 
only 7 slices (11 LUTs); the core performs the computation of the 
sigmoid in only 7 clock cycles and is able to operate at 373.5 
MHz. In other words, the evaluation of a nonlinear function, with 
an approximation error less than 0.01, using the second order 
scheme is performed in less than 20ns with the proposed FPGA 
implementation. 

IV. LEARNING AND ADAPTATION WITH CONTROLLED ACCURACY 
It is well known that learning and adaptation in ANNs and 

NFSs is difficult to implement in a hardware solution, mainly 
because of the complexity of the nonlinear calculus involved in 
the computations [4]. On the other hand, the evaluation of the 
algorithms, after training, is less precision-demanding and easier 
to implement than the learning process. 

In the next part, a single hidden-layer feed-forward ANN, 
trained using a typical back-propagation (BP) gradient descent 
method (GDM), will be used to show the advantages of using the 
proposed controlled-accuracy approximation method. An 
Ambient Intelligence application (i.e. smart environment) is 
selected with the aim of highlighting the usefulness of soft 
computing techniques in the development of embedded systems 
[16]. The method should be integrated in the design flow of an 
embedded system in order to guarantee that the hardware 
implementation will behave properly. That is to say, the 
performance of the designed system will not be affected by the 
limitations of using fixed-point hardware implementations with 
finite word-length approximation of nonlinear functions. 

The data set used in this work was obtained at the Essex 
intelligent dormitory (iDorm) [17]-[19]. It is a real ubiquitous 

computing environment comprising a number of embedded 
sensors, actuators, processors, and a heterogeneous network. A 
user spent five consecutive days in this room, and during this 
period, the interaction of the user with the environment was 
recorded. Seven input sensors were monitored: internal light 
level, external light level, internal temperature, external 
temperature, chair pressure, bed pressure, and time measured as a 
continuous input on an hourly scale. The controlled actuators 
were four variable intensity spot-lights, the desk and bed side 
lamps, window blinds, the heater, and the two PC-based 
applications. In this paper, the four continuous outputs (variable 
intensity spot lights) were considered. 

The experimental data were split into a training set and a 
testing set consisting of 200 and 208 instances, respectively. 
Firstly, the ANN was trained using BP-GDM with the 64-bit 
floating point precision provided by Matlab tool. The number of 
neurons in the hidden layer was selected large enough to obtain a 
testing performance RMSE = 0.1. This performance is reached 
with a 7-32-4 topology. Only power-of-two sizes of the hidden 
layer were considered with the aim of simplifying digital 
hardware implementations of the network. Fig. 5 and Fig. 6 
depict the evolution of the RMSE for the set of testing data, 
where the overall RMSE values were obtained as the average 
RMSE of all the four outputs. The full-precision curve is 
identified with the label “reference”, and the corresponding 
RMSE values will be considered as the design objective for 
further fixed-point experiments. 

1) Training the ANN using full precision and testing the 
network using finite word-length 

In the first round of experiments, the same 7-32-4 ANN 
topology was trained using full-precision, while the evaluation of 
the testing set was performed using a finite word-length 
approximation of the sigmoid function based on the second order 
scheme. This procedure provides an insight into the 
consequences of using a computer-aided design tool for the 
development of soft-computing applications that will be 
implemented using a fixed-point digital hardware approach. 
Different accuracies were considered to implement the activation 
function (i.e. sigmoid): ε= 0.1, 0.01, and 0.001. As can be seen in 
Fig. 5, the performance of the system can be seriously degraded 
due to the lack of accuracy in the approximation of the activation 
function. Moreover, for the iDorm case application, a digital 
hardware implementation with 0.01>ε  should be carefully 
analyzed. 

2) Training and testing the ANN using finite word-length 
In the second round of experiments, the 7-32-4 ANN was 

trained and tested using the finite-precision fixed-point 
approximation scheme, the results are shown in Fig. 6. It can be 
concluded that the loss of performance introduced by using a 
finite word-length approximation of the sigmoid function is 
smaller when the network is trained using the target 
approximation. Even for large errors (e.g. see Fig. 6 with ε=0.1), 
the RMSE remains close to the reference curve. Therefore, the 
use of the controlled-accuracy scheme has two main advantages: 
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i) the consequences of using a fixed-point approximation of the 
activation function can be carefully analyzed, and ii) the word-
length of the whole system can be sized to achieve the desired 
performance. As a consequence, both hardware resources and 
power consumption can be reduced. 
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Fig. 5. Evolution of RMSE using Backpropagation Learning algorithm with a 
controlled accuracy approximation of the sigmoid function for different values of 
the maximum allowed error, ε. Training has been performed using full-precision 
64-bit floating point computation, while testing has been performed with the 
fixed-point approximation of the sigmoid function 
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Fig. 6. Evolution of RMSE using Backpropagation Learning algorithm with a 
controlled accuracy approximation of the sigmoid function for different values of 
the maximum allowed error, ε. Both training and testing have been performed 
using the fixed-point approximation of the sigmoid function. 

V. CONCLUSIONS 
The development of intelligent embedded systems based on 

soft computing techniques require the approximation of nonlinear 
functions such as the sigmoid function, the hyperbolic tangent or 
the Gaussian function, among others. To tackle this problem, a 
controlled-accuracy approximation scheme, suitable for digital 
hardware implementation, is proposed. The method should be 
integrated into the design flow of embedded systems. 

In addition, a high-performance hardware co-processor is 
developed. The proposed methodology is applied to the 
development of an ANN for a smart scenario. Experimental 
results show that the ANN performance is close to the full-
precision performance (i.e. the reference) when the ANN is 
trained using the controlled-accuracy approximation scheme, 
even when large approximation errors are considered. On the 
contrary, when the ANN is trained using full-precision floating-
point tools, the performance of the system could be seriously 
degraded when the ANN is implemented using a finite-precision 
hardware approach. 

Further research will be done with the aim of analyzing the 
advantages of using the proposed scheme in the implementation 
of embedded systems based on different soft computing 
techniques. 
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