
Controlled-Accuracy Approximation of Nonlinear
Functions for Soft Computing Applications

A high performance co-proccessor for intelligent embedded systems

Inés del Campo, Javier Echanobe, Estibaliz Asua, and Raúl Finker
Department of Electricity and Electronics

University of the Basque Country UPV/EHU
Leioa, Vizcaya, Spain

Abstract— Intelligent embedded systems can be found
everywhere in a variety of innovative applications. The main
challenge consists in developing small-size single-chip embedded
systems with low power consumption, capable of processing data
and intelligent algorithms with the required speed. These key issues
are normally carefully analyzed during the design process of
embedded systems with the aim of meeting the required
specifications. However, the problem of accuracy is hardly ever
explored in the early stages of the design flow, even though too low
accuracy could limit digital hardware performance in a crucial
way. This piece of work proposes a controlled accuracy
approximation scheme of nonlinear functions based on Taylor’s
Theorem and the Lagrange form of the remainder. A hardware co-
processor based on a Field Programmable Gate Array (FPGA) is
developed. The co-processor is suitable for efficient computation of
nonlinear functions involved in typical soft computing techniques
such as: activation functions (neural netwoks); membership
functions (fuzzy systems); or kernel functions (support vector
machines). The method is applied to the development of an
intelligent embedded system for a smart scenario. Experimental
results are provided for both online training and feed-forward
computation of a single-layer feed-forward neural network.

I. INTRODUCTION
Many embedded platforms have emerged in the market and

are in use in our daily activities. With the aim of promoting an
autonomous and flexible lifestyle, with new levels of comfort,
safety and productivity, embedded systems are being introduced
in almost all areas. They can be found everywhere in a variety of
applications, from control systems in automotive sectors, to
consumer and multimedia products, among others. An embedded
system is a special-purpose computing platform able to perform
dedicated functions. It is often designed for a particular kind of
application that is required to work under a certain constraints.
An increasing number of these applications require certain degree
of knowledge and intelligence to perform properly. Soft
computing techniques, such as artificial neural networks (ANNs)
or neuro-fuzzy systems (NFSs), provide a rich and powerful
framework in order to endow embedded system with intelligence.

The main challenge consists in developing small-size single-chip
intelligent embedded systems, with low power consumption,
capable of processing data and algorithms with the required
speed and without loss of accuracy [1]-[3].

It is well known that there is a trade-off between computation
time and hardware size. In addition, high operation frequencies
and large amounts of hardware resources contribute to increasing
power consumption [4]. These key issues are normally carefully
analyzed during the design flow of an embedded system with the
aim of meeting the required specifications. However, the problem
of accuracy is hardly ever explored in the early stages of the
design flow, even though it could limit hardware performance in
a crucial way. Moreover, the functionality of most embedded
systems is designed using floating-point arithmetic and
computer-aided design tools. Meanwhile, the hardware
implementation of the system is carried out using fixed-point
arithmetic and finite word-length. For these reasons, the
degradation of the system performance, due to signal and system
quantization, should be considered in the design of cutting-edge
applications. The main problem consists in designing fixed-point
hardware able to provide the required accuracy. Quantization
errors are easy to manage in common arithmetic operations (e.g.
sums or products). However, the implementation of nonlinear
functions, such as the activation function of ANNs, or the
membership functions of NFSs, is not an easy task, mainly when
online training algorithms are involved.

Despite the importance of proper specification of the
accuracy of this kind of nonlinear functions, very few methods
incorporate it as a design parameter [5], [6]. In this paper, a
controlled-accuracy scheme, suitable for the implementation of
nonlinear functions is proposed. The scheme is based on Taylor’s
Theorem and the Lagrange form of the remainder. A systematic
design methodology which guarantees the accuracy of the
approximation is provided. The development of a hardware co-
processor that implements the proposed scheme using a field
programmable gate array (FPGA) is presented. In addition, the
method is applied to the development of an individualized
monitoring system for real-time support of a smart environment.

This work has been partially funded by the Basque Government under Grant
IT733-13, and the Spanish Ministry of Economy and Competitiveness under
Grant TEC2013-42286-R.

2015 IEEE Symposium Series on Computational Intelligence

978-1-4799-7560-0/15 $31.00 © 2015 IEEE

DOI 10.1109/SSCI.2015.95

609

Experimental results are provided for both online training and
feed-forward computation.

The rest of the paper is organized as follows: Section II
presents the proposed method. The approximation of two
nonlinear functions, widely used in soft computing algorithms,
the sigmoid function and the hyperbolic tangent, is explained in
detail. Section III addresses the development of an efficient
hardware co-processor that computes the proposed scheme and
presents the implementation performance using an FPGA of the
Xilinx Virtex 6 device family. In Section IV representative
experimental results are provided. Finally, some concluding
remarks are presented.

II. COMPUTATION OF NONLINEAR FUNCTIONS IN INTELLIGENT
EMBEDDED SYSTEMS

Most soft computing techniques involve the computation of
nonlinear functions. Thereby, artificial neural networks (ANNs)
use nonlinear activation functions for weighting the neuron
outputs. The class of S-functions, such as the sigmoid and
hyperbolic tangent, is commonly used. Fuzzy systems (FSs) and
hybrid neuro-fuzzy systems (NFSs) use membership functions to
define fuzzy sets. Gaussian and S-shaped functions have proven
very useful for modelling fuzzy information. Gaussian and S-
functions are also widely used in kernel-based algorithms such as
support vector machines (SVMs) or deep-learning architectures,
among others.

The calculation of the above functions involves the
computation of exponentiations, sums, products and divisions.
Exponentiation and division are costly to implement in digital
hardware, mainly if high precision is required. Several
implementation methods have been proposed over the years. The
most commonly used are look-up tables (LUTs) [7], bit-level
mapping [8], piecewise linear methods [9], [10], [11], Taylor
series expansion [12], and hybrid methods [13], [14].

The selection of the approximation method and its hardware
implementation are key aspects that constrain the accuracy and
the performance of the algorithm. Thus, too low accuracy
produces poor performance, while an excess of it unnecessarily
increases hardware resources and reduces the processing speed.
Even though some researchers report the accuracy provided by
their approximation methods, only a few of them provide a
systematic design methodology able to guarantee the accuracy of
the approximation.

Another important aspect to be considered is the
differentiability of the approximated function. This is because
meaningful learning and adaptation methods, based on gradient
evolution, involve both the function and its derivative.

The approximation scheme could be applied to any
differentiable function suitable for Taylor approximation. In
particular, S-shaped and Gaussian curves present additional
properties that allow further simplifications of the method.
These families of curves have a bounded output range and a

bounded active input range where Taylor theorem is used to
approximate the function (i.e. Taylor regions). Outside the active
input range, the function derivatives vanish and the function
saturates to a constant value (i.e. saturation regions).

Let f(x) : →� � be a (k+1)-times differentiable function
around a given point a∈� . Then, f(x) can be approximated in
any interval I containing a by means of a kth order Taylor
polynomial:

(2)
(1) 2

()

()() () ()() ()
2!

()... () .
!

= + − + − +

+ −
k

k

f af x f a f a x a x a

f a x a
k

 (1)

The approximation error (i.e. remainder) in I can be bounded
using the Lagrange form of the remainder or error

1

()
(1)!

+−
≤

+

k

k k

x a
R x M

k
 if �� (1) ()+ ≤k

kf x M . (2)

Equation (2) provides a means of dealing with the maximum
allowable approximation error (i.e. ()= kR xε) as a design
parameter. The proposed scheme can be organized into the
following steps:

1) The allowed error, ε , that provides the required
approximation accuracy is to be defined.

2) Both the Taylor regions and the saturation regions are to be
determined. For simplicity, consider a single positive Taylor
region [0,]t , and a single saturation region [,]+∞t . The
precise boundary between the Taylor region and the
saturation region, t, is obtained as follows:

 () − =f t s ε , (3)

with s being the value of the function inside the saturation
region.

3) The Taylor range [0,]t is split into a number of intervals of
width 2r and centre a where a local approximation of the
function is computed. Using (2), and taking into account
that − ≤x a r , [,]∀ ∈ = − +x I a r a r ,

1 1

(1)() max ()
(1)! (1)!

+ +
+≤ ≤

+ +

k k
k

k k
r rR x M f x

k k
, (4)

where Mk is selected to be equal to the maximum of the
absolute value of the (k+1)-order derivative of the function,

610

(1)max ()+= k
kM f x .

4) If nk is the number of intervals, then / 2=r t n . Replacing in
(4), the minimum number of intervals is:

1
1 1max ()

2 (1)!

+ +� �
� �=
� �+� �

k k

k

f xtn
kε

 (5)

The scheme has been implemented using a fixed-point
fractional data format. Therefore, the word-length has to be able
to provide the required precision. If Ni is the number of bits used
to represent the integer part of the input data and Nf is the
corresponding fractional part, then 1 0 1... ... ,− −= ⋅

i fN Nx x x x x where
Ni depends on the width of the Taylor region:

 (6)

In addition, Nf should be able to represent those changes in
the input Δx that produce changes in the function Δf equal to the
maximum allowable error, that is to say:

 ,
2−

Δ =
Δ fN

f
x

ε (7)

for small increments, (1)/ ().Δ Δ ≅f x f x Therefore, introducing
the maximum absolute value of the first order derivative in (7),
the number of fractional bits can be obtained as follows:

 (1)1 ln ln(max ()) .
ln 2

� 	≥ +
 �fN f xε (8)

In sum, given the desired error ε , and the order of the
polynomial, k, the frontier of the Taylor region, t, is obtained
using (3), the minimum number of intervals is provided by (5),
and the local approximation of the function in each interval
[,]− +a r a r is obtained by means of (1). The data word-length
should be selected accordingly.

Next, the approximation of two representative functions,
widely used in soft computing methods, is provided: the sigmoid
function and the hyperbolic tangent. The sigmoid is defined as
follows:

 1()
1 −=

+S xf x
e

, (9)

and the hyperbolic tangent is:

 ()
−

−

−=
+

x x

T x x

e ef x
e e

. (10)

The above functions and their first three derivatives are
shown in Fig. 1 and Fig. 2, respectively. As can be seen, (9) and
(10) share some common characteristics. Both functions exhibit
some kind of symmetry with respect to the y-axis, the sigmoid
verifies () 1 ()− = −S Sf x f x , while the hyperbolic tangent is strictly
symmetric, that is to say, () ()− = −T Tf x f x . In addition, their output
ranges are bounded; the sigmoid is bounded within (0,1) and the
hyperbolic tangent within (-1,1). Moreover, both functions
concentrate their main “activity” in a limited range of the x-axis
(i.e. Taylor regions). Outside these ranges the functions saturate
to constant values (i.e. saturation regions).

Fig. 1. Sigmoid function and its first three derivatives.

Fig. 2. Hyperbolic tangent and its first three derivatives.

611

A. Approximation of the Sigmoid
Different accuracies will be investigated, so, let ε be the

maximum allowable approximation error. Then, to determine
where the positive saturation region starts (see Fig. 1) we have to
apply (3) with s=1,

 1 1
1 − − =

+ te
ε , (11)

Solving (11) results in 1ln(1)−= −t ε , with t being the
boundary between the Taylor region and the saturation region.

Using (5) for a k-order Taylor scheme,

1
(1) 11 max ()ln(1)

2 (1)!

+ +− � �− � �≥
� �+� �

k k

k

f x
n

k
ε

ε
. (12)

The number of intervals for a first order scheme is:

1

1 2 1/ 2 1
1

ln(1) 0.096 0.109 ln(1)
2 2

−
− −− � �≥ = −� �

� �
n ε ε ε

ε
, (13)

where the maximum value of the second order derivative is
0.096. For a second order scheme:

1

1 3 1/ 3 1
2

ln(1) 0.125 0.138 ln(1)
2 6

−
− −− � �≥ = −� �

� �
n ε ε ε

ε
, (14)

with the maximum absolute value of the third order derivative
being equal to 0.125 (see Fig.1).

Table I provides the boundary of the Taylor region and the
minimum number of intervals for different errors using a first
order and a second order Taylor approximation scheme,
according to (13) and (14), respectively. In addition, this scheme
provides suitable word-lengths, obtained by means of (6) and (8).
As can be seen, the larger the order of the polynomial, the lower
the required number of intervals in the Taylor region. In other
words, the accuracy of the approximation scheme can be
improved by using more terms in (1) or by refining the Taylor
region segmentation. The first option would need more
computation time and hardware resources, while the second one
would increase memory size.

B. Approximation of the Hyperbolic Tangent
The positive saturation region starts where f(x) satisfies (3)

with s=1,

TABLE I. APPROXIMATION OF THE SIGMOID FUNCTION

Error
()ε

Parameters of the approximation scheme

Taylor
region

width (t)

Number of
intervals
(n1) 1st
order

scheme

Number
of

intervals
(n2) 2nd

order
scheme

Ni Nf

0.1 2.20 1 1 2 2

0.01 4.60 6 3 3 5

0.001 6.91 24 10 3 8

0.0001 9.21 101 28 4 12

 1
−

−

− − =
+

t t

t t

e e
e e

ε , (15)

The boundary between the Taylor region and the saturation
region is 10.5 ln(2 1)−= −t ε . Using (5) for an k-order Taylor
scheme,

1
1 1

1
max ()

0.25ln(2 1)
(1)!

+ +
−

� �
� �≥ −
� �+� �

k k

k

f x
n

k
ε

ε
, (16)

The number of intervals for a first order scheme is:

1
21 1/ 2 1

1
0.7700.25ln(2 1) 0.155 ln(2 1)

2
− − −� �≥ − = −� �

� �
n ε ε ε

ε
,(17)

where the maximum of the second order derivative is 0.770. For
a second order scheme:

1
31 1/ 3 1

2
20.25ln(2 1) 0.177 ln(2 1)

6
− − −� �≥ − = −� �

� �
n ε ε ε

ε
, (18)

with the maximum absolute value of the third order derivative
being equal to 2 at x=0 (see Fig.2).

Table II provides the results obtained for a first order and a
second order approximation of the hyperbolic tangent according
to (17) and (18). Minimum word-lengths computed by means of
(6) and (8) are also included. As can be seen, given the
approximation error, the Taylor region is wider for the sigmoid
function than for the hyperbolic tangent. However, the second
function needs more intervals than the first one, and, therefore,
more bits are required. In other words, the computation of the
hyperbolic tangent requires larger word-lengths than the sigmoid

612

function. It can be concluded that the digital implementation of
the sigmoid function will use less resources and will require less
computation time than the hyperbolic tangent, for the same
accuracy. Fig. 3 shows the approximation of the sigmoid function
obtained by applying the proposed method with an
approximation error 0.01=ε (see Table I).

TABLE II. APPROXIMATION OF THE HYPERBOLIC TANGENT

Error
()ε

Parameters of the approximation scheme

Taylor
region

width (t)

Number of
intervals
(n1) 1st
order

scheme

Number
of

intervals
(n2) 2nd

order
scheme

Ni Nf

0.1 1.47 2 2 2 3

0.01 2.65 9 5 2 7

0.001 3.80 39 14 3 10

0.0001 4.95 157 37 3 14

-8 -6 -4 -2 0 2 4 6 8
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

ε = 0.01

10 x error

Second order approximation of
the sigmoid function

Fig. 3. Approximation of the sigmoid function (‘---‘) and approximation error
magnified by 100 for a maximum allowable error ε=0.01. The reference full-
precision sigmoid is included in the background.

III. HARDWARE IMPLEMENTATION OF THE SECOND ORDER SCHEME
The architectural and technological features of FPGAs make

them especially suited to developing single-chip embedded
systems or hardware co-processors for algorithm acceleration.
Current FPGA families combine logic blocks and interconnects,
typical of traditional reconfigurable devices, with embedded
cores, peripherals, and memory blocks. FPGA technology
continues to be improved, bringing new challenges to the scope
of intelligent embedded systems.

Fig. 4. Internal architecture of the circuit that performs the computation of a
second order scheme. The main input to the circuit is the value of x (D). The
output is the approximated function f(x), (F).

Fig. 4 depicts the block diagram of the implementation of a
nonlinear function using a second order approximation scheme.
The proposed architecture is specially suited for high
performance FPGA implementation. The main computation unit
is a typical Digital Signal Processing (DSP) core. This embedded
core is very useful for implementing computations like the one in
(1) because it is faster and occupies a smaller area than a logic-
based implementation. In this piece of work, without loss of
generality, the Xilinx DSP48 has been used [15]. It is an 18x18
bit two-complement multiplier followed by a 48-bit sign-
extended adder/subtracter and accumulator. These arithmetic
operations are widely used in digital signal processing (e.g.
digital filters). The DSP unit can be dynamically changed by
enabling the specification of multiple operations using a set of
user-defined arithmetic expressions (i.e. instructions). The
specified operations are enumerated and can be selected through
a single port on the generated core. As can be seen, the main
input to the circuit is the (Ni+Nf)-bit data D. The output signal is
the approximated function F.

Two ROM memories are used: ROM1 stores the function
derivatives (f(1)(a),f(2)(a)), while ROM2 is used to store the pairs
of values (a,f(a)) for every Taylor interval. The memory words
are addressed by means of the most significant bits of the input
data. In addition, a 4-input multiplexer (MUX) is used to
configure one of the DSP inputs (register B). Only three MUX
inputs are required to implement a second order scheme: the
value of the first order and second order derivative computed in
the centre of the interval, and a feedback signal. The derivatives

±

×

00: (D-A)*B
01: P+(D-A)*B
10: P+C

±

DSP Core

C

B

A

Set of configured
instructions

D
P

MSB(D)

- a
- f(a)
- ROM 2

MUX_sel

00

01

10

11

Ins

F

RST

CLK
Circuit

controller

- f(1)(a)
- 1/2*f(2)(a)
- ROM 1

613

are read from ROM1, while the feedback signal comes from the
DSP core output.

Three different instructions are configured to compute the
approximation:

(2)

(1) 2()() () ()() () .
2

= + − + −f af x f a f a x a x a (19)

The sequence of computations involved in (19) requires 7
clock cycles with the following configuration:

Cycle 1: Instruction = 00, MUX_sel = 10

Cycles 2, 3 and 4: Instruction = 00, MUX_sel = 00

Cycles 5 and 6: Instruction = 01, MUX_sel = 01

Cycle 7: Instruction = 10, MUX_sel = 01

The second order scheme was developed in VHDL language
with the aid of the ISE Design Suite. The circuit was
implemented using a Xilinx Virtex 6 family device. It requires
only 1 embedded DSP block. Slice resources depend on the
required word-length, which in turn depends on the allowed
error. For example, the implementation of the sigmoid for a
maximum allowable error 0.01=ε depicted in Fig. 3 requires
only 7 slices (11 LUTs); the core performs the computation of the
sigmoid in only 7 clock cycles and is able to operate at 373.5
MHz. In other words, the evaluation of a nonlinear function, with
an approximation error less than 0.01, using the second order
scheme is performed in less than 20ns with the proposed FPGA
implementation.

IV. LEARNING AND ADAPTATION WITH CONTROLLED ACCURACY
It is well known that learning and adaptation in ANNs and

NFSs is difficult to implement in a hardware solution, mainly
because of the complexity of the nonlinear calculus involved in
the computations [4]. On the other hand, the evaluation of the
algorithms, after training, is less precision-demanding and easier
to implement than the learning process.

In the next part, a single hidden-layer feed-forward ANN,
trained using a typical back-propagation (BP) gradient descent
method (GDM), will be used to show the advantages of using the
proposed controlled-accuracy approximation method. An
Ambient Intelligence application (i.e. smart environment) is
selected with the aim of highlighting the usefulness of soft
computing techniques in the development of embedded systems
[16]. The method should be integrated in the design flow of an
embedded system in order to guarantee that the hardware
implementation will behave properly. That is to say, the
performance of the designed system will not be affected by the
limitations of using fixed-point hardware implementations with
finite word-length approximation of nonlinear functions.

The data set used in this work was obtained at the Essex
intelligent dormitory (iDorm) [17]-[19]. It is a real ubiquitous

computing environment comprising a number of embedded
sensors, actuators, processors, and a heterogeneous network. A
user spent five consecutive days in this room, and during this
period, the interaction of the user with the environment was
recorded. Seven input sensors were monitored: internal light
level, external light level, internal temperature, external
temperature, chair pressure, bed pressure, and time measured as a
continuous input on an hourly scale. The controlled actuators
were four variable intensity spot-lights, the desk and bed side
lamps, window blinds, the heater, and the two PC-based
applications. In this paper, the four continuous outputs (variable
intensity spot lights) were considered.

The experimental data were split into a training set and a
testing set consisting of 200 and 208 instances, respectively.
Firstly, the ANN was trained using BP-GDM with the 64-bit
floating point precision provided by Matlab tool. The number of
neurons in the hidden layer was selected large enough to obtain a
testing performance RMSE = 0.1. This performance is reached
with a 7-32-4 topology. Only power-of-two sizes of the hidden
layer were considered with the aim of simplifying digital
hardware implementations of the network. Fig. 5 and Fig. 6
depict the evolution of the RMSE for the set of testing data,
where the overall RMSE values were obtained as the average
RMSE of all the four outputs. The full-precision curve is
identified with the label “reference”, and the corresponding
RMSE values will be considered as the design objective for
further fixed-point experiments.

1) Training the ANN using full precision and testing the
network using finite word-length

In the first round of experiments, the same 7-32-4 ANN
topology was trained using full-precision, while the evaluation of
the testing set was performed using a finite word-length
approximation of the sigmoid function based on the second order
scheme. This procedure provides an insight into the
consequences of using a computer-aided design tool for the
development of soft-computing applications that will be
implemented using a fixed-point digital hardware approach.
Different accuracies were considered to implement the activation
function (i.e. sigmoid): ε= 0.1, 0.01, and 0.001. As can be seen in
Fig. 5, the performance of the system can be seriously degraded
due to the lack of accuracy in the approximation of the activation
function. Moreover, for the iDorm case application, a digital
hardware implementation with 0.01>ε should be carefully
analyzed.

2) Training and testing the ANN using finite word-length
In the second round of experiments, the 7-32-4 ANN was

trained and tested using the finite-precision fixed-point
approximation scheme, the results are shown in Fig. 6. It can be
concluded that the loss of performance introduced by using a
finite word-length approximation of the sigmoid function is
smaller when the network is trained using the target
approximation. Even for large errors (e.g. see Fig. 6 with ε=0.1),
the RMSE remains close to the reference curve. Therefore, the
use of the controlled-accuracy scheme has two main advantages:

614

i) the consequences of using a fixed-point approximation of the
activation function can be carefully analyzed, and ii) the word-
length of the whole system can be sized to achieve the desired
performance. As a consequence, both hardware resources and
power consumption can be reduced.

0 5000 10000 15000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Backpropagation Training

Cycles

R
oo

t
M

ea
n

S
qu

ar
e

E
rr

or

ε = 0.01

ε = 0.001

ε = 0.1

Full precision (reference)

Fig. 5. Evolution of RMSE using Backpropagation Learning algorithm with a
controlled accuracy approximation of the sigmoid function for different values of
the maximum allowed error, ε. Training has been performed using full-precision
64-bit floating point computation, while testing has been performed with the
fixed-point approximation of the sigmoid function

0 5000 10000 15000
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
Backpropagation Training

Cycles

R
oo

t
M

ea
n

S
qu

ar
e

E
rr

or

ε=0.01

ε=0.1

ε=0.001

Full precision (reference)

Fig. 6. Evolution of RMSE using Backpropagation Learning algorithm with a
controlled accuracy approximation of the sigmoid function for different values of
the maximum allowed error, ε. Both training and testing have been performed
using the fixed-point approximation of the sigmoid function.

V. CONCLUSIONS
The development of intelligent embedded systems based on

soft computing techniques require the approximation of nonlinear
functions such as the sigmoid function, the hyperbolic tangent or
the Gaussian function, among others. To tackle this problem, a
controlled-accuracy approximation scheme, suitable for digital
hardware implementation, is proposed. The method should be
integrated into the design flow of embedded systems.

In addition, a high-performance hardware co-processor is
developed. The proposed methodology is applied to the
development of an ANN for a smart scenario. Experimental
results show that the ANN performance is close to the full-
precision performance (i.e. the reference) when the ANN is
trained using the controlled-accuracy approximation scheme,
even when large approximation errors are considered. On the
contrary, when the ANN is trained using full-precision floating-
point tools, the performance of the system could be seriously
degraded when the ANN is implemented using a finite-precision
hardware approach.

Further research will be done with the aim of analyzing the
advantages of using the proposed scheme in the implementation
of embedded systems based on different soft computing
techniques.

REFERENCES
[1] A. R. Omondi and J.C. Rajapakse (Eds)., “FPGA Implementations of

Neural Networks,” Springer, The Netherlands, 2006.
[2] J. Misra, and I. Saha, “Artificial neural networks in hardware: A survey of

two decades of progress,” Neurocomputing, vol. 74, pp. 239–255, 2010.
[3] I. del Campo, K. Basterretxea, J. Echanobe, G. Bosque, and F. Doctor, “A

System-on-Chip Development of a Neuro-Fuzzy Embedded Agent for
Ambient Intelligence Environments,” IEEE Transactions on Systems, Man,
and Cybernetics, Part B: Cybernetics, vol. 42, pp. 501-512, 2012.

[4] G. Bosque, I. del Campo, and J. Echanobe, “Fuzzy systems, neural
networks and neuro-fuzzy systems: A vision on their hardware
implementation and platforms over two decades,” Engineering
Applications of Artificial Intelligence, vol. 32, pp. 283-331, June 2014.

[5] I. del Campo, R. Finker, J. Echanobe, and K. Basterretxea, “Controlled
accuracy approximation of sigmoid function for efficient FPGA-based
implementations of artificial neurons,” Electronics Letters, vol 49, pp.
1598-1600, 2013.

[6] B. Zamanlooy, and M. Mirhassani, “Efficient VLSI implementation of
neural networks with hyperbolic tangent activation function,” IEEE Trans.
Very Large Scale Integration Systems, vol. 22, pp. 39-48, 2014.

[7] K. Leboeuf, A. H. Namin, R. Muscedere, H. Wu, and M. Ahmadi, “High
Speed VLSI Implementation of the Hyperbolic Tangent Sigmoid
Function,” in Proc. 3rd Int. Conf. on Convergence and Hybrid Information
Technology, 2008, pp. 1070-1073.

[8] M. Tommiska, “Efficient digital implementation of the sigmoid function
for reprogrammable logic,” IEE Proceedings-Computers and Digital
Techniques, vol. 150, pp. 403–411, 2003.

[9] C. Alippi, and G. Storti-Gajani, “Simple approximation of sigmoidal
functions: realistic design of digital neural networks capable of learning,”
Proc. of the IEEE International Sympoisum on Circuits and Systems, pp.
1505-1508, 1991.

615

[10] K. Basterretxea, J.M. Tarela, and I. del Campo, “Digital design of sigmoid
approximator for artificial neural networks,” Electronics Letters, vol 38,
pp. 35-37, 2002.

[11] A. Armato, I. Fanucci, G. Pioggia, and D. De Rossi, “Low-error
approximation of artificial neuron sigmoid function and its derivative,”
Electronics Letters, vol 45, pp. 1082-1084, 2009.

[12] Ch-J Lin and H-M Tsai, “FPGA implementation of a wavelet neural
network with particle swarm optimization learning,” Mathematical and
Computer Modelling, vol. 47, pp. 982–996, 2008.

[13] K. Basterretxea, J.M. Tarela, I. del Campo., and G. Bosque, “An
experimental study on nonlinear function computation for neural/fuzzy
hardware design,” IEEE Trans. Neural Networks, vol. 18, pp. 266–283,
2007.

[14] A. Armato, L. Fanucci, E.P. Scilingo., and D. De Rossi, “Low-error digital
hardware implementation of artificial neuron activation functions and their
derivative,” Microprocessors and Microsystems, vol. 35, pp. 557–567,
2011.

[15] “LogiCORE IP DSP48 Macro v3.0, PG148,” http://www.xilinx.com/,
accessed 12nd July 2015.

[16] F. Sadri, “Ambient Intelligence: A Survey,” ACM Computing Surveys,
vol. 43, pp. 36:1–36:66, October 2011.

[17] F. Doctor, H. Hagras, and V. Callahan, “A Fuzzy Embedded Agent-Based
Approach for Realizing Ambient Intelligence in Intelligent Inhabited
Environments,” IEEE Transactions on System, Man, and Cybernetics-Part
A, vol. 35, no. 1, pp. 55-65, Jan. 2005.

[18] F. Doctor, H. Hagras, and V. Callahan, “A Type-2 Fuzzy Embedded Agent
to Realise Ambient Intelligence in Ubiquitous Computing Environments,”
Information Sciences, vol. 171, pp. 309-334, 2005.

[19] H. Hagras, F. Doctor, V. Callahan, and A. Lopez, “An Incremental
Adaptive Life Long Learning Approach for Type-2 Fuzzy Embedded
Agents in Ambient Intelligent Environments,” IEEE Transactions on Fuzzy
Systems, vol. 15, no. 1, pp. 41-55, Feb. 2007.

616

