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Abstract—Wearable  computing devices are now
mainstream. Many such devices have capable MEMS sensors
that can be exploited for recognizing dynamic, in-the-air
gestures. The somewhat limited compute power and battery life
of today’s devices requires a computationally efficient approach
to gesture recognition; one that can be effectively used inside an
app running on standard, off-the-shelf hardware, such as an
Android Smartwatch. The goal of this project is to test the
feasibility of this idea. In a two-phased approach, a class of finite
state machines (FSM ') for gesture recognition were first
constructed which were then tuned for higher accuracy with the
help of training data and a suitable optimization method. A
novel approach is presented that leverages techniques from
functional programming languages to define rich yet compact
FSM description. In order to demonstrate effectiveness, a
prototype gesture recognition system for an automotive
scenario, utilizing an Android Smartwatch app, was developed.
Then, the system was tuned using an evolutionary optimization
algorithm, Cultural Algorithms, with the help of experimentally
derived training data. The blended approach achieved a 77%
gesture recognition accuracy. The ‘functional’ FSM (FnSM) are
human defined but machine optimized with Cultural
Algorithms. By the blending of the two approaches, an
improved balance between computational requirements and
recognition accuracy was achieved.

L INTRODUCTION

Wearable computing is now in mainstream adoption. By
far the most popular wearable computing devices on the
market today are fitness bands such as the Nike FitBit [1].
However smartwatches from Apple, Google and others are
also gaining rapid adoption. IDC predicts that Apple will ship
over 20 million watches in 2015 [2]. Smartwatches are
interesting in that it is relatively easy to build and deploy apps
to these devices thus opening up the possibility of widespread
consumer-grade wearable computing applications.

One such application — a smartwatch app that recognizes
motion based gestures to control a companion smartphone app
is explored here. The premise is that such an application

! The abbreviations FSM and FnSM are used as both singular and plural,
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would be suitable for automotive use, given its potential for
reducing driver distraction.

Today’s automotive
Human Machine
Interfaces (HMI) require
one to control a rich and
complex set of options,
settings and functionality
— the complexity of which
can only grow over time.
At this time speech
recognition systems are Figure 1: Cadillac CT6 gesture pad—
considered to be the GM Creative Commons License
state-of-the-art in automotive HMI technology. Speech
recognition is an eyes-on-the road and hands-on-the-wheel
compatible interface, regarded as ideal for reducing driver
distraction. However, speech recognition systems are not
perfect and can exhibit many short comings when applied in
the real-world automotive domain. The automotive research
firm JD Power cited speech recognition as the top consumer
complaint in 2014 [3]. The trend now is towards gesture
control. New vehicles from Audi, Daimler-Benz, BMW and
Cadillac can now be optioned with gesture-based HMI control
(Figure 1).

At the same time,
automakers are
implementing Tl
Application st
Programming Interfaces
(APIs) to allow better
smartphone integration
with the car’s
infotainment system, e.g.
Apple CarPlay™,
Android Auto™ (Figure
2) and Ford AppLink™.
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Figure 2: Android Auto — source:
android.com/auto
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Given the three converging trends of: a) mainstream
adoption of wearable computing devices; b) automotive
gesture based HMI control ; and ¢) and automotive APIs for
smartphones — gesture based control of automotive HMI
seems like a plausible application of wearable computing
technology.

As a preliminary step towards exploring such an
application, a gesture recognition app on the Sony
Smartwatch 3 Android smartwatch to control a mock HMI on
the companion smartphone is implemented here. The Sony
watch has the customary assortment of MEMS
(microelectromechanical ~— systems) sensors such as
accelerometer, gyroscope, and magnetometer which provide
the input data for gesture recognition. The designs are
implemented as parameterized Finite State Machines, and
Cultural Algorithms are employed to establish the parameters
for the systems functionality. Since parameter selection here
must support many varying constraints, a data intensive
evolutionary learning algorithm, Cultural Algorithms is used
within the interface in order to support parameter learning.
The advantages of placing an evolutionary computation
mechanism in the interface “loop” will be discussed later.

The outline of the paper is as follows. First, section II
describes the overall approach taken, given the constraints and
challenges foreseen. Then, section III introduces the Finite
State Machine design employed. Next in section IV some of
the most popular methods used for dynamic gesture
recognition are reviewed and contrasted with the prototype
gesture recognition technique. Section V provides a
background for the specific evolutionary computing approach
that was used for the optimization of the gesture recognition
engine parameters, Cultural Algorithms. Section VI gives the
results of the experiments employed to test the prototype
system. Section VII presents the conclusions.

II.  GESTURE RECOGNITION STRATEGY

To begin, a gesture vocabulary that balances a number of
constraints and challenges to make it viable for the driver of
the vehicle must be selected. It should require that the driver
make only short and simple forearm and wrist movements in
order to expedite the recognition process.

A. Constraints and Challenges

Gesture recognition is a well-understood problem
however there are several challenges to consider in relation to
the chosen research scenario:

e Limited computational power and battery life of
wearable devices.

e Compounding effect of the motion of the car on the
device sensor readings.

e Limited space is available to the driver to perform the
actual gestures. This is especially acute for left-hand-
drive vehicles with the watch worn on the left wrist
because of the short distance between the steering wheel
and the driver’s side window.

e The large number of possible HMI actions to choose
from.

Given these constraints / challenges, the following
approach was selected as the basis for the gesture recognition
system here:

a) Use a vocabulary composed of simple gestures where
each individual gesture can be easily performed by the
driver in a confined space using mainly the motion of the
wrist and the forearm.

b) Use the gesture language to drive a hierarchical menu so
as to be able to traverse a large set of choices using a
small set of actions.

c) Use computationally efficient Finite State Machines
(FSM) rather than a more elaborate scheme such as
Hidden Markov Models (HMM), for gesture
recognition. Innovative programming techniques and
offline optimization of the FSM using a Cultural
Algorithm implementation, will compensate for the
relative lack of FSM sophistication.

B. Gesture Vocabulary

A driver of a left-hand-driven vehicle, wearing the
smartwatch on the left wrist, can only make a limited set of
gestures (using his/her left forearm) within the confined
available space. After some casual experimentation the
gesture vocabulary chosen is a set of 6 simple gestures shown
in Table 1.

Table 1: Gesture Vocabulary

Gesture Movement Meaning

Twist Twist wrist left and | Enter gesture recognition mode.
right The driver uses this gesture to

tell the app that he/she is
interested in using gesture
recognition. The sensor input is
then tracked more closely to
recognize other gestures listed
in this table.

Escape Point forearm | Exit gesture recognition mode.
downwards  (below | Sensor input is not tracked
the horizontal plane) except to recognized the Twist

gesture (for re-entering gesture
recognition mode)

Left Twist  wrist  left | This is a navigation gesture to
(counter-clockwise) move the cursor in the menu
from the vertical | hierarchy in the backward or
position. The initial | left direction from its current
position should be | position (if possible)
where the watch face
is relatively
perpendicular to the
ground.

Right Twist  wrist right | Navigation gesture to move the
(clockwise) from the | cursor forward or right from its
vertical position current position (if possible)

Swipe Sway arm left or right | Exit current level or go up one
while keeping the | level
watch face vertical to
the ground

Tap Sway arm up and | Make a selection. If the current
down while keeping | item is a sub menu then enter
the  watch  face | the sub menu. If the item is a
vertical to the ground | leaf  then  perform  the

corresponding action.
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The performance of a sequence of individual gestures will
allow the operator to traverse a relatively large choice set,
given an appropriate hierarchical organization. Additional
research and experimentation is required to estimate the
maximum number of choices that are feasible under such a
method.

Although not implemented in the current experimental
app, an audio feedback mechanism to announce /
acknowledge the traversed menu items, will be required in a
production implementation. (Vibration feedback for each
recognized gesture is implemented here.)

<contact list>
—{ "Busy now"

Call

<contact Iist>|

- % "Ok" H <contact Iist>|
3
= .
-] _% "Yes" H<contact I|st>|
3
“ .
_— % "No" H<contact I|st>|
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Song A

Play

Song B

Song C

Figure 3: Mock HMI Menu Hierarchy

C. Menu Hierarchy

In order to emulate a fairly typical automotive use
scenario, the menu hierarchy shown in Figure 3 was used for
the test application. There are three top level menu choices:
a) call a contact; b) send a canned text message to a contact;
and c) play a song from a list of available songs.

The mock HMI only contains short lists however longer
lists, such as a typical contact list, can be further organized, by
adding another layer of hierarchy, to enable faster traversal.
For example, an A-to-Z letter list can be visited first (instead
of moving to the full contact list). The selection of a letter will
then only list contacts whose names start with the selected
letter.
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Gesture recognition is essentially a process of identifying
patterns in noisy, sequential data. Firstly, sensor data is
inherently noisy and secondly limb movements vary slightly
each time a gesture is performed. Finite State Machines are
computationally efficient and thus are suitable for use in
resource constrained devices. However FSM are generally
used to detect deterministic patterns as opposed to stochastic
ones. Even so FSM have been applied towards gesture
recognition. Hong, et al for example constructed gesture
recognition FSM mainly through machine learning [4]. The
FSM approach presented here also uses machine learning but
as a complement to a technique for modeling FSM in a purely
functional form.

‘FUNCTIONAL’ STATE MACHINES
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This novel approach is termed a FnSM! or a functional
state machine where the states of the Finite State Machine are
function calls and event handling is mainly done with pattern
matching. In order to illustrate the idea of building an FnSM,
let’s consider a toy example. Suppose we want to recognize a
pattern where exactly 3 ‘a’s are followed by 1 ‘b’. The
graphical depiction of the corresponding FSM is given in
Figure 4.

The graphical FSM above can be re-expressed in an
appropriate functional programming language. The equivalent
FnSM in F# [5] (or ML / OCaml) code is given in Listing 1.

~nota__

¢
®

Figure 4: Example FSM for recognizing the “aaab” pattern

FnSM logic consists of pure, side-effect free functions and
thus is easier to understand. While not critical to FnSM
definition, strong support for pattern matching [6] greatly
simplifies the FnSM logic. At their core, functional languages
are inspired by mathematics and the roots of such languages
can be traced to Lambda Calculus developed by Alonzo
Church [7]. While equivalent logic can be expressed in other
- notably Object Oriented languages, the resulting code will
be more complex, likely will not be side-effect free, and can
obscure the FSM logic behind Object Oriented concepts such
as classes and interfaces.

Listing 1: F# code for FnSM to recognize the "aaab" pattern

type M<'s> = M of ('s -> M<'s>)
let rec start = function M |§arecur5|vely
'3’ o> M al defined type that

| -> M start is required to
package returned

and al = function functions

| *a’" -> M a2

and a2 = function If'hpUt matches

| 'a* -> M a3 ‘a’ in start state,
return the a1

and a3 = function function (wrapped

| 'b" -> M ““end in M type)

and “"end”” _ =M ““end

The main expressive power comes from “partial
application” activity in functional programming [8] which
allows for the conveyance of more state information in
function calls. If a function takes 2 arguments it can be called
with the first argument only. The result is a new function that



takes the 2" argument — this is partial application. For the
FnSM concept to work the last argument of each function
must be of the event type which is used in pattern matching.
Thus, a function that takes more than one argument acts as
template for states — rather than as a single state. Such a
function can be transitioned to with the all but the last
argument bound to some value. The bound values can be
involved in pattern matching or other calculations when the
partially applied function is called with the next event.

Partial application allows for the state-space to be
organized into “semantic function-states” that group similar
states together. This grouping allows one to better control any
state-space explosion. Further, the partially applied arguments
can be themselves FnSMs. This supports a hierarchical
organization and better modularization of the state-space. This
is useful for recognizing complex patterns.

By recursively transitioning to the same semantic
function-state (until some exit condition is met) data from
multiple events can be combined or aggregated. For example,
in the case of gesture recognition, a semantic function-state
can be used to track average linear acceleration over a number
of events before transitioning to a new function-state when the
average exceeds some threshold. Or, to go back to the start
state if does not exceed the threshold. See Listing 2 for an
illustration. The aggregation may be across data from different
sensors — which in effect is sensor fusion.

Listing 2: A partial FnSM for the Swipe gesture

let rec start = function
| {Snsr=LinearAcceleration; Z=z} when
abs z > MIN_Z_THRESHOLD
> side_to_side z 1 |> M
| _ > start |>M

Compute avg. Z-axis
linear acceleration over
some count number of

and side_to_side prev_z count = function
| {Snsr=LinearAcceleration; Z=z} when
count < COUNT_LIMIT
9

let curr_z = updateAvg (prev_z, count, z)
side_to_side curr_z (count + 1) |[> M

//COUNT_LIMIT exceeded,make the transition decision..

The overall structure of an FnSM — the semantic function-
states; pattern matching; event processing; en route
computation and sensor fusion etc. — is determined by a
human expert. However, within the human designed
scaffolding there is much room available for machine driven
learning and optimization.

Consider the partial FnSM in Listing 2. Embedded in the
event processing logic are ‘constant’ parameters such as
MIN_Z THRESHOLD, COUNT LIMIT, etc. The runtime
values of such parameters may be determined by the human

2 In the literature, gestures are classified as static (also sometimes called
postures) or dynamic; here the word ‘gesture’ refers to only dynamic
gestures unless otherwise stated.
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expert as best guess estimates, or they may be learned from
training data. A wide variety of algorithms and methods can
be applied towards learning parameter values — e.g. Genetic
Algorithms, Particle Swarm Optimization, etc.

Here, an implementation of Cultural Algorithms was used.
Firstly, CA are shown to work well with data intensive search
over large search spaces [9]. The presented gesture
recognition problem involves learning optimal values of about
40 parameters, a mix of reals and integers. Secondly, the
training process actually requires ‘running’ the FnSM which
is easily done if the learning algorithm is implemented in the
same language as the FnSM. The implementation is also
expected to be used in future CA research. Details of the
implementation are given in section VI, after a brief overview
of Cultural Algorithms in section V.

IV. GESTURE RECOGNITION REVIEW

Gesture recognition is not a new area of research so there
is plenty of literature already available. This section compares
and contrasts the proposed approach with the most commonly
used ones, especially with respect to use in constrained
devices.

Gesture recognition systems can be classified as vision-
based, motion-based or touch-based. This taxonomy is
reflected in the cited research. While the research problem
here is motion-based, much of the underlying theory of
gesture recognition is common across all approaches.

Chahal et al [4] describe the process of gesture recognition as
having four stages: Data Acquisition, Gesture Modeling,
Feature Extraction and Recognition. An analogous process
was followed to create the prototype gesture recognition
system presented here:

1. Data Acquisition: Raw sensor output was recorded
while performing individual gestures a number of
times.

Gesture Modeling: The recorded sensor output was
graphically analyzed to identify the high-level
patterns in sensor outputs.

Feature Extraction: The sensor output patterns were
studied to extract FSM states and rough transition
conditions.

Recognition: To determine precise transition
conditions, the extracted FSM are ‘trained’ with the
help of the training data and Cultural Algorithm
optimization. More details are provided later.

A cursory look at gesture recognition literature will show
that the theoretical foundations of dynamic > gesture
recognition rest mainly with the following approaches:

a) Finite State Machines [4].

b) Probabilistic Graphical Models - Markov Chains /
Hidden Markov Models (HMM) [10].

¢) Neural Networks (NN) [11] [12].



d) Dynamic Time Warping (DTW) [13].
e) Support Vector Machines (SVM) [14].

The above is by no means an exhaustive list but depicts
the methods most commonly applied towards dynamic
gesture recognition or similar problems. Zhou, et. al. list a
number of other techniques as well [15].

Of those listed above, HMM is one of the most commonly
used techniques for dynamic gesture recognition, and will be
used as the representative technique when evaluating and
contrasting the presented approach for the following reasons.

To begin, it is well-known that the running time of an FSM
is linear in the size of the input where competing approaches
—namely HMM, DTW, NN and SVM - are all quadratic or
higher’in terms of execution time. Viterbi (HMM) and DTW
are O(n”) dynamic programming algorithms. NN have O(n?)
worst case complexity for dense nets. From the perspective of
an app (written in a high level language) running on a
constrained device (e.g. a smartwatch), an FSM offers a clear
advantage.

While FSM are computationally efficient they cannot
casily handle stochastic patterns. A possible approach is to
train an FSM to learn to recognize stochastic patterns. As
such, Hong, et al [4] first used K-means clustering — without
the temporal component — to identify states for each gesture
and then manually sequence the states to obtain the FSM for
each gesture. The time spent in each state is then learned from
training data. Hong et. al. also note the computational
efficiency of FSM over HMM [4].

However Hong, et. al. only use output from a single sensor
(Kinect) and then only the X, y coordinates. It is not clear how
well this approach will work when used with a larger state
vector containing additional dimensions and sensors outputs.
Are the discovered states truly meaningful for gesture
recognition? More research is required to answer this
question.

The raw input data from sensors is usually preprocessed
and then used for gesture recognition. The preprocessing may
be relatively expensive such as the application of a filter (e.g.
Kalman, Particle, etc.) or feature extraction (e.g. Fourier
Transform). Aditya, et al [16] combined Kalman filter for
hand tracking with HMM to improve gesture recognition. Wu,
et al [14] used Fourier Transform for feature extraction with
SVM for gesture recognition. Akl and Valaee [17] used
temporal compression to remove noise with DTW based
gesture recognition. In the case of FnSM, by contrast, any
required processing can be performed when needed, on a
state-by-state basis. For example, in Listing 2, the average
linear acceleration is computed only when the FnSM is in a
particular state. On constrained devices this is a significant
saving. In addition, FnSM do not preclude preprocessing, if
that is the best option.

3 SVM complexity further depends on the kernel function used. The
popular SVM library “libsvm™ estimates complexity at O(n?).
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Discrete HMMs require quantization of real valued sensor
data. Also, the complexity of an HMM grows exponentially
with the number of variables. The transition probability table
of a three-variable HMM is exponentially larger than that of a
two-variable one. The current system uses 3 sensors - linear
acceleration, gravity and gyroscope - each with x, y and z axis
values — for a total of 9 variables. Even with coarse
quantization the transition probability table (one for each
gesture) will end up being very large. In such a scenario an
HMM would require feature extraction in order to reduce the
state space [18]. An FnSM is not affected in this way — at least
as used here. Firstly, FnSM do not use transition probability
tables but rather conditional logic that is individually tailored
to each semantic function-state and event. Secondly, events
from multiple sensors can be handled as independent events —
these do not have be fused into a single state label*. For
example, the Android serializes sensor events in a thread-safe
manner. FnSM handle each event individually depending on
the state. Pattern matching is used to discriminate between
events from different sensors. If the FnSM is tracking linear
acceleration for the swipe gesture, it can handle gyroscope
events in parallel. If it so happens that the wrist rotation rate
is higher than a given threshold, the FnSM can reset itself as
there should be little to no wrist rotation in swipe.

In this prototype an Android-based watch is used. An
Android device continuously generates sensor events.
Recognition of individual gestures in such a data stream is a
challenge. Segmentation [18] or framing [14] (sliding
windows) is required to carve a chunk of feature vectors that
can be used as input to HMM, DTW, NN or SVM. Note that
the use of sliding windows will increase the computation
burden considerably as the same data is processed multiple
times. An FnSM on the other hand can operate in a streaming
fashion. The incoming sensor events are piped to multiple
FnSM (one for each gesture) running in parallel. Each FnSM
can reset itself as soon as the input sequence is found to be
incompatible with the gesture being tracked. Whenever a
gesture is recognized, all FnSM are reset and gesture
recognition resumes after a very short pause.

V.

This section provides a brief overview of Cultural
Algorithms (CA) which is a class of data intensive
evolutionary computing algorithms inspired by models of
human cultural evolution. Unlike some other nature inspired
algorithms e.g., Particle Swarm Optimization, Ant Colony
Optimization, and Artificial Bee Colony etc., CA are not just
population based and support socially motivated learning via
a network of individuals and knowledge sources. CA were
first proposed by Reynolds in 1979 [19] and over the years
have been further developed and applied towards a wide
variety of problems, e.g. [20] [9] [21] [22].

CULTURAL ALGORITHMS REVIEW

The CA has two main components — the Population Space
and the Belief Space. The population of individuals are
usually networked in a Social Fabric. The problem solving

4 HMM require the fusing of sensor data to extract a single state label for
each discrete time step



experience of individuals from the Population Space are
ACCEPTED into the Belief Space as a variety of types of
knowledge and used to UPDATE the knowledge source
network there. Knowledge sources in the Belief Space can
also constitute a knowledge network so that updates to one
knowledge source can be transmitted to other knowledge
sources. Knowledge from the Belief Space is then used to
INFLUENCE future generations, as conditioned by the social
structure of the population.

()oouanyyur

accept()

Figure 5: Cultural Algorithms Architecture

The Cultural Algorithms optimization process uses a
variety of stochastic search strategies (Knowledge Sources)
concurrently and can vary the strategy mix to adapt to the
search landscape discovered thus far. Prior research indicates
that the CA performs well on problems with large search
spaces, and therefore should be well suited to the problem of
optimizing FnSM parameter values.

A mathematical view of CA (using notation from OCaml
/ F#) is given in and the corresponding graphical view is
shown in Figure 5. The notation key is provided at the end of
the listing. Not all of the details can be captured in the
mathematical definition so additional narrative is provide
next.

A CA instance (CAinst) is a structure that contains all of
the pieces required to (potentially) solve an optimization
problem. The data in the CAinst is used in an iterative process
to find the optimum solution (or until some termination
condition is met). The Population is a collection of Individuals
networked into a Social Fabric. An Individual’s parameter
values represent a point in the problem hyperspace. The
fitness is the value of this point wrt the Fitness function. The
KS wvalue of the Individual is the type of Knowledge
(indirectly the KnowledgeSource) under whose influence the
Individual is currently in. During initialization, a Knowledge
type is randomly assigned to the Individual. At the beginning
of each time step, the population fitness is re-evaluated and
stored for further processing. At each time step, the best
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performing Individuals are extracted from the Population
space using the AcceptanceFunction.

Listing 3: Cultural Algorithm Definition in F#/ OCaml Notation

type CA =
{

Population : Population
Network : Network
KnowlegeDistribution : KnowledgeDistribution
BeliefSpace : BeliefSpace
AcceptanceFunction : Acceptance
InfluenceFunction : Influence
UpdateFunction : Update

Fitness : Fitness

}

where:
Topology = the network topology type of the population e.g. square, ring, global,
etc.
Knowledge
Individual
Id

parm
Population

= Situational | Historical | Normative | Topgraphical | Domain
Network =

{Id:Id; Parms:Parm array; Fitness:float; KS:Knowledge}
int

numeric value such as int, float, long, etc.
Individual array

Population & Id - Individual array

Parm array - float

KnowledgeSource Tree

BeliefSpace - Population - Individual array
Influence BeliefSpace > Population - Population
Update = BeliefSpace > Individual array - BeliefSpace
KnowledgeDistribution = Population - Network -> Population

Fitness
BeliefSpace
Acceptance

KnowledgeSource =

Type
Accept
Influence

}

: Knowledge
: Individual array - Individual array * KnowledgeSource
: Individual - Individual

Notation key:

type = basic type e.g. int, string; a record; a union or cross product of types
record = { [field name : type]+ }, is a tuple with named fields

type * type = a cross product of two types e.g. int*int

type | type = union of two types (can be a value of either type)

type 2 type = function where LHS is the input and RHS is the output

type > type > type = a function that can be partially appied

type array = a 1-dimensional array of the corresponding type

These Individuals are then used by the UpdateFunction to
update the BeliefSpace. Here knowledge from the best
performing Individuals is extracted and stored in the
BeliefSpace. The KnowledgeSource type provides two
functions Accept and Influence. The Accept function takes an
Individual and returns an updated KnowledgeSource plus a
list of accepted Individuals. The BeliefSpace consists of
KnowledgeSources where different types of knowledge is
stored. After the BeliefSpace is updated, the stored knowledge
is used to modify the population individuals via the
InfluenceFunction. However, before the InfluenceFunction is
applied the existing population is modified using the
KnowledgeDistribution and Network functions to assign a
new Knowledge type to each individual in the population.
How the assignment of a Knowledge type to an individual
happens depends on the implementations given for the two
functions. The Influence function accepts an Individual and
returns an updated Individual. Here the Individual’s parameter
values are modified according to the type of
KnowledgeSource the individual gets associated with. The
CA framework defines different types of KnowledgeSource
such as Situational, History, Domain, Topographical and
Normative. Figure 9 is a sample run that shows the change in
KS distribution over time. for The reader is referred to other
CA papers for the detailed explanation of the various
KnowledgeSource types [19] [20] [9].



VI.  GESTURE RECOGNITION: IMPLEMENTATION,

OPTIMIZATION AND RESULTS

A gesture recognition app based on the FnSM concept was
implemented in order to recognize the gesture vocabulary
presented in section II. The implementation was done on a
Sony Smartwatch 3 Android smartwatch (Figure 6) using the
F# language and the Xamarin toolset for mobile app
development. The smartwatch app relays the detected
gestures to the companion app on the Android smartphone.
The recognized gesture events are then used to drive the mock
HMI menu structure presented in section I1.C.

The overall FnSM
organization is a
hierarchical one (Figure 7).
The Twist gesture is the
trigger to start recognizing
the other gestures (and stop

V'

recognizing the  Twist
gesture). The FnSM for the
other gestures run
concurrently. All  sensor

events are sent to all of the
concurrently runnmg - g igure 6. Sony Smartwatch 3 axis
FnSM. The first gesture jcnsation

that is recognized by any

of the FnSM is processed, and then all of the FnSM are reset
to the start state. If the Escape gesture is recognized, then the
high level FnSM switches back to recognizing the Twist
gesture (and stops recognizing other gestures).

One advantage of using a hierarchical approach is reduced
power consumption. In order to recognize the Twist gesture,
the FnSM only requires the Gyroscope sensor and therefore
the app can turn-off sensor input for all other sensors, such as
linear acceleration and gravity. The official documentation on
handling Android sensor events suggests that the application
should only register for sensors that it needs. Engaging sensor
hardware increases power consumption significantly [23].
After the Twist gesture is recognized, the app registers for
additional sensors required for the recognition of other
gestures; and it unregisters after the Escape gesture is
recognized. Note that for a typical drive the Twist gesture
recognition will be ‘on’ for almost the entire time, waiting for
the driver’s signal to switch to the menu-traversal gestures.

Further power consumption savings are possible by
reducing the sampling rate. The Android API allows an app to
set the time between successive sensor events. A coarser
sampling rate saves power by reducing computation but at the
cost of accuracy. We used the standard “GAME” rate of
approximately 20ms between events for all sensor input.

The hierarchical structure of the system allows the system
to start with a “coarse grained” resolution model, and switch
to higher resolution models when needed for other gestures.

The FnSM for each gesture was constructed by first
examining the raw sensor data plots (see Figure 8 for an
example). This examination revealed the basic structure of the
FnSM such as the function-states, transition conditions, extra
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computation requirements, and parameter values (e.g. limits,
thresholds, ranges, etc.).

Twist gesture recognized

Escape gesture
recognized

Composite State

FnSM execute concurrently

Figure 7: Hierarchical organization of the gesture recognition FSM

The FnSM were then constructed in F# code. The Best guess
values for the various parameters (limits, thresholds and
ranges) where used as the initial set.
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Combined Chart (1)

—L/\/_’ Rotation Vector wx T

E N

A

A

-1
-7300573

4992099427 9992023427 14992099427

Figure 8: Rotation Vector sensor data plot for repeated Twist
gestures

Sensor data was recorded for 10 repetitions of each gesture
of the composite state machine, namely Tap, Swipe, Left and
Right. These 4 data sets became the positive training
examples. Another data set called “Driving” was created by
recording sensor data from an emulated drive session. This
was used as a negative training set.

The Fitness function — a crucial component for the
training/optimization is now described. For each Individual in
the population, the CA Fitness function first converts an
Individual’s Parm array values to a configuration structure.
This structure parameterizes the gesture recognition FnSM.
The Fitness function then ‘runs’ the parameterized FnSM over
the corresponding training data sets and calculates a fitness
score for the Individual. As there are 5 datasets (4 positive and
1 negative) the Fitness function runs the FnSM 5 times, once
for each data set. The CA run finds the parameter set to
optimize the value of the F(p):



argmax, F(p) = W1 = [Z fit(p, g) — W2 * countD(p) | — DF (p)
g

Where:
p = parm array values from a population individual
g € G ={Left, Right, Tap, Swipe}, the action gestures

fit(p, g) = GC(g) - | count(p, g) - countNot (p, g) |
is the fitness function for a single gesture. This function’s value is

calculated by running the FnSM parameterized with p over the
training set for g. (The Ideal score is 0 when all of the 10 gesture
instances are recognized and none any other gestures are
recognized).

GC(g) = The # of gestures of type g in the training set for g (constant
10 for all gestures).

count(p, g) = The count of gesture of type g recognized when the p
parameterized FnSM is run over the training set for g. (The ideal
value is 10).

countNot(p,g) = The count of all gestures of type [G - {g}]
recognized when the p parameterized FnSM is run over the training
set for g. (The ideal value is zero).

countD(p) = The total count of any gesture in G recognized in the
negative (driving) training set with a p parameterized FnSM. (The
ideal score is zero). This term is used to reduce inadvertent
recognition of any gestures.

DF(p) = X jec,i =l fit(p, 1) — fit(p, )l

The sum of absolute differences between all individual fitness
scores. This term favors p values that result in even gesture
recognition performance across all gesture types in G. As an
example, for a hypothetical two-gesture system, it is better to have a
recognition score of (5, 5) than (10, 0) - assuming 10 iterations of
each gesture in the training set.

‘W1 and W2 are weighting factors to control the influence of some of
the terms.

In summary, the fitness function is constructed so that
a perfect score of 120 is achieved when all 10 instances of
a gesture type are recognized with the corresponding
training set and none of any other type are recognized (for
each of the action gesture types). See Figure 9 for a sample
CA run (0 is the generation after the first CA step).

The fitness score of the best guess parameter values
was calculated and then applied to the CA optimization
process. The results are shown below:

Step (before / after CA) Fitness Score (max
120)

Best guess parameter values -1.5

After CA optimization 92.5

The results show that the CA achieved a dramatic
incremental  improvements in  gesture  recognition
performance by selectively applying machine optimization.
Notice that initially exploratory knowledge source are
employed (normative and domain) to make a initial increment
in performance. After that normative knowledge continues to
drive the search while domain knowledge becomes less
important. A second bridging action takes place at step 3.
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After that normative knowledge begins to drop out as well and
the remainder of the search process falls on the shoulders of
history and situational knowledge. These knowledge sources
are exploitative knowledge sources that conduct a fine turning
operation. Such incremental learning is characteristic of
complex physical systems where certain functional building
blocks must be produced before other innovations can be
added. Previous work by Kinniard-Heether and Reynolds [24]
on training driver controllers.

In a complex system, the search process can generate
emergent building blocks through search guided by
domain knowledge. Once a building block is available it
can then be exploited by other knowledge sources until
they become less productive and control may return to
more exploratory knowledge sources. Thus, one sees
“knowledge swarms that are attracted to different
features during the search process. Here exploratory
knowledge sources take charge at first, and their influence
gradually is diminished as the exploitative knowledge
sources take over.
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Figure 9: Sample optimization run showing best fitness and change
in KS distribution over generations (pop. size = 1000)
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In the context of the three emerging trends of a)
mainstream wearable computing adoption; b) the increasing
use of gestures based automotive HMI controls; and c¢) new
APIs for automotive-smartphone integration the goal was to
answer the question of whether it’s viable use a wearable
device (specifically smartwatch) for gesture control of
automotive HMI.

CONCLUSIONS

There were a few challenges to consider a) limited
computational power and battery life of wearable devices; b)
limited space available to the driver (especially in a left-hand-
drive car wearing the smartwatch on the left wrist); and c) the
large number of possible HMI menu options in today’s
automotive HMI systems. In order to test the viability of this
approach the following steps were taken in the project:



e A simple gesture vocabulary to drive a hierarchical menu
based mock HMI was devised.

e A gesture recognition system as an app that runs on a
smartwatch was implemented.

e An innovative, functional programming based approach
to compactly model finite state machines for recognizing
complex and stochastic patterns was developed.

e  The Cultural Algorithm was inserted into the simulation
loop in order to optimize the human’s initial best guess
parameter values.

A 77% (92.5 / 120) recognition accuracy was achieved.
The training data was also used for validation.

The preliminary research results show that wearable
device gesture recognition is viable for automotive use but the
question cannot be fully answered until significant field
testing is performed, which is planned for the next phase.

In the future phases of this research the goal is to increase
the gesture recognition accuracy by re-examining the FnSM
structure especially in light of slack variables; use separate
training and validation sets; and use training data recorded in
a moving vehicle to better emulate the driver’s environment.

In addition, the Cultural Algorithm is a powerful technique
and can be applied towards learning the structure of the FnSM
— not just optimizing the tunable parameters (which was done
for in this research effort). Future plans are to investigate the
use of CA to generate better FnSM structures given the
training data and the optimization formulation.
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