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Optimal Defense and Control for Cyber-Physical Systems

Haifeng Niu and S. Jagannathan

Abstract—In this paper, we present a novel representation
for cyber-physical systems wherein the states of the cyber
system are incorporated into the physical system and vice
Next, by using this representation, optimal strategies are
derived for the defender and the attacker by using zero-sum
game formulation and iterative Q-learning is utilized to obtain
the Nash equilibrium. In addition, a Q-learning-based optimal
controller is revisited for the physical system with the presence
of uncertain dynamics resulting from the cyber system under
attacks. The benefit of the learning strategy is that the
approach can handle a variety of attacks provided they affect
packet losses and delays. Simulation results on the yaw-channel
control of the unmanned aerial vehicle (UAV), show that for
the cyber system, both the defender and the attacker gain their
largest payoff and for the physical system, the controller
maintains the system stable.

. INTRODUCTION

With the growth in management and networking, the
security in Cyber-physical systems (CPS) has received a lot
of attention. As physical and cyber capabilities are becoming
more and more intertwined, a framework which presents the
representation of the physical system, the cyber system
dynamics as well as their interrelationship is increasingly
needed.

In general, two types of representation for analyzing the
security of CPS have been found in the existing works: one
that describe the effect on the cyber systems under some
certain attacks [1-4] and the other study the influence brought
by the cyber-attacks on the physical system [5-8]. The former
works explores the behaviors of the malicious attackers and
the defenders, attempt to formulate the cyber state changes
under attacks, and offer appropriate strategies to bring the
cyber states back to normal condition. For instance, the
authors in [1] describe the Denial of Service (DoS) attacks by
a continuous-time Markov chain and use the state-space
method to compute the security metrics accurately. In [2] the
optimal cyber defense is derived by modeling the action-pairs
of the attacker and the defender as a zero-sum game. The
authors of [3] give the definition of the measure of
vulnerabilities in cyber-physical systems and introduce a
security framework consisting of attack detection as well as
mitigation strategies. The authors in [4] assess the cyber
security level by deriving the probabilities of the malicious
attacker and using those probabilities to create a transition
model through a game-theoretic approach.
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In contrast, others [5-8] concentrate on modeling the
physical system dynamics under attacks by modifying the
classic state-space description such that the attacks can be
included. For example, in [5] an additive term is embedded to
the system state with the purpose of simulating the false data
injection attack. Likewise, in [6], an extra term is added to
characterize the deception attack. Unlike [6], the authors in
[7] model the deception attackers with several objectives and
propose a way to incorporate the stealthy deception attacks in
both nonlinear and linear estimators. In [8], the authors
multiply the control input by a coefficient in order to describe
the influences brought by the DoS attacks.

Despite these developments, a significant effort is still
needed due to weaknesses [9] observed. First, these
representations can only characterize a certain type of attack
as each attack affects the dynamics of the physical or cyber
systems in various ways. It is worth to notice that the author
in [9] introduces a unified framework which can detect
different attacks however this work still has the following
two drawbacks. Second, it is a challenge to implement the
representation mentioned above if one assumes that the
system dynamics with the presence of attacks are known
while in practice the system dynamics become uncertain as
shown in this paper. At last, these representations tend to
neglect the interactions between the physical system
controller and the cyber defense policy.

In this paper, we propose a mathematical representation
for CPS, in which the activities of the cyber system have an
impact on the physical system states and vice versa. The
major contributions of this work include: 1) the proposal of a
novel representation for CPS that captures their
interrelationship; 2) the derivation of the optimal policies for
the defender as well as the attacker through Q-learning
approach; 3) the application of the optimal controller [10] for
the physical system with uncertain dynamics effected by the
cyber system; and 4) the demonstration of the proposed
scheme on a small scale UAV helicopter under attacks.

One of the benefits with the learning approach is that it
does not require the adversary model. As long as an attack
has been launched a number of times during the learning
phase, the system is able to learn the optimal defense strategy
against it in terms of the predefined cost function

II. PROPOSED REPRESENTATION FOR CPS
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Fig. 1 Proposed representation for CPS.

IEEE
computer
psouety



As depicted in Fig. 1, the proposed scheme consists two
representations: one for the cyber defense and the other for
the optimal controller.

A. Cyber system

First we describe the cyber system with the presence of
attacks by the following nonlinear discrete-time system

x (k+1) = £ (a(k),d(k),x,(k)), 1)
wherex, e R™ is the cyber system states where N, is the

dimension of the state vector for the cyber system. d,a R
are the actions taken by the defender and attacker the
respectively.

The cyber state x, consists of a set of performance metrics
such as throughput, latency, packet loss rate, and others. In
some cases where the defender is concerned about the
information security, a few other security metrics such as the
changes of IP addresses or the number of unsuccessful
verifications are included. Obviously, the cyber states are
subject to the defense and attack strategies and we use the
function f to describe such relationship.

In particular, we introduce a more concrete representation
for the cyber system dynamics as

N, N,
x (k+1)= 4, (K)F,(x,(k))D,(k) =Y. ad, [, (x.(k)) (2)
i=0 j=0
where 4 =[ao,al,...,aN:‘J is a row vector including all N,

possible attacks where a, € {0,1} denotes a type of attack

wherein g, =1implies that the i”

attack has been launched
anda, =0 otherwise. Furthermore, we let a, =1 if there is
no attack currently being launched. The defense vector D,
can be explained in the same manner. Finally, we let
F= [foo,fm,...,fwd;...;fNuo,fNul,...,fNuNAJ be a matrix of

functions with each element f, :R"* — R"* describing

the effect on the cyber states brought by the ongoing defense
/ attack pair(a;,d;). We assume that when two or more
defense actions (and attacks) are launched simultaneously,
the effect of each defense action (and attack) is independent.

As shown in Fig. 1, we use the following nonlinear
equation to describe the output of the cyber system

(k) = h(x,(k),x, (k) , 3)
where y, € R is the cyber system output and x, e R"" is the
physical system state where N, is the dimension of the

physical state vector. The output is a quantized metric that is
used to indicate the health level of the cyber system. The
function / is selected such that it should utilize the observed
states to generate a precise prediction of the ongoing and
potential attacks. One example of function # is written as

y. (k) = x; ()A x, (k) +x, (l)A x, (k) ,
where y, e R ; A, € R¥** and A, e RV

weighting coefficient matrices of each state. This quadratic
form maps the physical and cyber states vector onto a scalar

“4)

stand for the
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that offers an approximate indication of the system health
level.

One can evaluate the health level or even the type of
attacks by analyzing the physical states as well as the cyber
system state. It is important to introduce the cyber output
because the states need to be interpreted in order to help the
administrator make the correct defense decisions. Note that
the physical system state is also included in the cyber system
such that an accurate and comprehensive estimation of the
system health level can be obtained.

B. Physical system

As presented in the right block of Fig. 1, we describe the
physical system dynamics by a linear discrete system with
the presence of disturbances:

x(k+1) = ACx)x(k) + Bx, u(k) + D(x, w(k), ' (k) = Cx(k), ~ (5)
where is the control input, w the disturbance input, y the
output, and A4,B,C and D denote the system matrices with

appropriate dimensions.

It is important to emphasize that unlike the traditional
linear discrete system, this system dynamics are functions of
the cyber state x, . That is to say, the cyber system state will

also change the physical system dynamics. For example, a
large network-induced packet loss or delay could degrade the
system performance and even leads to instability.

Here, the cyber states, which are updated on the basis of
the defense/attack decisions, change the physical system
dynamics. Subsequently, it is necessary to adjust the control
input in order to drive the physical system states back to the
desired zone. The changes in both physical and cyber states,
in turn influence the cyber output and further determine the
defense/attack decisions. A summary of this interrelationship
between the physical and the cyber systems is shown in Fig.
2.

Physical System

’——ﬂ Physical System Dynamics A,B...
v

Physical Stats x,

v

Control input u

Cyber System

Cyber State x,

‘ Cyber Output y. ‘4——‘

Attack/Defense Decision ‘ ‘

Fig. 2 Interrelationship between the physical and the cyber system.

III. OPTIMAL ATTACK/DEFENSE POLICY

In this section, we begin with modeling the interactions
between the attacker and the defender with a two-player zero-
sum game. After giving the definition of the instant payoff
and the discounted payoff function, we proceed with
introducing a lemma which gives the solution of the optimal
policy. Next, we give the definition of the Q-function and
show in Theorem 1 that the Q-function eventually converges
to the game value by using the Minimax-Q algorithm [11].
Consequently, the optimal strategies that give the defender
and the attacker their largest discounted payoff can also be
obtained.

Consider the cyber system described by (2) and output
function in the form of (4). Then we can model the system as
a Markov decision process where the cyber state at the next
sampling instant, x,_(k +1), is determined by the cyber state at



the current sampling instant, x (k), together with the
attack/defense action pair (4, (k),D,(k)). The attacker and

the defender update their defense strategies based on the
health level indicated by y,, which is computed based on the
observed state vector x, and x, .

Let Y denotes the set of all admissible values of y,, then
it is impractical to derive the optimal strategy for every y, as
Y contain infinity elements. Thus, we propose to divide Y
into a number of subsets and the objective is to derive the
optimal strategies for every subset rather than for every
element. Each subset of Y corresponds to one level of health
status, as illustrated in Fig. 3. The defender makes the
decision on defending strategies based on the specific subset
that y, is in. Obviously, the more number of subsets Y is
divided into, the more precise the model becomes. But more
computation is involved as more subset of optimal strategies
require to be computed.

Failed Secure

Fig. 3 Each subset corresponds to a heath level.

Healthier
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4

Y,
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Let #(A,.(k),D,(k),Y,(k)) denotes the instant payoff (cost
or reward) at time instantk in subset Y (k) for the action
pair (A, (k),D,(k)). Let r, and r,be the instant payoff of the
defender and the attack respectively. With the assumption of
zero-sum game, we can have the relationship
r(4,(k), D, (k),Y,(k)) = r,(4,(k), D, (k),Y,(k))
=1, (4,(k), D, (k),Y,(k))
Furthermore, define the instant reward as
r(4,(k), D.(k), Y,(k)) = x] (k) x, (k) + x, (F)Ax,, (k)
+&,D, (k)= &,A4." (k)

which is a function of the cost of the physical state, cyber
state, attack, and defense. Define the defense cost is as

£,D,(i) with & =[&,&,,0&,y, | and &, € R’ being

the corresponding cost for launching defensed,. Likewise,

(6)

b}

& = [fﬂ,, 36anrrSy, Nﬂ] is the row vector describing the cost

for launching attacks. Next, we only show the derivation of
the optimal attack strategy since the optimal defense
strategies can be derived in the same fashion.

After defining the instant payoff, now we are interested in
the discounted payoff over multiple stages. Let

E, ={D.(1),D,(2),..D,(k)...} and
E,={4.(),4.(2),..4.(k)...| stand for the policies for the
defense and attack respectively, where A (k)and D, (k) are

the actions at time instantk. A policy is a sequence of
decisions over multiple stages that mathematically describes
the player’s plan for the game. Now define the expectation of
the discounted cost function V" within each subset Y, as
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VELE, ) =Y [BEC®IE S er) ], ®

where f €[0,1) denotes the discount factor. Subsequently,
the attacker aims at deriving the optimal policy =, within
each subset ¥ such that the expected discounted payoff " can

be maximized. Likewise, the objective of the defender is to
derive the correct defense policy =, within each Y, in order

solve
The

to minimize V. In other words, we need to

and =, =argmaxV,(E')) .
E'D

=, =argmax/V, (E'))

following lemma 1 is introduced before we proceed to derive
the optimal policies.

Lemma 1. [12] The policy (EA*,ED*) is optimal if the
following fixed-point Bellman equation is satisfied
V(E, B, ,Y,)=minmax{r(4,,D,,Y,)

' —_ k= ok ny 9
B YA DWE, Y O
>

where p is the transition probability from current state ¥, to
the next state ¥;' upon the action pair (4,,D, ).

Now we use iterative Q-learning technique to search for
the game value V(2 ,,Z,",Y,) in (9). Define the Q-function
for each subset Y, as

Q(A(,-’Dcyy;) = ’; +ﬂ}§,p(x ‘ KyAc’Dc)V(‘:‘A":‘D’Yi ) (10)

where 7, is short for r(4,,D,,Y;). Accordingly, define the

optimal action dependent value function Q° of the game as

Q' (4, DY) =1+ B2, p( 1Y, A DI EHE,) ) ()
Yey

From (9) to (11), it can be concluded that if the action
pair policy (Z,,E,)is optimal, the optimal Q-function

Q'(4,,D,,Y) is then equal to the game value
V(E,,Z,.Y). Thatis to say,
VE, B, ) =minmaxQ'(4,0.%) =0 (47,0 7). (12)

The Minimax-Q algorithm proposed in [11] is used to
derive O"(4,,D,,Y,) since it provides strong convergence
guarantees according to the following theorem.

Theorem 1. Let the Q-function(Q(4,,D,,Y;)and the
optimal action dependent value function Q°(4,,D,,Y;)be
defined as in (10) and (11) respectively. Then Q(4,,D.,Y;)
converges to the optimal value Q" (4,, D,,Y,) after an infinite
number of iterations with the following update law given by

0.,(A4.D.X)=(1-a() Q4. DY) +a(i)(r, + #0,(X)) (13)
where 0(i)e R"is the that
Da@)=w and) " a’(i)<w, and ©,(Y,)is called the

state value function [11] calculated by

learning rate satisfies



G)a(Yi):ng»nz/icQ(At"Dc’Yi)”a(Ac’Yi)’ (14)

where 77,(A,,Y;) denotes the probability for the attacker to
take attack action 4, given y, €Y,. The proof of Theorem 1
is similar to the one shown in [11]. Note that In practice,

however, Q* is considered as converged when |Q*(k+1)-
Q*(k)|| is less than a threshold.

IV. OPTIMAL CONTROLLER DESIGN

In this section, we give the optimal control input and
show that the system can be stabilized only if the cyber states
satisfy certain criterion. The derivation of the system
dynamics and the Q-function update law are taken from the
paper [10]. Consider the linear continuous system described
as

%(t)=Ax(t)+y(t)Bu(t—7(1)); y(1)=Cx(t)s,  (15)
where 7 is the delay and ]/(t) is the nxn identity matrix if
the control input is received at timez and null matrix if the
control input is lost. Let 7, be the sampling time, the system
can be discretized as

b
_ k . _
X =A%, +27k431 u_;; Y, =0Cx,,

i=0

(16)

where bis the maximum number of delayed control input

during the sampling interval; x, =x(kT); 4, =e";

B = [, dsBA(T 1))

0 for

i=12,..,b,

Bik _ JT;{I:H)T
5(x)=1if x>0 and §(x)=0 if x<0;and y,_, =1if u,_,

is received during [K7,,(k+1)T,) and y, , =0 otherwise. Let

T geB . 5(T +t, -1t ) . 5(1‘? - iT) 5

the  augmented  state z, be  defined as:
then the system dynamics become (17)

Zin = Az + By, v =C.z 17)
where (“0”denotes the null vector with appropriate
dimension)

4, 7B VB, 7By
A, =0 o |.B,=|1, |
0 diag{l,..I } 0 0
C. = diag{C,1,1,,..,1, ;
vi=[yl ul, ul, w, w1 wherel, I are mxmand

I x [ identity matrices. The cost function can be represented
asJ, = E(Zm kz;Szzm +u;Rzum) where R_=R/band
T,y m=

S. =diag{S,R/b,..,R/b}. The cost function is given as
J,=E (szszk) where P, > 0. Define the Q-function as
.y

0z, u) = E(r(zou)+ ) = [ E()[ 2 ] 1)
"Ru

where r(z,,u,)=z.S.z, +u’R.u, . Therefore E(Hk) can
.y

be expressed as
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S+E(A4LR,A)  E(4R.B,)
E(BiR.4,) R+E(BR.B,)|

=

{Hf H
(19)

Therefore, the optimal control gain can be represented in
— — 1 —
terms of H,as K, = (H ,‘C’“) H,". Furthermore, the Q-

zk

function can be written asQ(z,,u,)=w H,w, =hw,,
h, =vec(H,),w, =[z! ,u" (z,)]" ;and

— _ /.2 2 2N
Wy = (Wipseees Wy Wiy s Wiy seees Wiy Wy s Wi, ) 18 the  Kronecker

where

product quadratic polynomial basis vector. Define the
residual ase, ., =J . ~J, +7(z.,u,), then dynamics of the

residue becomes

(20)
Now define the auxiliary residual error vector as

By =Ty +h[Q whereQ, | = [AVVk—] AWHﬂ-] and

2. _ _
e = (Zp,u) + B AW, where AW, =W, =W, .

7(Z 55Uy 5)

h! Q. Target matrix H, is

L =lrz_,u._,) r(Zk—lfHuk—l—j)] .

Then we have &, , =T, +
updated according to
-1
=0, (QQ,) (aF],-T}). 1)
At last, we give the sufficient condition for the cyber state

that need to satisfy such that the system is stochastically
stable. The linear time-varying discrete-time system can be

represented  as =A4,z,[10]. Subsequently, the

expectation of A4, can be written as
E(As _7/{3(;{[() E(kaszf)
0

h

k+1

Zk+l

Diag{l,.1I,..1,}

V. AN ILLUSTRATIVE EXAMPLE

The proposed scheme is verified on a small-scale UAV
helicopter with a remote controller. The objective of the
attacker is to maximize the payoff, which functions of the
network packet loss and delay, such that the physical yaw
channel becomes unstable.

Wireless Network

o :' } | Actuator (Motor)
efense
Remote | Delayand |
UAV packet Loss | UAV Yaw-channel
Attack Controller | |
I_ — _D___U_ 1 Sensor (Gyro)

Fig. 4 Diagram of UAV with remote controller.

A. Physical System Representation
An accurate model of the yaw-channel is given in [13] as
X=Ax+Bu; y=Cx,
where x =[x, x,,x;,x, ]T are the first to the fourth derivatives
of the yaw rotation rate; y is the yaw rotation rate which can
be measured by sensors like gyros; and



—2.66 2194 383  6.05 0.63 15.32
-31.03 -3.52 17.10 -3.09 622 | , |-1032
| 611 —696 -976 -9638| | -2920 C = 073 |
1717 2573 37.18 -33.08 ~14.64 —4.73

The sampling time is 100ms with the total simulation time of
200 steps.

B. Cyber System Representation

As illustrated in Fig. 4, we suppose the UAV is controlled
by a base station via a wireless network that is vulnerable to
various cyber-attacks. The time delays r and packet losses x

. T
are chosen as the cyber state vector, ie., x =[x,7] .

Moreover, smurf attack and slow read attack are selected in
the simulation. Smurf attack is a type of denial of service
(DoS) attack which exploits the unprotected networks by
generating significant traffic load. Slow read attack aims to
congest the servers’ connection pool by sending multiple
legitimate application-layer requests and reading the response
slowly. Based on their characteristics, we model the packet
loss rate and delay to increase linearly under slow read
attacks and exponentially under smurf attacks. Moreover, let
d, andd, denote the corresponding actions that are able to
defend the smurf attack and the slow read attack,
respectively. Similarly, it is assumed that when the correct
defense strategy is launched, the packet losses and the
network delay decrease linearly.

The output of the cyber states is defined as a quadratic
function. Next, we divide the output Y into totally four
subsets Y =Y, UY,UY,UY, whereY,, ¥, Y,, ¥, correspond
to the “healthy”, “acceptable”, “critical”, and “compromised”
health level respectively. Furthermore, we let the instant

reward function be in the form of (7) with &, = [O,Q’l,fd,z]
and¢&, = [0, fu,l,favzj . That is to say, the costs for “no

defenses”, “launching defensed,”, and “launching defense
are 0, &, ,and &, ,, respectively.

Note that we make the subset Y, be the subset with
“healthy” condition by configuring the cost of launching the
defense very close to the upper bound of Y. Consequently,
once the cyber output is in subset ¥, the defender is unlikely

to launch the defense because the cost is larger than the
payoff. On the other hand, subset} is made as the

“acceptable” subset in which the defender tends to launch the
defense in order to avoid the cyber output going into subset
Y,, the “critical” subset. Similarly, if the cyber output falls

into subset Y,, there is a high chance that the defender needs
to take actions to avoid the output going intoY;, the
“compromised” subset.

C. Simulation Results

Two scenarios have been considered in the simulation,
after deriving the optimal defense/attack policies. In the first
scenario, the defender launches the defense policy according
to the derived optimal probability distribution. In the second
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scenario, by contrast, the defender chooses the defense
strategies at random.

1) Results of the optimal attack/defense policies derivation
After about 1800 iterations, the Q-values for all actions

converge to some fixed values. The percentages of the Q-
values for each action pair are listed in TABLE 1.

TABLE I. PERCENTAGES OF EACH ACTION IN ALL SUBSET

Defender Attacker
do di d a al a
Yo | 0.71 | 0.09 | 0.20 | 0.02 | 0.58 | 0.34
Y. | 0.11 | 0.25 | 0.64 | 0.53 | 0.08 | 0.39
Y2 | 0.04 | 037 | 0.59 | 0.69 | 0.13 | 0.18
Ys; | 0.03 | 040 | 0.57 | 0.71 | 0.13 | 0.16

One can conclude from TABLE I that the attacker shall
load a, more frequently when y_ € ¥, because it increases the
packet losses and delay more quickly. On the other hand, the
defender shall load no action, which verifies our earlier
analysis where Y is configured as the “acceptable” subset.

With the increase of y, , the attacker shall slow-down in order

to avoid too much exposure to the defender, as is verified by
the Q-value distributions in ¥, in TABLE I. Correspondingly,

the defender begins launching the defense more frequently in
this acceptable subset. Once the output y, falls into subsetY,,

the attacker shall halt attacking actions and wait for the
system recover to subset ¥ where he/she gains the greatest

expected payoff. Note that we design the cyber system as a
secure one by setting the recovery speed when appropriate
defense is launched much faster than the degrading speed
when the system is under attacks. Consequently, the attacker
obtains the largest payoff only when the output y, is degraded

enough yet not being detected by the defender.
2) Scenario I: the defender loads the optimal policy

The proposed scheme and analysis has been verified by
the following scenario. We begin with the cyber states
initialized to zero and stop the simulation after 1000
iterations. During the iteration the defender and the attacker
determine which subset the output y, is in and take actions

based on the probabilities given by TABLE L.
Fig. 5 shows the evolution of the output y_, from which

one can conclude that the cyber outputy, stays in the

“acceptable” subset for the most of times, goes to the
“critical” subset occasionally, and never falls into the
“compromised” subset. This verifies that the attacker obtains
the largest payoff by choosing the optimal policies
meanwhile the defender keeps the health condition out of the
“critical” level.



14000
—,
12000 Y, upper bound |
10000 Y, upper bound o 200\
3 g \
2 8000 ——Y,, upper bound g \
g | ‘ ‘ | 5 10f |
S 6000 £ A
) E i\§S§*____________________
>
4000 B AL
v
2000 v
K 0 “% S00 800 1000 ° Time (s'r'econd) °
Iterations

Fig. 5 Evolution of the output. Fig. 6 Regulation errors.

Fig. 6 shows the simulation results of the regulation errors
for the physical plant. Since the packet losses and delay are
small enough, one can see that the regulation errors converge
to zero therefore the closed-loop system is stable.

3) Scenario II: the defender selects a random policy

In this scenario, the defense action is chosen at random.
Consequently, in some cases the attacker manages to
compromise the system and the cyber states exceeds the limit
as verified in Fig. 7 in which the network delay is plotted.
Because of the large delay and packet loss, the system
becomes unstable. Fig. 8 shows the regulation errors in
scenario II in which the regulation errors do not converge.

2000,
3000
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2000

Al

1000

Delay (ms)
Regulation Error

“VWU”

8 10

0
0 2 4 6 8
Time (second)

0 2 4 6
Time (second)

Fig. 7 Delay in Case IL Fig. 8 Regulation errors in Case II.

Therefore, this simulation result verifies that the decisions
made on the cyber system influence the stability of the
physical system. The physical system can be stabilized when
the cyber defender applies the optimal defense policy. If the
cyber states become abnormal such that the packet losses and
the delay are large enough, actions needs to be taken on the
cyber side to bring the states back to normal otherwise the
physical system has to be halted to avoid further damages.

VI. CONCLUSIONS AND FUTURE WORK

This paper proposed a comprehensive representation
which is capable of capturing the interrelationship between
the physical and cyber systems. As a result, the states in the
cyber system affect the controller design for the physical
systems and vice versa. Making use of this representation, the
optimal defense and attack policies are derived which yield
the largest payoff. An optimal controller is revisited to
stabilize the physical plant with the presence of uncertainties
brought by the cyber stats. Since the proposed scheme is in a
general form, it can be applied in a variety of industrial
applications including autonomous systems. As future work,
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we consider analyzing the impact of various attacks on the
network performance.
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