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Abstract—In recent years there has been growing interest
in prediction models for non-conventional energy sources and
demand in electrical systems because of the increasing use of
renewable energy sources. In this paper the proposed prediction
interval models are validated using local load data from a real-
life microgrid in Huatacondo, Chile. The microgrid operates
with an energy management system (EMS), which dispatches
distributed generators based on unit commitment, minimizing
generation costs. The relevant inputs for the EMS are predictions
of the consumption and the available amount of renewable
resources. In this paper a linear and a Takagi-Sugeno fuzzy
model are proposed and they are used to construct a prediction
interval that includes a representation of the uncertainties. The
model parameters are identified such that they minimize a
multi-objective cost function that not only includes the error
but also the width of the prediction interval and its coverage
probability. The resulting parameter identification is a complex
non-convex problem. An Improved Teaching Learning Based
Optimization (ITLBO) algorithm is proposed in order to solve
the problem. This method is compared with a Particle Swarm
Optimization procedure for a benchmark problem, showing that
both algorithms find similar results. ITLBO is used to identify
the load prediction models. These models are used to predict load
up to two days ahead. Both models succeed in accomplishing the
design objectives.

I. INTRODUCTION

The rapidly increasing use of microgrids with high penetra-

tion of renewable non-conventional energy sources (RNCES)

as an alternative for electrification has generated a growing

interest in recent years in the development of forecasting

strategies that are able to determine i) the energy that RNCES

are able to provide, and ii) the demand which the microgrids

must reach.

Energy microgrids are defined as low voltage power systems

with an approximate nominal rate of hundreds of kilowatts,

composed mainly of local loads, RNCES, and energy storage

systems (ESS) [1]. The microgrids contribute to solve the

problem of the energy industry that is to deal with depletion of

conventional energy resources and the increased demand for

electricity. In addition, the use of the RNCES contributes to a

reduction of pollution levels and emissions of carbon dioxide,

which are affecting the environment [2], [3].

The design of control systems for the efficient operation of

the microgrid is necessary to guarantee a reliable, safe and

economical operation. In [4] control strategies for microgrids

are classified on three levels. The primary and secondary

levels are associated with the efficient operation, and the

tertiary level refers to the coordinated operation of the mi-

crogrid with the main grid. The secondary control is named

Energy Management System (EMS) and is responsible for

the reliability, security and economic operation. This task

becomes particularly challenging in isolated microgrids due to

the uncertainty in RNCES and highly variable loads. Therefore

the coordination of energy between sources and consumers

becomes a critical issue [5].

For the operation of the EMS it is necessary to generate

models that anticipate the behavior within a time window of

the expected value of both the demand and the energy available

from the RNCES. These prediction models should include

the uncertainty associated with RNCES and the demand. The

RNCES uncertainty is mainly due to the changing weather

conditions, and the uncertainty of demand is due to small

changes in the demand of individual users. Because of this,

the capability of a microgrid depends on the accuracy of

the predictions of both the available energy and demand.

Consequently, new techniques are necessary for the design of

robust prediction models.

In recent years, computational intelligence methods, such

as Artificial Neural Networks (ANN) and Fuzzy Logic Sys-

tems (FLS), proved to be beneficial in issues that involved

prediction modeling for RNCES and demand [6], [7], because

they are universal approximators of non-linear systems. In [8],

the authors proposed a method for short term wind power

prediction of a wind power plant by training neural networks

based on historical data of wind speed and wind direction.

In [9], a neuro-fuzzy network is presented for modeling

the wind farm and for forecasting the wind power. In the

aforementioned models the uncertainty has not been included,

only the expected value of the available energy is obtained.

In prediction interval (PI) models, the intervals in which

future observations will fall with a certain probability are

predicted. This model type is proposed as an alternative to

ensure the accuracy of the forecast of the available energy

and demand. These prediction interval models provided both

the expected resources value and the measure of variability,

and they are used as inputs for controlling the operation

of the microgrid, for instance in order to apply strategies

of robust control. In [10] and [11] the authors proposed
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two different alternatives based on fuzzy systems to derive

prediction interval models. In [10] a method based on the

covariance of the estimation error was proposed to determine

the upper and lower bounds that define the interval, while

in [11] an optimization procedure was used to define the

boundaries of the interval. In [12], the authors presented a

forecasting system including a representation of the uncertain-

ties associated with renewable resources and loads from a real

microgrid in Huatacondo, Chile, based on covariance methods.

In the current paper, the contribution is the use of other fuzzy

models and the application of the ITLBO algorithm in order

to identify the parameters of the model.

In [13] and [14], different methods are presented to quantify

uncertainties associated with forecasting, using a ANN. The

results show that the proposed methods can construct PIs by

the probabilistic concept of confidence interval for load and

RNCES forecasts in a short time, first the model is obtained

and afterwards the prediction intervals are created.

Additionally, evolutionary algorithms are good options for

optimization problems with multiple objective, non-linear

objective, non-differentiable functions or in general non-

deterministic polynomial-time hard (NP-hard) optimization

problems. In [15], [16] and [17] different heuristic methods are

presented such as Genetic Algorithms (GA), Particle Swarm

Optimization (PSO), Ant Colony Optimization (ACO), for

the constructions of the load and RNCES prediction models.

In [18], the Teaching Learning Based Optimization (TLBO)

algorithm is proposed. An advantage of this algorithm is that

it does not depend on problem specific tuning parameters,

only on the common control parameters, population size

and number of generations. In [19] a number of technical

adjustments to the classic algorithm are proposed, resulting in

the Improved Teaching Learning Based (ITLBO). Furthermore

it is shown that this algorithm can perform better than the

common well established algorithms like PSO and GA on a

range of standard unconstrained benchmark functions.

In this paper a methodology is presented for interval mod-

eling of the demand of a microgrid based on linear and fuzzy

models. Moreover, since the resulting problem is NP-hard, the

model parameters are found by using the ITLBO algorithm

in order to minimize a cost function. In the methodology, the

normalized width of the interval as well as the coverage proba-

bility are used as metrics for the training of the interval model.

In this way, it is possible to guarantee the desired coverage

probability with the minimum interval width. Furthermore, the

center of the interval, considered as the expected value, is

computed in such a way that the error with respect to the

measured value is also minimized.

The main contribution of this work is the novel method

to construct prediction intervals. New model structures are

proposed and the model parameters are found by minimizing

a multi-objective cost function with heuristic optimization.

The prediction intervals provide a framework to represent

uncertainty and they are therefore suitable for the load forecast

in microgrids.

The rest of this paper is organized as follows: Section II

presents the structures of the linear and fuzzy models and the

cost function that is minimized by optimizing the parameters

of the models. Section III provides a description of the ITLBO

algorithm, an explanation of the PSO algorithm with which

ITLBO is compared and the application to a benchmark

problem of both algorithms. In Section IV the results of the

load prediction with the proposed models are presented. The

last section is devoted to conclusions and future studies.

II. PREDICTION USING INTERVAL MODELING

A. Prediction interval based on linear model

A linear model is used considering that it is a model with

few parameters to identify. The following prediction interval

based linear model is defined, like proposed in [20] :

y(x) =

p∑
i=1

gixi + g0 +

p∑
i=1

si|xi|+ s0 (1)

y(x) =

p∑
i=1

gixi + g0 −

p∑
i=1

si|xi| − s0 (2)

where y is the upper-bound of the interval, y is the lower-

bound, and x = [x1, ..., xp] the inputs. The parameters of the

interval model g = [g0, g1...gp] and s = [s0, s1, ..., sp] need to

be identified.

In the PI based fuzzy model that is to be proposed in the next

section this linear model is used in the consequences.

B. Prediction interval based on TS fuzzy model

A Takagi-Sugeno (TS) fuzzy model is a model that com-

bines different local models and is given in the form of fuzzy

rules. Thus, each rule is presented as:

Rj : if x1 is Fj,1 and...and xp is Fj,p, then (3)

yj =

p∑
i=1

gi,jxi + g0,j (4)

Where p is the number of inputs. The rules (j = 1, 2, ..., R)

are activated according to normalized activation degree βj(x):

y(x) = fTS(x) =

R∑
j=1

βj(x)yj(x) (5)

βj(x) =
Aj(x)

R∑
j=1

Aj(x)

(6)

Aj(x) ∈ [0, 1] is the activation degree of rule j.

In this research Gaussian membership functions (Fj,i) are

used. The activation degree per rule is given by:

Aj(x) =

p∏
i=1

Fj,i(xi) =

p∏
i=1

e−0.5(ai,j(xi−bi,j))
2

(7)

where ai,j and bi,j are respectively the inverse of the standard

deviation and the centers of the Gaussian curves per rule per
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input. The prediction interval based on fuzzy modeling is given

by:

y(x) =
R∑

j=1

βj(x)yj(x) y(x) =
R∑

j=1

βj(x)yj(x) (8)

with

yj(x) =

p∑
i=1

gi,jxi + g0,j +

p∑
i=1

si,j | xi | +s0,j (9)

yj(x) =

p∑
i=1

gi,jxi + g0,j −

p∑
i=1

si,j | xi | −s0,j (10)

The parameters of the fuzzy prediction interval model

that should be identified are aj = [aj,1, ..., aj,p],
bj = [bj,1, ..., bj,p], gj = [gj,0, gj,1, ..., gj,p] and sj =
[sj,0, sj,1, ..., sj,p] for j = 1, .., R.

C. Problem statement

Let us assume that the state x(k) and the output y∗(k) of the

system are available (k = 1, ..., N ). The identification problem

of the model is designed to minimize a multi-objective cost

function considering the following three components: the

Mean Squared Error (MSE), the Prediction Interval Normal-

ized Averaged Width (PINAW) and the Prediction Interval

Coverage Probability (PICP).

The MSE is the mean squared error between the actual

output y∗(k) and the predicted mean signal of upper- and

lower-bound of the prediction interval:

MSE =
1

N

N∑
k=1

(
y∗(k)−

1

2

(
y(k) + y(k)

))2

(11)

The PINAW is used to minimize the width of the prediction

interval and it is mathematically defined as follows:

PINAW =
1

N ·Ro

N∑
k=1

(
y(k)− y(k)

)
(12)

where Ro is the range of the output:

Ro = max
k

(y∗(k))−min
k

(y∗(k))

The PICP gives the ratio of points that fall within the

prediction interval:

PICP =
1

N

N∑
k=1

δ(k) (13)

with δ(k) =

{
1 if y(k) ≤ y∗(k) ≤ y(k)

0 otherwise

The multi-objective cost function is defined as follows:

V = β1 ·MSE + β2 · PINAW + β3 · (η(PICP− PICPD))
2

(14)

where PICPD is the desired PICP. This term steers the

PICP towards a chosen value, η regulates the size of the

allowed PICP error and β1, β2 and β3 are weighing factors.

The proposed cost function is non-linear, furthermore the

prediction interval models are not strictly linear. In the next

section population based optimization methods PSO and

ITLBO are used to minimize (14).

III. IMPROVED TEACHING LEARNING BASED ALGORITHM

A. Algorithm description

The Teaching Learning Based Optimization algorithm is

a procedure in which the individual solutions that form the

population are called “learners”. The best learner is always

chosen as a teacher and more teachers can be added in the

population. The teachers try to increase the knowledge of

their class during the “teaching phase”. The students are also

allowed to communicate with each other in order to improve

their knowledge. In the “learning phase” the emphasis is put

on student-student interaction but the teacher participates as

well, in general this algorithm minimizes cost function f(X).
The elements of the input are called “subjects” i = 1, 2, ...p,

i.e. X = [X1, ..., Xp].
Step 1: Choose optimization parameters

Choose the number of learners (Nl) and the number of

teachers (Nt) .

Step 2: Initialize population

The population (i.e. learners k = 1, 2, ..., Nl), is randomly

initialized within a chosen interval. Evaluate the fitness f(Xk)
of the initial population.

Step 3: Teacher selection

Select the teachers out of the students (XT1
, XT2

, ..., XTNt
).

The best student is always a teacher. The other teachers are

randomly selected out of the remaining students and sorted

based on their fitness (i.e. teacher XTNt
is always lowest in

rank).

Step 4: Assign learners to teachers

Each learner is assigned to one teacher, the level of the student

is always lower than the level of his teacher and higher than

the level of the teacher of the group next in rank with lower

results. i.e.

f(XTs
) ≥ f(Xk) > f(XTs+1

)

when student Xk is assigned to teacher XTs

Step 5: Teaching phase

The adaptive teaching factor is given by

(TF )k =
f(Xk)

f(XTs
)

for learner k in group s.

The difference mean (DM )is evaluates the difference between

the current mean of the group and the result of the correspond-

ing teacher in a specific subject:

(DM )is = r(Xi
Ts
− (TF )k(M

i
s))

where r is a random number on interval [0, 1] and M i
s is the

mean of group s in subject i.

Per subject another learner in the group Xi
j is randomly

selected and the knowledge of learner k of group s in subject i
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is updated by the knowledge of his teacher and the knowledge

of the other learner j according to

Xi
k

′

={
Xi

k + (DM )i,s + r(Xi
j −Xi

k) if f(Xj) ≤ f(Xk)

Xi
k + (DM )j,s + r(Xi

j −Xi
k) if f(Xk) < f(Xj)

in all subjects, for all students and all groups.

Step 6: Evaluation teaching phase

Calculate new fitness for all learners. Update population

according to:

Xk
′ =

{
Xk

′ if f(X ′

k) < f(Xk)

Xk otherwise

Step 7: Learning phase

In each group update the knowledge of the learners in a

specific subject by the knowledge of another learner l of the

same group and the teacher of the group according to

Xi
k

′′

= Xi
k

′

+ r1(X
i
k

′

−Xi
l

′

) + r2(X
i
Ts
− EFX

i
k

′

)

if f(X ′

k) ≤ f(X ′

l)

Xi
k

′′

= Xi
k

′

+ r1(X
i
l

′

−Xi
k

′

) + r2(X
i
Ts
− EFX

i
k

′

)

if f(X ′

l) < f(X ′

k)

where r1 and r2 are random numbers in interval [0, 1] and the

exploration factor EF is chosen randomly out of {1, 2}.
Step 8: Evaluation learning phase

Calculate new fitness for all learners. Update population

according to:

Xk
′′ =

{
Xk

′′ if f(Xk
′′) < f(Xk

′)

Xk
′ otherwise

otherwise choose X ′′

k = X ′

k.

Step 9: Remove worst solution

Replace worst solution of group by best solution of the group

of past iteration.

Step 10: Combine groups

Combine all groups and replace duplicate solutions by best

(unique) solutions of past iteration.

Step 11: Iterate

Repeat from Step 3 until minimization objective is fulfilled

or maximum number of iterations is reached.

B. PSO algorithm

The ITLBO optimization is compared with another popu-

lation based optimization: Particle swarm optimization [21].

The population existing out of Np particles is initialized with

a location and a speed. For all subjects j every iteration i the

velocity vj and the location xj of every particle are updated

according to:

(vj)i =ω(vj)i−1 + r1c1(pj − (xj)i−1) + ...

r2c2(g − (xj)i−1) + r3c3(n− (xj)i−1)

(xj)i =(xj)i−1 + (vj)i
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Fig. 1. 1-input data set with model and prediction interval

where p is the best previous solution of the particle, g is the

best solution of the swarm so far, and n is the best neighbor of

the particle. r1, r2, r3 are random numbers on interval [0, 1]
and c1, c2 are constants, called cognitive and social scaling

acceleration, c3 is the neighborhood acceleration. The particles

are arranged in a circle and learn from their best neighbor

selected out of Nh particles of both left and right of the

particle. The neighbors help the algorithm escape from local

optima as explained in [22].

C. Benchmark

In this section data sets are created with a fuzzy model as in

(3)-(7), with the adjustment that the consequent of the fuzzy

rules includes a noise term, i.e. (4) is replaced by:

yj =

p∑
i=1

gi,jxi + g0 + e

(
p∑

i=1

si,jxi + s0

)
(15)

where e is white noise and p the number of inputs. It is chosen

to create 3 datasets with different numbers of inputs (p = 1, 5
and 10), all with 3 fuzzy rules. The parameters g, s, a and b

were randomly chosen. The input is chosen as three sets of

300 points. Each set corresponds to a rule and has the center

and standard deviation that correspond to this rule. A second

set of data is created in the same way and used as validation

data. The one dimensional (p = 1) training data set is depicted

in Figure 1.

An ITLBO and a PSO algorithm are used in order to identify

a linear and a fuzzy model that minimize (14) with β1 = 30,

β2 = 100, β3 = 1, η = 100 and PICPD = 0.9.

In this paper we have performed an offline optimization

over the parameters. The ITLBO algorithm is applied with

50 learners and 4 teachers. The PSO algorithm also has a

population size of 50 and parameters c1 = 1.5, c2 = 1.5,

c3 = 1, Nh = 2, the w runs from 0.9 − 0.4 during the

optimization.
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The parameters of the linear model are initialized by a

linear model that minimizes only the MSE, this model can

be found by linear least squares method. g and s are to

be identified, resulting in a total number of optimization

parameters No = 2(p+ 1).
The initial parameters of the fuzzy model are found by the

Gustafson-Kessel clustering algorithm [23]. For the fuzzy

model a, b, g and s need to be identified for every rule,

resulting in: No = R(2p+ 2(p+ 1)). In this case R = 3.

The number of iterations for ITLBO is set to 25.000. Since

ITLBO executes two function evaluation per learner every

iteration and PSO only one, the number of iterations for PSO

is set to 50.000. In this way the two algorithms perform the

same total number of function evaluations. All optimizations

are executed five times in order to test the robustness of

the algorithms. The final values of the cost function and

its components of the linear and fuzzy models are reported

in Table I for both training and validation data. For the

linear model the results are similar for the two optimization

techniques, the standard deviations of the solutions are small

so the algorithms converge to the same solution every trial.

Furthermore it can be seen that the PICP term in the cost

function is successful in keeping the PICP close to 90%. The

results of the training and validation data are similar.

Looking at the fuzzy models it can be seen that the found

cost function values are all lower than for the linear model,

as expected because the system structure is non-linear since

the benchmark is based on fuzzy rules. The true MSE and

PINAW are significantly smaller than for the linear model in

all cases.

Looking at the standard deviations it can be concluded that

both algorithms do not converge to the same solution every

trial for the fuzzy model. The differences in performance

between the training and validation data is quite significant.

This is probably because of the large number of optimization

parameters that are considered in fuzzy modelling, which

allows some over tuning.

When the two optimization methods are compared it occurs

that the results are rather similar. ITLBO however has a

slightly lower computation time and less optimization pa-

rameters that require tuning. Since PSO and ITLBO resulted

comparable in terms of capability of finding the optimum, only

the results of ITLBO are analysed on the real data case.

In the next section ITLBO is used to find the model

parameters in a load forecasting application. Since for the

fuzzy model convergence is not guaranteed, the optimization

is executed several times and the best solution is selected.

IV. APPLICATION FOR LOAD FORECASTING

Load forecasting is an important issue in the operation of

microgrids. In order to use robust model predictive control

it is desirable to predict a reasonable interval in which the

following data point will fall. In this section data from the

Huatacondo microgrid in the North of Chile is used to train

and validate a linear and a fuzzy prediction interval model with

an ITLBO algorithm. The Huatacondo microgrid is composed
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Fig. 2. 15 minutes ahead prediction interval of fuzzy model, validation data

of two photo-voltaic systems (24 kW); a wind turbine (5 kW);

the existing diesel generator unit in the village which is typical

of isolated grids; an ESS composed of a lead-acid battery bank

connected to the grid through a bidirectional inverter; a water

pump; and loads (28 kW).

The load is measured during a period of 147 days, with

a sample time of 15 minutes. It is assumed that for both

the fuzzy and linear model the maximum possible number

of regressors involved in the one step ahead prediction is 100

(1 day and 1 hour).

For the linear model the number of inputs is reduced with

a step wise fit method, resulting in model structure:

pl(k) = f(pl(k-1), pl(k-2), pl(k-3), pl(k-4), ...

pl(k-11), pl(k-40), pl(k-42), pl(k-79), pl(k-86), ...

pl(k-92), pl(k-93), pl(k-95), pl(k-96)) (16)

This structure of 13 inputs results in 28 optimization param-

eters. The number of rules and the regressors to be used in

the fuzzy model are selected using a sensitivity analysis: a

process in which various R are evaluated while eliminating

inputs. Finally the input-rulenumber combination resulting in

the lowest MSE is selected. The optimal structure has 3 rules

and the following inputs:

pl(k) = fTS(pl(k-1), pl(k-2), pl(k-3), pl(k-4), ...

pl(k-92), pl(k-93), pl(k-95), pl(k-96), pl(k-100)) (17)

The 9 inputs and 3 rules results in 152 optimization param-

eters. The parameters used for the ITLBO algorithm are the

same as in the benchmark problem, 50.000 iterations are done

per optimization. The data is divided in 75% training data and

25% validation data.

In this case problem parameters a and b were fixed on the

values found by the Gustafson-Kessel algorithm, reducing the

number of optimization parameters to 60. The optimization

for the fuzzy model is done 3 times and the model with the

lowest cost function value is selected.
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TABLE I
BENCHMARK WITH LINEAR AND FUZZY MODEL MINIMIZED BY ITLBO AND PSO ALGORTIHM

Linear model with ITLBO

p = 1, No = 6 p = 5, No = 22 p = 10, No = 42

Mean std Mean std Mean std

Training V 55.69 0.01 184231.74 0.12 17871.20 0.61
MSE 1.49 0.00 6140.44 0.00 594.94 0.00

PICP (%) 89.87 0.05 89.58 0.21 89.84 0.10
PINAW (%) 10.83 0.02 18.40 0.32 22.83 0.62

Validation V 60.21 0.49 170457.81 0.83 17307.17 1.65
MSE 1.48 0.00 5681.42 0.01 576.11 0.04

PICP (%) 88.07 0.13 90.44 0.33 90.11 0.62
PINAW (%) 12.01 0.02 15.01 0.26 23.60 0.62

Duration 100 iterations (s) 0.33 0.37 0.41

Linear model with PSO

p = 1, No = 6 p = 5, No = 22 p = 10, No = 42

Mean std Mean std Mean std

Training V 55.70 0.01 184233.75 1.16 17870.53 0.37
MSE 1.49 0.00 6140.44 0.00 594.94 0.00

PICP (%) 89.89 0.00 89.62 0.26 89.73 0.06
PINAW (%) 10.84 0.01 20.43 1.32 22.11 0.35

Validation V 60.04 0.53 170460.37 1.36 17306.83 2.53
MSE 1.48 0.00 5681.44 0.01 576.12 0.07

PICP (%) 88.11 0.14 90.29 0.45 89.69 0.35
PINAW (%) 12.02 0.01 17.04 1.23 22.89 0.35

Duration 200 iterations (s) 0.22 0.24 0.24

Fuzzy model with ITLBO

p = 1, No = 18 p = 5, No = 66 p = 10, No = 126

Mean std Mean std Mean std

Training V 39.69 1.07 32512.65 233.53 8819.48 713.50
MSE 1.05 0.04 1083.56 7.79 293.53 23.78

PICP (%) 89.93 0.06 89.93 0.06 89.80 0.09
PINAW (%) 8.17 0.08 5.89 0.83 13.45 0.62

Validation V 46.41 1.51 36507.74 770.12 13463.93 1411.16
MSE 1.08 0.03 1216.59 25.54 446.60 46.66

PICP (%) 87.82 0.19 88.11 1.54 82.98 1.87
PINAW (%) 9.15 0.13 4.77 0.64 13.84 0.64

Duration 100 iterations (s) 4.23 9.45 17.33

Fuzzy model with PSO

p = 1, No = 18 p = 5, No = 66 p = 10, No = 126

Mean std Mean std Mean std

Training V 40.59 1.46 35269.41 5244.89 9919.30 257.69
MSE 1.08 0.04 1175.44 174.82 330.12 8.59

PICP (%) 89.89 0.08 89.84 0.06 89.60 0.13
PINAW (%) 8.12 0.39 6.12 0.57 15.45 0.29

Validation V 48.47 2.49 42082.37 5991.52 12750.13 1283.24
MSE 1.11 0.02 1402.39 199.60 423.96 42.78

PICP (%) 87.58 0.62 87.84 1.15 86.20 1.01
PINAW (%) 9.05 0.50 4.98 0.44 16.00 0.35

Duration 200 iterations (s) 5.05 10.88 18.01
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Fig. 3. 1 hour ahead prediction interval of fuzzy model, validation data
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Fig. 4. 1 day ahead prediction interval of fuzzy model, validation data
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Fig. 5. 2 day ahead prediction interval of fuzzy model, validation data

The cost function values and its elements of both proposed

models for a one step ahead prediction are reported in Table II.

It can be seen that the fuzzy model finds a lower cost function

value although the PINAW is higher than for the linear model.

A larger prediction interval width obviously provides a better

coverage probability. Since the models have two minimization

objectives that are enforced in an indirect way (by the weight

factors in the cost function) and the PICP constraint is not

strict, it is hard to make a qualitative comparison between

the two models. Due to the larger number of optimization

parameters and the more complex computation of the output of

the fuzzy model, this model is more computational expensive

than the linear model.

TABLE II
COST FUNCTION FOR TRAINING AND VALIDATION DATA

Linear Fuzzy

Training V 72.17 71.62
MSE 1.84 1.79

PICP (%) 89.69 89.47
PINAW (%) 16.90 17.78

Validation V 83.22 82.96
MSE 2.17 2.21

PICP (%) 88.34 89.53
PINAW (%) 15.37 16.40

Duration 100 iterations (s) 4.2 19.3

TABLE III
PREDICTION INTERVAL COMPARISON FOR VALIDATION DATA

Linear Fuzzy

15 min V 83.22 82.96
MSE 2.17 2.21

PICP (%) 88.34 89.53
PINAW (%) 15.37 16.40

1 hour V 130.21 114.45
MSE 2.87 2.92

PICP (%) 84.63 86.77
PINAW (%) 15.27 16.42

1 day V 164.12 143.21
MSE 3.35 3.46

PICP (%) 83.04 85.21
PINAW (%) 15.18 16.47

2 days V 236.94 192.95
MSE 4.13 4.28

PICP (%) 80.10 83.07
PINAW (%) 15.03 16.53

Simulations of the validation data with the fuzzy model for

1, 4, 92 and 192 step (corresponding with respectively 15 min-

utes, 1 hour, 1 day, 2 days) ahead predictions are respectively

depicted in Figure 2-5, only 3 days of the 36.75 validation days

are shown. It can be seen that for larger prediction windows the

ratio of data within the prediction interval (PICP) decreases.

This can also be seen in Table III, in which multiple step

ahead predictions are performed with the identified models.

For the linear and fuzzy model can be seen that the PINAW
barely changes for larger prediction horizons. The fuzzy model

performs better in terms of PICP preservation for multiple
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step ahead predictions and the prediction interval width is a

little bigger. The cost function value rises quickly when the

prediction horizon increases (for both models), this is due to

the PICP term. The PICP value that was trained to be within

bounds for a one step ahead prediction and not for a higher

step ahead prediction.

V. CONCLUSION AND FUTURE WORK

In this paper an ITLBO algorithm is implemented and

used to identify the parameters of a linear and a TS fuzzy

prediction interval model. The parameters of the models are

determined based on a multi-objective cost function that does

not only minimize the prediction error but also the width of

the prediction interval while maintaining a chosen coverage

probability.

Different from standard prediction interval methods, the

parameters of the prediction intervals of the models proposed

in this paper are identified intermediately without creating a

forecast first.

With a benchmark problem it is demonstrated that for this

non-convex problem with many parameters the ITLBO and

PSO algorithm find similar results. For the fuzzy model, which

has many parameters to identify, an advantage of ITLBO over

PSO is that the computation time is slightly smaller, moreover

this algorithm has less optimization parameters to tune.

When the two models were applied in load forecasting for

the Huatacondo microgrid it appeared that the cost function

structure is able to find models with the desired coverage

probability that also minimize the mean squared error and the

band width of the prediction interval. Note that with the fuzzy

modeling a slightly higher coverage probability is obtained,

for both one and higher step ahead predictions.

Future work should include a Pareto analysis for the pro-

posed multi-objective cost function in order to be able to

perform a better comparison between the models.
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J. Llanos, and D. Sáez, “A microgrid energy management system based
on the rolling horizon strategy,” IEEE Transactions on Smart Grid,
vol. 4, no. 2, pp. 996–1006, 2013.

[6] A. Ghanbari, E. Hadavandi, and S. Abbasian-Naghneh, “Comparison of
artificial intelligence based techniques for short term load forecasting,”
in 2010 Third International Conference on Business Intelligence and

Financial Engineering. Hong Kong, Aug. 13-15. IEEE, 2010, pp. 6–
10.

[7] H. Alfares and M. Nazeeruddin, “Electric load forecasting: Literature
survey and classification of methods,” International Journal of Systems

Science, vol. 33, no. 1, pp. 23–34, 2002.
[8] Z. Liu, W. Gao, Y.-H. Wan, and E. Muljadi, “Wind power plant

prediction by using neural networks,” in Energy Conversion Congress

and Exposition (ECCE). Raleigh, NC, USA, Sep. 15-20, 2012, pp. 3154–
3160.

[9] J. Xia, P. Zhao, and Y. Dai, “Neuro-fuzzy networks for short-term wind
power forecasting,” in 2010 International Conference on Power System

Technology. Hangzhou, Zhejiang Province, China, Oct. 24-28. IEEE,
2010, pp. 1–5.
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