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Abstract—Conventional power systems with photovoltaic
(PV) plants experience frequency and power fluctuations due to
high variability of PV power. Automatic generation control is
implemented to control power outputs of generators and
stabilize the system frequency. It is desirable with increasing
levels of PV penetration to have the foresight of frequency
fluctuations to enable advanced controls. A new methodology is
presented in this paper for predicting frequency of synchronous
generators in a power system with solar PV. A cellular
computational network (CCN) is used to perform
multi-timescale frequency prediction. CCNs are scalable and
distributed computing paradigms. Thus, CCNs are suitable for
fast prediction of frequency of synchronous generators
distributed spatially across a power system. The inputs to cells
of CCN are derived from phasor measurement unit (PMU)
measurements of frequency and voltage phasor at the
respective generator buses. Past and current measurements
enable multi-timescale frequency predictions of synchronous
generators. Typical multi-timescale frequency predictions using
the CCN are illustrated on a two-area four-machine power
system with solar PV integrated.

I. INTRODUCTION

Power systems integrated with solar photovoltaic (PV)

plants becomes an inevitable trend for next few decades, as

PV could be an important solution for decentralized load or

remote customers in many situations [1]. However, the

power fluctuations of PV systems caused by weather changes

and variability of solar irradiation requires modernization

and innovation of the conventional power systems.

Furthermore, rural electrification and expansion of the grid

requires distributed generation such as PV [2], [3]. Power

fluctuation results in frequency fluctuation and thus,

frequency measurements are good indicators and feedback

signals to mitigate power fluctuations through suitable

governor controls such as automatic generation control

(AGC). In traditional generator-turbine systems, frequency

could be estimated or predicted considering the time-delayed
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turbine-generator response through perturbation analysis [4],

[5]. However, with a continuous increasing rate of PV power

penetration, power system frequency estimation with

historical data is not enough for mitigating power

fluctuations. Today, many bulk power systems have deployed

significant number of phasor measurement units (PMUs) and

enable fast monitoring of grid conditions [1], [6]. PMUs

produce a significant amount of data over a short period time

given their sampling rates of 30Hz/25 Hz, depending on the

location of a power system.

Several power frequency estimation/prediction algorithms

have been presented to address this challenge. A hybrid

method consisting of Taylors expansion and Fourier

algorithm was proposed for frequency estimation in [5]. It

performs well for different sampling rate sensors and

compensates the error in a historical data, but is not suitable

for real-time monitoring with the significant amount of PV

power fluctuations.

Refs. [7]–[9] have discussed computational intelligence

approaches including support vector machines and neural

networks for frequency predictions arising from the

integration of renewable energy sources as wind power.

Their results show good performances for wind integrated

system with single time interval frequency prediction,

however prediction time interval is longer.

Although different methods for estimating, utilizing or

even early prediction frequency have been discussed in

previous studies, the scalability and accuracy for

multi-machine power system with solar PV integration

remain challenges. Refs. [10], [11] have introduced a cellular

neural network approach to provide a scalable system-wide

prediction framework, also referred to as the cellular

computational network (CCN) [12]. The CCN framework

allows for the use of distributed computing to provide

situational intelligence for grid operations [13]. Ref. [14] has

introduced the initial cellular neural network structure for

empowering circuit distributed analysis.

In this paper, a cellular computational network is used to

perform the frequency prediction over a multi-timescale. The

2015 IEEE Symposium Series on Computational Intelligence

978-1-4799-7560-0/15 $31.00 © 2015 IEEE

DOI 10.1109/SSCI.2015.103

673



inputs to cells of the CCN are derived from PMU

measurements of frequency and voltage phasors at the

respective generator buses. Past and current measurements

enable multi-timescale predictions of synchronous generator

frequencies. Typical multi-timescale frequency predictions

using a CCN are illustrated on a two-area four machine

power system with solar PV integrated.

The rest of the paper is organized as following: Section II

provides an overview of the CCN structure for a two-area

four-machine power system with solar PV. Section III

describes a CCN based multi-timescale prediction framework

and algorithm. Simulation results obtained with a CCN

under laboratory, and actual weather conditions are provided

in Section IV. Finally, Section V provides some conclusions

and future work from the study performed in this paper.

II. CCN ARCHITECTURE

Cellular computational network (CCN) is a distributed and

scalable architecture which uses the concept of cells to

model a complex system. Generally, a cell is configured to

learn or compute the required output based on some

computing algorithm and utilizing the available information

at its input(s). The inputs could be external, from the cell’s

past output(s) and/or the adjacent cells’ past outputs. The

computing algorithm could be empowered with capabilities

to enhance its functionality. The connections between the

cells are driven by the topology of the complex network

being mapped or modeled. Through the cellular connections

the system-wide dynamics is propagated to the respective

cells over time. Neighboring cells communicate/relate with

each other faster (and directly) than cells farther away.

Because of these unique advantages, the CCN architecture

becomes suitable for modeling power system dynamics,

especially the interactions of synchronous generators with

variable generation sources.

CCN in this study is implemented to predict the generator

frequency of a two-area four-machine PV integrated power

system. Each generator of the power system is considered as

a cell. Cells can communicate with their neighboring cells to

predict the frequencies of the generators in the system.

Fig. 1 shows a CCN implementation for frequency

prediction on a two-area-four-machine power system.

Generators G1, G2, G3 and G4 are connected to bus lines 1,

2, 3 and 4 respectively. A 200 MW PV plant is integrated to

area 2. The entire system is modeled on a real time digital

simulator (RTDS). Real-time weather information captured at

Clemson University’s Real-Time Power Intelligent Systems

Laboratory is used to drive the PV plant. Two automatic

generation controls (AGCs) are implemented, one in each

area of the power system, to maintain the desired system

frequency. The AGC controller in area 2 with PV power is

presented in Fig. 2. A multi-layer perception (MLP) neural

network is used as the computational unit of each cell in the

CCN implementation. Each MLP is trained using data

obtained from simulated PMUs on the power system. The

CCN framework allows each generator to determine its near

�
��

Z-1 Z-1

Z-1

Z-11

�fG2(t+�T)�fG1(t+�T) �fG4(t+�T) �fG3(t+�T)

CCN Based
Substation 

PMU Network

1 5 6

2

3

7 8 9

10 11

4

PMU3

PMU4

PMU1

 f1 (t- �t)

PMU2

G1

G2 G4

G3

Frequency from G1-G4

with Multiple Time Scale Prediction

 CCN-1 
Platform 

for Prediction
 CCN-3

Platform 
for Prediction

 CCN-2 
Platform 

for Prediction

 CCN-4 
Platform 

for Prediction

load load

CCN-1
Platform 

for Prediction
� CCN-3

Platform 
for Prediction

CCN-2
Platform 

for Prediction

CCN-4
Platform 

for Prediction

PV Plant

Area 1 
AGC

Area 2 
AGC

f2 (t), f4 (t)

 f3 (t- �t)

 f4 (t- �t) f2 (t- �t)

f2 (t), f3 (t)f1 (t), f4 (t)

f2 (t), f4 (t)

Fig. 1. CCN based multi-timescale frequency predictions for a two-area four-
machine PV system.
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Fig. 2. Automatic generation control in area 2.

future frequency state independently and simultaneously. In

general, for a ΔT time ahead forecasting, (t + ΔT ), the

frequency prediction function can be expressed as,

f̂i(t + ΔT ) = F
{
fi(t), ΔVre fi , fi(t − ΔT ),

fi(t − 2ΔT ), f̂ j(t), f̂k(t)
}
, i = 1 to 4 (1)

where f̂i(t + ΔT ) is predicted ΔT time ahead frequency for

ith generator; ΔVre fi represents the reference voltage of each

generator in the system of Fig. 1; fi(t − ΔT ) refers to the

frequency at the previous time step and f̂ j(t), f̂k(t) represent
the frequency of the neighboring generators at time t. The
PV system is treated as a perturbation agent to the rest of

the system. Its power output varies over time and cannot be

controlled since the maximum power utilization is desirable.
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III. CCN BASED FREQUENCY PREDICTION

A general process of CCN based multi-timescale

frequency prediction could be summarized as shown in Fig.

3. Real-time data from power system (PMU measurements

of generator and PV outputs) are inputs into CCN prediction

platform for multiple time-interval predictions (from t to

t + ΔT ). Based on (1), the all four generator’s frequency

prediction in the two-area four-machine system is

implemented as shown in (2) to (5) below.

f̂1(t + ΔT ) = F
{
f1(t), ΔVre f1 (t), f1(t − ΔT ),

f1(t − 2ΔT ), f̂2(t), f̂4(t)
}

(2)

f̂2(t + ΔT ) = F
{
f2(t), ΔVre f2 (t), f2(t − ΔT ),

f2(t − 2ΔT ), f̂1(t), f̂3(t)
}

(3)

f̂3(t + ΔT ) = F
{
f3(t), ΔVre f3 (t), f3(t − ΔT ),

f3(t − 2ΔT ), f̂2(t), f̂4(t)
}

(4)

f̂4(t + ΔT ) = F
{
f4(t), ΔVre f4 (t), f4(t − ΔT ),

f4(t − 2ΔT ), f̂3(t), f̂1(t)
}

(5)

The APE and MAPE are commonly used for prediction

performance evaluation [10]. To evaluate the CCN’s frequency

prediction performance, absolute percentage error (APE) and

mean absolute percentage error (MAPE) given in (6) and (7),

respectively are computed over a period of time.

APE =
∣∣∣At − Pt

At

∣∣∣ × 100% (6)

MAPE =
1

n

n∑

t=1

∣∣∣At − Pt

At

∣∣∣ × 100% (7)

where At and Pt are corresponding actual and predicted values

and n is the number of sampled data in a certain time period.

IV. RESULTS AND DISCUSSIONS

In this study, the two-area four-machine power system is

considered under three PV power output average conditions,

namely high level (above 140 MW), moderate level (between

70 MW and 140 MW) and low level (below 70 MW).

For this study, the PMU measurements are used by CCN

in the frequency prediction process as shown in Fig. 3. The

PMU data are generated by RTDS for power system inc.

consideration (Fig. 1). The solar irradiance for PV power

gradually increases and reaches around its peak around noon

on a normal day. In order to reflect small frequency

fluctuations in PV integrated power system, a pseudo-random

binary signal (PRBS), as shown in Fig. 4, has been applied

to the generator excitation systems of G1 and G2 in area 1.

Frequency predictions of the four generators under PRBS

signal conditions are shown in Fig. 5. In this study, a

ten-minute data segment has been collected for every

condition for CCN learning. These figures represent

PMU�Data�from�
Generator�Buses�
(Frequencies�and�
Voltage�Phasors)

CCN�Platform�Implemented�
Using�Data�from�Phasor�

Data�Concentrator�(PDC)�at�
a�Two�Area�Control�Center

Multi�time�Scale�Frequency�
Predictions�at�Generator�
Buses�(prediction�cycles�
ranges�from�1�to�n)

Fig. 3. CCN based multi-timescale frequency predictions implementation flow
diagram.

Fig. 4. PRBS signals applied to generate system-wide fluctuations.

presented below for generator frequency predictions are for a

thirty-second period. The predictions for one cycle (16ms)
ahead are shown in Fig. 5. Table. I shows the performance

of the prediction results. The largest errors normally occur at

peak points, especially for rapid frequency jumps, up or

down. Among all four generators, it is observed for the

system in Fig. 1 the frequency prediction of generator G2

has relatively larger prediction errors than the others in

Table. I.

Six different time scale predictions are performed at time

t, namely t + 16 ms, t + 100 ms, t + 200 ms, t + 300 ms,
t + 400 ms and t + 500 ms, as to 1, 6, 13, 19, 25, 31 cycles

ahead, respectively. Since it is observed G2 has the largest

prediction error (APE and MAPE), predicted frequencies of

G2 are shown for multiple timescales under the three different

PV power output conditions below.
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Fig. 5. Frequency predictions with PRBS signals in Fig. 4

TABLE I
Maximum APEs andMAPEs obtained for frequency predictions with PRBS

signals

Generator Index. maximum APE value (%) MAPE value (%)
G1 0.016 0.014
G2 0.02 0.019
G3 0.016 0.014
G4 0.016 0.013

The system is simulated with Clemson, SC sunny,

moderate and cloudy solar irradiance conditions from

00:00:00 to 23:59:59 with one second sampling size. Fig. 6

shows three weather conditions, namely sunny day

(September 14, 2013), moderate day (September 16, 2013)

and cloudy day (September 21, 2013), used in this study.
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Fig. 6. Solar irradiance variations under sunny, moderate and cloudy weather
conditions obtained at the RTPIS Lab in Clemson, SC.

Fig. 7. PV power output from 12:00:00 to 12:00:30 pm on a sunny day.
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Fig. 8. Multi-timescale frequency predictions for G2 under high PV power
output condition.

A. Multi-timescale Frequency Predictions During High PV
System Power Outputs

PV power output for thirty seconds from 12:00:00 pm to

12:00:30 pm on a sunny day (Fig. 6) is shown in Fig. 7.

Based on the PV power output curve, it is clear that the PV

power fluctuates between 166 MW and 173 MW. Frequency

predictions for G2 for multiple time steps under such PV

power output conditions are shown in Fig. 8. The maximum

APE and corresponding MAPE values are shown in

Table. II. The multi-timescale predictions results show that 1

cycle and 6 cycles predictions are more accurate than 13 to

31 cycles ahead predictions. The 31 cycles (517 ms)

prediction value shows a relative larger maximum APE value

of 0.25%, and a MAPE value of 0.194%.

B. Multi-timescale Frequency Predictions During Moderate
PV System Power Outputs

In this case, a moderate day in Fig. 6 is used to simulate

the PV power. The PV power output obtained from 16:00:00
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Fig. 9. PV power output from 16:00:00 to 16:00:30 on a moderate day.
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Fig. 10. Multi-timescale frequency predictions for G2 during a moderate PV
power output condition.

to 16:00:30 is shown Fig. 9 to vary in the range of 93MW to

106MW. Multi-timescale frequency predictions of G2 during

a moderate PV power integration are given in Fig. 10. These

maximum APE and MAPEs are summarized in Table.II.

According to the Fig. 10 and Table. II, it is clear that the

frequency has been perturbed severely under a moderate PV

power output condition. Moreover, these fluctuations at half

PV power output level (100MW) give a larger system error

than other cases, which leads to large maximum APE and

MAPE values of 0.23% and 0.193%, respectively.

C. Multi-timescale Frequency Predictions During Low PV
System Power Outputs

PV output power simulated on a cloudy day (in Fig. 6) is

used in this case study. Fig. 11 shows the PV power

variation from 16:00:00 to 16:00:30 in the range of 30MW

to 34MW. Multi-timescale predictions of generator G2’s

frequency, 1 cycle to 31 cycles ahead, under PV power

conditions shown in the Fig. 11 are depicted in Fig. 12.

Fig. 11. PV power output from 16:00:00 to 16:00:30 on a cloudy day
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Fig. 12. Multiple time scale frequency predictions for G2 under low PV
power condition.

Table. II presents the calculated APE and MAPE values.

Impact of the frequency swing is not significant under low

PV system power output conditions, even with a relative high

rate of PV fluctuations, comparing to the last case study.

This has led to better prediction results. For the 31 cycles

ahead prediction, the APE is 0.2% and the MAPE is 0.16%.

Based on the results obtained, the predictions for longer

time intervals (cycles) show more uncertainty. Additionally,

TABLE II
Maximum APEs andMAPEs obtained for G2 frequency predictions under
three different PV system power output conditions at Clemson, SC

t+ΔT time ahead maximum APE value (%) MAPE value (%)
High Moderate Low High Moderate Low

1 cycle 0.016 0.016 0.016 0.0063 0.0045 0.007
6 cycles 0.04 0.03 0.02 0.025 0.021 0.015
13 cycles 0.14 0.08 0.1 0.094 0.063 0.077
19 cycles 0.14 0.133 0.13 0.091 0.086 0.09
25 cycles 0.20 0.16 0.19 0.14 0.105 0.11
31 cycles 0.25 0.23 0.2 0.194 0.193 0.16
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large PV plants with different power output conditions have

different impacts on system frequency prediction error as

expected. The best case is either in constant PV power or

low PV power output modes. However, implemented CCN

structure predictions have resulted in a sufficient prediction

accuracy under all different conditions.

V. CONCLUSION

In this paper, a cellular computational network has been

presented for multi-timescale frequency predictions at

synchronous generator buses under three typical PV power

output conditions. The concept of CCN is illustrated on a

two-area four-machine power system. The presented CCN

approach is a scalable and distributed approach, applicable to

larger and multi-area power systems. According to the

accuracy of the results obtained, the CCN based predicted

frequencies are applicable in detection of system

post-disturbance stability, for development wide area control

systems and in the development of countermeasures for

cybersecurity attacks.
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