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Abstract—Due to the intermittent nature of the wind, the wind
speed is fluctuating. Fluctuating wind speed cause even more
fluctuation in wind power generation. The sudden changes of
the wind power injected into the power grid within a short
time frame is known as power ramp, which can be harmful
to the grid. This paper presents algorithms to detect the wind
power ramps in a certain forecasting horizon. The importance
and challenges of wind power ramp detection are addressed.
Several different Wind power ramps are defined in this paper.
A random vector functional link (RVFL) network is employed
to predict the future occurrence of wind power ramp. The
forecasting methods are evaluated with a real world wind power
data set. The RVFL network has comparable performance as the
benchmark methods: random forests (RF) and support vector
machine (SVM) but it has better performance than the artificial
neural network (ANN). The computation time of training and
testing is also in favor of the RVFL network.

I. INTRODUCTION

Due to the pollution caused by fossil fuel power generation

and the exhausting fossil fuel power sources, renewable energy

sources such as wind and solar draw more and more attention

of the industry and government. Wind energy has a vast

development in the past few years and will continue to expand

in the future. However, due to the intermittent nature of the

wind, the power generated by wind turbines is fluctuating. The

large change of output power in a short time interval is known

as ramps [1], [2]. The fluctuations in the wind power is usually

compensated by the conventional fossil power generator or

battery storage systems. If the ramp exceeds beyond the buffer

of the power reservoir, the compensation will be less effective.

Accurate wind power ramp detection is beneficial to the

power system planning and scheduling from sudden power

change [3], [4] and to protect the power transmission and

generation system from a sudden rise and drop in power

supply [5].

By further looking at the nature of the ramp and it can

be categorized into two types: up ramp and down ramp.

The up ramp occurs when the power generated significantly

increases in a short period and the down ramp occurs when the

power generated significantly decreases in a short period [6].

However, since complete power system vary in size and

customer, there is no industrial standard to clearly define a

ramp quantitatively [7]. Therefore we are going to provide

some power ramp definitions that are closely related to the

real world wind power dataset used in this paper.

Various research focusing on the identification of wind

power ramps are given in [8]–[10]. These research papers

serve as a survey to different definitions of wind power ramps.

Methodology to classify wind power ramps are also presented

in the literature such as [3], [6], [7]. In [3], an artificial neural

networks (ANN) was employed to classify the wind power

ramp. The classification is based on the stochastic process and

the output is not rigid class labels but the probability. Another

popular classification method called support vector machine

(SVM) was also used to forecast the wind power ramp

in [2]. By convert categorical valued wind power ramps into

continuous valued wind power ramp rates, some conventional

regression methods can be applied [7] such as support vector

machine (SVM), random forests (RF) and ANN. Some wind

speed and wind power forecasting methods [11], [12] can be

imported to forecast wind power ramp rate as well.

Random vector functional link (RVFL) network [13]–[15]

is a variation of ANN that has (i) direct connections from

the input layer to the output layer and (ii) the weights of the

interconnections between the input and the hidden layer are

randomly assigned and (iii) the weights of the interconnections

from the input and hidden layers to the output layer are

optimized by a least square method. With the three novelties, it

has faster training time than the conventional ANN but without

significant trade-off in accuracy.

In this paper, the RVFL network is used to detect the occur-

rence of wind power ramps in the next 6 and 12 hours based

on binary class classification. Another objective is to propose

a procedure to process the imbalanced wind power ramp data

including balancing and noise detection and smoothing.

The remaining of the paper is organized as follows: Sec-

tion II defines the wind power ramp that are used in this

paper; Section III introduces imbalanced data classification;

Section IV details the RVFL network; Section V shows the

experimental results and discusses the performances of the

RVFL network based on the results and finally Section VI

concludes the paper and give recommendations for future

work.
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II. WIND POWER RAMP

A wind power ramp is the change of power, either increasing

or decreasing in a specific time. We call the increasing power

ramp up ramp and the decreasing power ramp down ramp.

Wind power ramp is common in wind power generation

because the wind speed is fluctuating. In addition, wind power

is not a linear function with respect to wind speed because it

has cut in region, cut out region, cubic region and maximum-

output region. A typical wind speed to wind power mapping

is shown in Figure 1, and the data is taken from NREL west

wind [16].
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Fig. 1: Wind Speed to Wind Power Mapping.

The power output in the cut in region is zero because the

wind is not powerful to overcome the internal friction in the

wind turbine. The power output in the cut out region is zero

because in order to protect the wind turbine from over spinning

and over heating, the turbine is halt during strong wind. The

maximum-output region outputs a constant power irrespective

of the wind speed due to the maximum output capability of

the generator in the turbine. The cubic region shows a cubic

power relation between wind speed and wind power which

follows an equation shown in (1) [17].

P =
1

2
ρaAtCpv

3 (1)

where ρa is the air density, At is the area of the turbine when

rotating, Cp is the efficiency, and v is the up-wind speed.

In the literature, there are numerous definitions of power

ramps, in this chapter we introduce two most popular defini-

tions and employ them in our experiments. The first definition

is based on the local extrema within a certain time interval. A

significant power ramp occurs when the ramp Γext exceeds a

certain threshold [9]:

Γext = max(P (t, . . . , t+Δt))−min(P (t, . . . , t+Δt)) > Γval

(2)

where P (t) is the wind power generated at time t, Δt is the

time interval, and Γval is the threshold to determine whether

the ramp is significant or not.

Another definition is based on the two end points of a sliding

window [9] and the wind power is denoted as Γend.

Γend = |P (t+Δt)− P (t)| > Γval (3)

Notice that the above-mentioned two definitions do not take

into account the ramp directions (up-ramp or down-ramp) and

hence the decisions are binary (ramp or no ramp). The multiple

class case (up-ramp, down-ramp or no-ramp) is not discussed

in this chapter.

Based on these two definitions, the wind ramp forecasting

can be converted to a binary classification problem.

III. WIND POWER TIME SERIES PRE-PROCESSING AND

CLASSIFICATION

Wind power time series (TS) is affected by meteorological

factors and power system factors and thus it is highly fluctu-

ating. Noise are created when (i) there is a strong wind gust

in the environment, (ii) the wind turbine is shut down for

maintenance, or (iii) there are sensor fault or noise in the data

acquisition and recording system. In order to avoid wrongly

identifying wind ramps from the TS due to noise, the noise

embedded in the wind power TS should be removed. There are

three types of noise: (i) outliers, (ii) missing values and (iii)

white noise corresponding to the above-mentioned possible

noise causes. We propose to detect them separately and smooth

the outliers and missing values and discard the white noise.

A. Outlier

To detect the outlier, there is a rolling window with a fixed

width to roll along the TS. For each window, there is a segment

of TS Yw = {yi, yi+1, . . . , yi+w}, where w is the window

width. For each Yw, the median absolute deviation (MAD) is

calculated (equation (4)) and the data point which is yMAD ≤
Tth ×MAD is considered as an outlier [18].

MAD = mediani ( |Yi −medianj(Yj)| ) (4)

B. Missing Data

The missing data is recorded as ‘NA’, ‘NaN’, ‘?’, ‘-’ or

‘-999’ in the dataset depend on the data recording standard.

These missing data can be easily identified manually.

C. White Noise

The white noise is usually embedded into the TS. The char-

acteristic of white noise is that it has a constant power spectral

density. Depending on the probability distribution, white noise

can be Gaussian distributed. or uniformly distributed.

Empirical mode decomposition (EMD) based method can

be applied to detect the white noise [19], [20]. A TS can

be decomposed into intrinsic mode functions (IMFs) and a

residue. The characteristics of the IMFs are: (i) zero mean,

(ii) the number of zero-crossings and the extrema differ at

most by one and (iii) the IMFs are (nearly) orthogonal to each

other [21].

Viewing from the frequency domain, the energy density of

a single IMF is:

En =
1

N

N∑
t=1

cn(t)
2 (5)

where N is the length of the TS, En is the nth IMF’s energy

density and cn(t) is the nth IMF.

The average period of an IMF T̄n is calculated based on the

Fourier spectrum weighted mean period [20].
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After obtaining En and T̄n, the particular IMF can be

checked because if it is a white noise, the relationship between

the two variables are [19]:

lnEn + ln T̄n = 0 (6)

The derivation of the confidence intervals can be found

in [19], [20] and the equation of the confidence interval is:

lnEn = − ln T̄n ± k

√
2

N
exp

lnT̄n

2
(7)

where N is the length of the TS and k is the percentiles of a

standard normal distribution,

However, if the average period T̄n is calculated by counting

the number of zero-crossings (or extrema), there is an empir-

ical correction [19], [20] which is:

lnEn + 0.934 ln T̄n = 0.12 (8)

The IMFs whose energy and average period obey the

equation is considered as a white noise and the particular IMFs

are removed from re-construction back to the TS.

D. Imbalanced Data Classification

Classification is to predict a decision based on a set of

features, and the decision can be either binary class or mul-

tiple class. For wind power ramp forecasting based on the

definitions, the classification task is binary.

However, for the processed wind power ramp data, the

classes are imbalanced, i.e. there are much more ‘no ramp’

cases (majority class) than ‘ramp’ cases (minority class),

which misleads the training process because the accuracy is

usually even higher when all predicted decisions are under

the majority class, which is obviously a wrong conclusion.

In order to overcome this problem, the majority class in the

training data is under sampled to match the number of minority

class, or the minority class in the training data is over sampled

to match the number of majority class [22]. In addition,

the criteria to measure the performance of the classifier are

appropriately selected for imbalanced data as well.

E. Cross Validation

Cross validation is a common training method for super-

vised learning such as classification and regression. Without

cross validation, the trained classification/regression model

tends to fit the training data very well but has poor gener-

alization performance on unseen data (testing data), which is

called over-fitting. Cross validation is to provide a validation

data set that will evaluate the performance of the trained model

before applying to the testing data. Cross validation is usually

executed k times to average out the uncertainties and this is

called k-fold cross validation.

For classification, the k-fold cross validation randomly sub-

samples the training data set into k subsets and repeatedly

uses the k − 1 subsets for training and the remaining subset

for validation. This procedure is usually applied over several

parameter sets to choose the best parameters.

F. Performance Measures

The binary class classification model is evaluated based on

a contingency table (or confusion matrix). The contingency

table is a 2×2 matrix that reflects the relationship between the

target and the predicted values. Derived from the contingency

table are the several performance metrics as shown below.

TABLE I: Contingency Table to Evaluate the Performance of

the Binary Class Classification

x̂ = +1 x̂ = −1
x = +1 TP FN
x = −1 FP TN

Derived from the contingency table are there several per-

formance metrics such as:

Accuracy =
TP + TN

TP + FN + FP + TN
(9)

Recall =
TP

TP + FN
(10)

Precision =
TP

TP + FP
(11)

F Score =
2TP

2TP + FP + FN
(12)

where C is the class of the target data, Ĉ is the class of the

predicted data, TP , TN , FP and FN stand for true positive,

true negative, false positive and false negative, respectively.

However, for imbalanced data, Accuracy is not a good

metric to measure the performance and the preferred metrics

are Precision, Recall and F score [6], [10]. Therefore, they

are used in this paper to evaluate the wind power ramp

classification methods.

IV. RANDOM VECTOR FUNCTIONAL LINK NEURAL

NETWORK

h1

1 h2

i1 .
.
.

o1

i2 hK
.
.
.

.

.

.
oL

iM

x1

x2

xM

y1

yL

wm,k

wk,l

Fig. 2: Schematic Diagram of an RVFL Network, the dashed

arrows show the direct connections between the input neurons

and the output neurons.

ANN is a commonly used method for classification. The

basic building block of an ANN is perceptron. A perceptron
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has several input connections and an output connection and

applies a nonlinear activation function to the inputs to calculate

the output. The function of a perceptron is shown:

pk = f(
M∑

m=1

wm,kim + wm+1,k) (13)

where pk is the kth perceptron’s output value, wm,k is the

weight of the connection between the mth input and the kth

perceptron, M is the total number of inputs, wm+1,k is an

input bias and f(·) is a non-linear activation function.

The commonly used activation function in the perceptron is

sigmoid. There are several types of sigmoid functions in the

literature and in this paper, we use logistic sigmoid (logsig)

as shown:

logsig(x) =
1

1 + e−x
(14)

There are a various types of ANN structures in the literature

and among them, the most widely used is single-hidden layer

feed-forward neural network (SLFN), and it is sometimes

referred as one hidden layer multiple layer perceptron (MLP).

A schematic diagram of an SLFN is shown in Figure 2.

As shown, there are three layers in the SLFN: input layer,

hidden layer and output layer. The perceptrons in the hidden

layer has the function as in equation (13). The perceptrons

in the input layer is to feed the inputs to the hidden layer

without any calculation. The perceptrons in the output layer

is to calculate the weighted sum of the results of the hidden

layer perceptrons as shown:

ol =
K∑

k=1

wk,lhk + wk+1,l (15)

where ol is the lth output perceptron’s value, wk,l is the weight

of the connection between the kth hidden layer perceptron and

the lth output perceptron, K is the number of hidden layer

perceptrons and wk+1,l is hidden layer bias.

To train an SLFN, the initial step is to assign random values

to the weights wm,k and wk,l, then apply certain method such

as back-propagation (BP) [23] to tune the weights so that the

outputs of the SLFN matches the target values with minimal

error. However, BP-based methods are usually very slow in

computation and the gradient descent is usually trapped in a

local minimum instead of global minimum, thereby resulting

in sub-optimal weights for the SLFN.

In order to fast train the SLFN, an SLFN with random

weights was reported in [24]. Later in [13]–[15] an SLFN with

direct input-output connections (functional link) was reported.

The reported RVFL network does not employ BP to train the

network but use random weights with least square estimation

to obtain the optimal weights. The schematic diagram of an

RVFL network is shown in Figure 2. Notice that the difference

between RVFL network and SLFN is shown as the dashed

connections from the input layer to the output layer.

The procedure of training an RVFL network is as fol-

lows [13], [15]:

1) Assign random values to input weights wi,h. The random

values are uniformly distributed in the interval [0, 1].
2) Obtain the hidden perceptron outputs A =

logsig(WI,H ·X), where X is the training data.

3) Apply least square estimation to calculate the output

weights wh,o and the direct link weights wi,o: WO =
(ATA)−1ATY, where WO is the aggregation of output

weights and the direct link weights, and Y is the training

target.

4) Discard WO from Step 3 and redo Steps 1 and 3 if there

is rank deficiency in it.

The obtained WO and WI,H can then be applied to testing

data to obtain the predicted values for the test data by:

Ŷs =WO · logsig(WI,H ·Xs) (16)

where Ŷs is the predicted testing values and Xs is the testing

data.

Chen [14], [15] accelerated the training procedure by in-

troducing sequential training. The RVFL network training

procedures described in the previous paragraphs need to be

executed whenever there is a change in the network structure,

such as adding a hidden perceptron. Chen’s sequential training

enables the network to update the WO and WI,H based

on the previously calculated data. The sequential training is

also two-dimensional: one is to update the matrix when there

is new training data presented to the network and the other

is to update the matrix when there is an additional hidden

perceptron added to the network. This sequential training made

the RVFL network learning faster and having online learning

capability.

A. Proposed Random Vector Functional Link Neural Network
based Wind Power Ramp Forecasting Methods

We propose to use RVFL network [15] to classify the wind

power ramp. There are two approaches and they are plotted

in Fig. 3. The wind power TS first undergoes outlier removal,

missing data removal and de-noising to be a smoothed TS x(t).
Firstly, the power ramp Γt is derived from the smoothed TS

and the class labels are assigned to the it: ‘+1’ for significant

ramp and ‘-1’ for no ramp. Then the power ramp series is

partitioned into a training set and a testing set. In addition,

the minority class in the training set is oversampled to Γb
t

so that the amount of the two classes equal [22]. Next the

RVFL network is trained with the training set and an optimal

number of hidden layers determined by a k-fold CV to obtain

a classification model mc. Finally the trained model is applied

to classify the testing data and the predicted power ramp Γ̂s

is obtained.

V. RESULTS AND DISCUSSIONS

The wind power TS data is retrieved from ELIA wind power

website [25]. The wind power TS spans from November 2014

to March 2015. The rated power of the wind farm is 712.9

MWh. The TS is partitioned into five monthly series named

as D1 to D5, Each monthly series is sub-sampled from 15

min average to hourly average and scaled to [0, 1] interval.
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Fig. 3: Flowchart of RVFL Network on Wind Power Ramp

Forecasting

The monthly TS are then partitioned into a first 50% training

and remaining 50% testing structure.

The TS was smoothed by the MAD based outlier removal,

missing data removal and moving average smoothing proce-

dure. The TS was then decomposed by an EMD method and

the energy and the average period of each IMF was calculated.

If the two variable of the IMF followed equation (8), the

IMF is discarded and the remaining IMFs and the residue

is reconstructed back to the de-noised TS. The monthly TS

were partitioned into a first 70% training and remaining 30%

testing structure.

The D1 data is used to illustrate the EMD de-noising pro-

cedure. The energy v.s. average period is plotted in Fig. 4. We

can see from that all the decomposed 8 IMFs neither fall onto

the empirical white noise line (dashed straight line) and nor

within the 1st-99th percentile confidence interval. Therefore,

there is no IMFs considered as noise in this particular case.

Based on the wind ramp definition and the literature [8],

we set Γval = 25% of the rated power (712.9 MWh) and

Δt = 4h, we can find the start and end time points of the

wind ramps based on the definition of Γext. A fraction of

wind power TS is plotted in Fig. 5 and the identified significant

ramps are plotted in red segment lines by joining the start and

end time points.

The classification task is to predict whether there exists a

significant wind power ramp in the next 6 or 12 hours based

on the previous 48 hours historical data. If there exists a wind

power ramp, the class is ‘+1’ (has ramp), otherwise the class

is ‘-1’ (no ramp). The training and target wind ramp decisions

are pre-determined by the two wind ramp definitions: Γext
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Fig. 4: The Energy v.s. Average Period Plot for D1 Data. The

solid straight line is the theoretical line to determine white

noise and the dashed straight line is the empirical line with

average period calculated from counting zero-crossings and

the two dashed curved lines are 5th and 95th percentile.
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Fig. 5: A Fraction of Wind Power Generated in an ELIA wind

farm, red segments denote power ramps.

and Γend. The summary of the datasets after partition, pre-

processing and labeling is shown in Table II. It is shown

that for the next 6 hour window forecasting, the datasets are

imbalanced whereas for the next 12 hour window forecasting,

the dataset is almost balanced. It is rational because longer

time window means higher possibility to have wind power

ramps falling inside. Therefore, over-sampling of the minority

class in the training set is not necessary for 12 hour window

forecasting.

A. Parameters Tuning of the Classification Methods

The RVFL network is evaluated with three other benchmark

methods: ANN (single layer), SVM (RBF kernel) and RF. The

parameters of RVFL, ANN and SVM are optimized by a 5-fold

CV module and the RF has a build-in out-of-bag error module

to select the optimal parameters. Instead of using accuracy as

the parameter selection criterion, F score is applied.

The optimal parameters of ANN, SVM, and RVFL network

after 5-fold CV and the parameters of RF are tabulated in

Table III.

B. Classification Performance

The performance measures are tabulated in Table IV. The

performance on 12 hour window forecasting is generally
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TABLE II: Summary of the Datasets for Wind Ramp Classi-

fication

6 Hour 12 Hour
Training Testing Training Testing

+1 -1 +1 -1 +1 -1 +1 -1

Γext

D1 64 387 32 184 153 292 71 145
D2 332 136 55 168 252 210 111 112
D3 103 365 54 169 220 242 120 103
D4 77 340 58 144 152 259 75 127
D5 78 389 58 165 164 297 107 116
Γend

D1 62 389 26 190 124 321 54 162
D2 130 228 45 178 237 225 85 138
D3 93 375 60 163 167 295 115 108
D4 82 335 78 124 150 261 62 140
D5 84 383 59 164 144 317 117 106

TABLE III: Optimal Parameters of the Classification Methods,

‘mtry’: number of variables randomly sampled as candidates

at each split, ‘ntree’: number of trees to grow, nh: number of

hidden neurons, C: penalty factor of SVM, σ: RBF kernel’s

shape parameter.

6 Hour 12 Hour
D1 D2 D3 D4 D5 D1 D2 D3 D4 D5

Γext

RF mtry=16, ntree=500
MLP nh = 96 42 96 54 54 48 54 96 54 30

SVR
C = 100 10000 100 100 1000 100 100 1000 100 100
γ = 0.604 0.188 0.188 0.937 0.687 0.521 0.875 0.354 0.604 0.187

RVFL nh = 96 96 96 96 96 96 96 96 96 96
Γend

RF mtry=16, ntree=500
MLP nh = 72 72 60 36 54 48 96 60 36 30

SVR
C = 100 1000 100 1000 100 100 100 100 100 100
γ = 0.771 0.521 0.521 0.687 0.604 0.437 0.104 0.187 0.187 0.187

RVFL nh = 96 96 96 96 96 96 96 72 72 96

higher than that of the 6 hour future window forecasting which

is due to the class balancing in the testing set. The performance

measures of the RVFL is generally higher for both wind power

ramp definitions on 12 hour window forecasting.

For 6 hour window forecasting. There are ‘NaN’ cases in

F Score results due to the complete mis-classification of TP

(also results a ‘0’ in Precision and Recall). Although there

is no ‘NaN’ or ‘0’ from RVFL network, the performance is

comparable among the four methods.

A Friedman rank sum test in Table V showed the statistical

comparisons among the four classification methods. It is

shown that for 6 hour window forecasting, the four methods

are comparable whereas for 12 hour window forecasting, there

are significant differences among them. Next a Nemenyi post-

hoc test is applied to the 12 hour window forecasting and the

p value is shown in Table VI. From the test statistics, we can

see that RVFL network has comparable performances as ANN

and RF and can outperform SVM for wind ramp defined by

Γext.

TABLE IV: Performance Measures of the Power Ramp Clas-

sification in the next 6 and 12 hours, ‘NaN’: not a number

due to divide by zero.

6 Hour 12 Hour
Dataset ANN RF SVM RVFL ANN RF SVM RVFL

Γext

F
S

co
re

D1 0.031 NaN 0.07 0.081 0.17 0.162 0.149 0.215
D2 0.226 0.135 0.146 0.304 0.458 0.508 0.365 0.478
D3 0.189 0.123 0.204 0.33 0.324 0.512 0.43 0.581
D4 0.4 0.304 0.222 0.392 0.579 0.631 0.543 0.68
D5 0.314 0.465 0.253 0.296 0.362 0.593 0.331 0.585

P
re

ci
si

o
n

D1 0.03 0 0.08 0.071 0.171 0.286 0.18 0.26
D2 0.217 0.176 0.122 0.233 0.408 0.473 0.353 0.434
D3 0.192 0.185 0.227 0.234 0.393 0.492 0.454 0.531
D4 0.351 0.412 0.206 0.316 0.63 0.658 0.6 0.691
D5 0.268 0.714 0.324 0.32 0.42 0.683 0.452 0.612

R
ec

al
l

D1 0.031 0 0.062 0.094 0.169 0.113 0.127 0.183
D2 0.236 0.109 0.182 0.436 0.523 0.55 0.378 0.532
D3 0.185 0.093 0.185 0.556 0.275 0.533 0.408 0.642
D4 0.466 0.241 0.241 0.517 0.535 0.606 0.496 0.669
D5 0.379 0.345 0.207 0.276 0.318 0.523 0.262 0.561

Γend

F
S

co
re

D1 NaN NaN NaN 0.061 0.122 0.022 0.018 0.023
D2 0.23 0.061 0.143 0.265 0.303 0.382 0.353 0.483
D3 0.204 0.277 0.197 0.329 0.296 0.54 0.336 0.4
D4 0.453 0.067 0.159 0.398 0.594 0.609 0.598 0.636
D5 0.355 0.509 0.306 0.273 0.49 0.578 0.35 0.574

P
re

ci
si

o
n

D1 0 0 0 0.05 0.115 0.027 0.017 0.029
D2 0.238 0.095 0.111 0.198 0.312 0.333 0.303 0.405
D3 0.182 0.382 0.194 0.272 0.341 0.594 0.352 0.419
D4 0.525 0.25 0.183 0.357 0.679 0.778 0.713 0.755
D5 0.338 0.574 0.385 0.247 0.51 0.746 0.519 0.583

R
ec

al
l

D1 0 0 0 0.077 0.13 0.019 0.019 0.019
D2 0.222 0.044 0.2 0.4 0.294 0.447 0.424 0.6
D3 0.233 0.217 0.2 0.417 0.261 0.496 0.322 0.383
D4 0.397 0.038 0.141 0.449 0.529 0.5 0.514 0.55
D5 0.373 0.458 0.254 0.305 0.472 0.472 0.264 0.566

TABLE V: Friedman Rank Sum Test on the Performance

Measures of the Four Classification Methods, p is the p value

and χ2 is the chi square test statistic, p < 0.05 means there is

a significant performance difference among the four methods.

Γext Γend

Measure 6 Hour 12 Hour 6 Hour 12 Hour
χ2 p χ2 p χ2 p χ2 p

F Score 4.92 0.177 10.92 0.0121 3.7826 0.286 7.8 0.050
Precision 1.08 0.781 12.12 0.0069 1.1739 0.759 7.8 0.050

Recall 8.1875 0.0423 9.72 0.021 7.6957 0.053 4.4667 0.215

TABLE VI: Nemenyi Post-hoc Test on the Performance

Measures of the Four Classification Methods with 12 Hour

Window Forecasting, the p value is recorded, p < 0.05 means

the RVFL network significantly outperforms the benchmark

methods(ANN, RF or SVM).

Γext Γend

ANN RF SVM ANN RF SVM

R
V

F
L F Score 0.203 0.961 0.017 0.20 0.99 0.12

Precision 0.068 0.995 0.122 0.32 0.99 0.20
Recall 0.122 0.611 0.017 0.53 0.69 0.20

C. Computation Time
The average and standard deviation of the computation time

of training and testing over 5 datasets are shown in Table VII.
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ANN has the longest training time among them all due to

the iteration of BP. Because RF is regression tree based, the

training and testing are fast. SVM requires grid search during

training thus it has slow training speed but fast testing speed.

RVFL has the advantage of fast training because it utilizes

least square method to calculate the output layer weights as

well as the fast testing because of the matrix calculation. From

the table, we can see that in general RVFL has the best testing

time yet comparable training time compared with RF.

TABLE VII: Computation Time (sec) of the Classification

Methods over 5 Datasets, ‘Ave’: average/mean, and ‘SD’:

standard deviation

Dataset RF SVM ANN RVFL
Train Test Train Test Train Test Train Test

Γext, Horizon=6 h
D1 1.2 1.13 85.85 0.24 205.42 7.55 1.72 0.09
D2 0.88 0.9 75.56 0.2 176.92 4.52 1.7 0.09
D3 1.17 1.22 88.48 0.22 181.02 6.27 1.67 0.88
D4 0.78 0.81 72.88 0.21 157.63 4.48 1.89 0.08
D5 0.98 1.01 92.18 0.33 187.18 5.04 1.73 0.1
Ave 1 1 82.99 0.24 181.63 5.57 1.74 0.25
SD 0.182 0.166 8.37 0.05 17.29 1.32 0.09 0.35

Γend, Horizon=6 h
D1 1.06 1.07 86.03 0.25 214.61 5.55 1.72 0.09
D2 0.92 1.12 78.76 0.12 173.92 5.48 1.75 0.08
D3 1.14 1.17 89.94 0.25 183.11 5.3 1.76 0.09
D4 1 0.78 71.74 0.21 157.38 4.07 1.81 0.08
D5 1 1.14 93.96 0.3 176.78 4.92 1.73 0.09
Ave 1.03 1.06 84.09 0.23 181.16 5.06 1.75 0.09
SD 0.08 0.16 8.89 0.07 20.97 0.61 0.04 0.01

Γext, Horizon=12 h
D1 0.81 0.78 64.36 0.22 151.3 3.95 1.37 0.08
D2 0.7 0.67 50.3 0.17 118.95 3.62 1.27 0.06
D3 0.67 0.7 57.47 0.16 113.88 4.57 1.22 0.06
D4 0.62 0.63 51.01 0.15 122.21 3.71 1.26 0.06
D5 0.89 0.85 64.46 0.2 141.37 3.32 1.39 0.08
Ave 0.74 0.73 57.52 0.18 129.54 3.83 1.30 0.07
SD 0.11 0.09 6.88 0.03 16.00 0.47 0.07 0.01

Γend, Horizon=12 h
D1 0.98 0.8 70.18 0.21 154.19 4.42 1.55 0.08
D2 0.66 0.63 46.34 0.13 115.34 4.64 1.22 0.09
D3 0.78 0.98 64.57 0.2 139.76 4.15 1.61 0.05
D4 0.64 0.61 51.28 0.16 124.77 3.2 1.26 0.05
D5 0.85 1.09 71 0.21 146.03 3.52 1.48 0.08
Ave 0.78 0.82 60.67 0.18 136.02 3.99 1.42 0.07
SD 0.14 0.31 11.25 0.04 15.80 0.61 0.17 0.02

VI. CONCLUSION

This paper has covered an important topic on wind power

utilization: wind power ramp forecasting. The importance and

challenges of accurate wind power ramp forecasting have been

addressed. Various wind power ramps have been defined in this

paper. A random vector functional link (RVFL) neural network

has been employed to forecast the wind power ramp and the

ramp rate. The RVFL network has comparable performance

as the benchmark methods: artificial neural network (ANN),

random forests (RF) and support vector machine (SVM) for

6 hour window forecasting but RVFL network has better per-

formance than the SVM for 12 hour window forecasting. The

computation time of RVFL network has significant advantage

over SVM and ANN and is comparable as RF.

Future work may includes to extend the power ramp clas-

sification from binary class to multiple class. The additional

classes may refer to up-ramp and down-ramp events, strong

ramp and weak ramp events, and fluctuation ramp events (ramp

with more than one local maxima and minima).

Another possible future work is to switch from point fore-

casting to probabilistic forecast i.e. each forecast value is a

set of probabilities and a corresponding interval instead of a

single value.
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