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Abstract—Rainfall is one of the most challenging variables to
predict, as it exhibits very unique characteristics that do not
exist in other time series data. Moreover, rainfall is a major
component and is essential for applications that surround water
resource planning. In particular, this paper is interested in the
prediction of rainfall for rainfall derivatives. Currently in the
rainfall derivatives literature, the process of predicting rainfall
is dominated by statistical models, namely using a Markov-
chain extended with rainfall prediction (MCRP). In this paper
we outline a new methodology to be carried out by predicting
rainfall with Genetic Programming (GP). This is the first time
in the literature that GP is used within the context of rainfall
derivatives. We have created a new tailored GP to this problem
domain and we compare the performance of the GP and MCRP
on 21 different data sets of cities across Europe and report the
results. The goal is to see whether GP can outperform MCRP,
which acts as a benchmark. Results indicate that in general GP
significantly outperforms MCRP, which is the dominant approach
in the literature.

I. INTRODUCTION

Predicting rainfall is a major component and is essential

for applications that surround water resource planning and

management. Over the years numerous attempts have been

made at capturing rainfall. One area where it is vital to predict

the rainfall amount accurately is within rainfall derivatives.

Rainfall derivatives fall under the umbrella concept of weather

derivatives, which are similar to regular derivatives defined

as contracts between two or more parties, whose value is

dependent upon the underlying asset. In the case of weather

derivatives, the underlying asset is a weather type, such as

temperature or rainfall. The main difference between normal

derivatives and weather derivatives is that weather is not

tradeable. Hence, typical methods that exist in the literature

for other derivatives are not suitable for weather derivatives.

In this problem domain the underlying asset is the ac-

cumulated rainfall over a given period, which is why it is

crucial to predict rainfall as accurately as possible to reduce

potential mispricing. Contracts based on the rainfall index are

decisive for farmers and other users whose income is directly

or indirectly affected by the rain. A lack or too much rainfall

is capable of destroying a farmer’s crops and hence their

income. Thus, rainfall derivatives are a method for reducing

the risk posed by adverse or uncertain weather circumstances.

Moreover, they are a better alternative than insurance, because

it can be hard to prove that the rainfall has had an impact

unless it is destructive, such as severe floods or drought.

Similar contracts exist for other weather variables, such as

temperature and wind.
Within the literature rainfall derivatives is split into two

main parts. Firstly, predicting the level of rainfall over a

specified time and secondly, pricing the derivatives based on

different contract periods/length. The latter has its own unique

problem, as rainfall derivatives constitutes an incomplete mar-

ket1. This means the standard option pricing models such

as the Black-Scholes model are incapable of pricing rainfall

derivatives, because of the violation of the assumptions of

the model; namely no arbitrage pricing. Thus, a new pricing

framework needs to be established. This paper focuses on the

first aspect of predicting the level of rainfall. Note that it is

essential to have a model that can accurately predict the level

of rainfall, before pricing derivatives, because the contracts are

priced on the predicted accumulated rainfall over a period of

time.
In order to predict the level of rainfall for rainfall deriva-

tives, the statistical approach of Markov-chain extended with

rainfall prediction (MCRP) [1] is used. Other methods do exist,

but this approach in particular is the most commonly used, and

will thus be acting as a benchmark for our proposed method-

ology. The use of these models allows for the simulation of

rainfall on a daily time scale, thus giving more flexibility in

the problem domain. The reason why we are interested in

daily amounts, rather than monthly or annual amount models

is because the models are a lot more flexible to changes.

Moreover, one is able to capture trends and more information

from studying daily values. Thus, increasing the accuracy of

pricing, which is crucial because contracts are priced ahead of

time—sometimes this can be up to a year ahead. It is outside

the scope of this paper to cover rainfall derivatives in detail.

However, the path chosen reflects the literature surrounding

this application such as [2], [3] and [4].
The amount of literature surrounding rainfall derivatives is

quite light, due to rainfall derivatives being quite a new concept

and rainfall being very difficult to accurately measure. As

already mentioned, the use of MCRP is the most prevalent

1In incomplete markets, the derivative can not be replicated via cash and
the underlying asset; this is because you can not store, hold or trade weather
variables.
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approach, due to its simplicity. The general approach of MCRP

is often referred to as a ‘chain-dependent process’ [5], which

splits the model into capturing first the occurrence pattern,

and then the rainfall intensities. The occurrence pattern is

produced by calculating the probability of what the outcome

of today will be given what happened in the previous day(s).

The process of deciding upon what state to be in is performed

by a Markov-chain, where state 0 is a dry day and state 1 is

a wet day. On the other hand, the intensities are produced by

generating random numbers from a distribution that fits the

daily data. This step is only calculated if we are in state 1, i.e.

a wet day. Typically in the literature, the Gamma and Mixed-

Exponential distributions provide the best fit for rain data and

are most commonly used [1]. We refer the reader to [1] for a

complete description of the MCRP approach.

However, even though the MCRP approach is quite popular,

it faces several drawbacks. First of all, the model is very

simplistic and is heavily reliant on past information being

reflective of the future. Additionally, the predicted amount is

essentially the average level of rainfall observed across the

study period and does not take into account annual deviations

in weather patterns. Furthermore, the model for each city needs

to be specifically tuned as each exhibits different statistical

properties, i.e. a new model for each city. Lastly, MCRP

produces weak predictive models, as its only focus is on

fitting the historical data. This last point is very important,

as one should not only be interested in deriving models that

describe past data effectively, as it currently happens; instead,

we should also be focusing on producing effective predictive

models, which can offer us insights on future weather trends.

Due to the disadvantages highlighted above, we divert away

from the use of statistical approaches and in this paper we

propose using a machine learning technique called Genetic

Programming (GP). Rainfall prediction has not been covered

in great detail within the machine learning literature and the

applications are mainly focussed on the short term predictions

i.e. up to a few hours [6]. Little literature exists for the daily

predictions, e.g. [7] used a feed-forward back-propagation

neural network for rainfall prediction in Sri Lanka, which

was inspired by the chain-dependent approach from statistics.

To the best of our knowledge, the only work that exists for

daily predictions using Genetic Programming is [8]. However,

the GP performed poorly by itself, although when assisted

by wavelets the predictive accuracy did improve. However,

there has been no previous work in using GP in the context

of rainfall weather derivatives.

The goal of this paper is thus to explore whether GP is

able to outperform the usual approach adopted within the

rainfall derivative literature, namely MCRP. GP is chosen for

this paper over other machine learning techniques, because

it has the benefit of producing white box (interpretable, as

opposed to black box) models, which allows us to probe

the models produced. Moreover, we can capture nonlinear

patterns in data without any assumptions regarding the data.

This should allow us to produce a model that can reflect the

ever changing process of rainfall. As a result, we could capture

yearly deviations that the current MCRP is unable to replicate.

Additionally, we are able to produce a more general model,

which can be applied to a range of cities/climates, without

having to build a new model each time.

Hence, the main contribution of this paper is that we propose

a new GP for the problem of rainfall prediction, and compare

its predictive performance against the performance of the

current state-of-the-art MCRP approach. This will be the first

step towards pricing rainfall derivatives using GP.

The remainder of this paper is organised as follows. Section

II will cover the setup of the data including the data sets that

will be used. Section III will outline the fitness criteria used for

GP and MCRP. Section IV then reviews the MCRP approach.

Section V describes in detail our proposed GP for rainfall

prediction, Section VI will then discuss the experimental setup,

and Section VII will discuss the results from GP and MCRP.

Finally, Section VIII will conclude findings and suggest future

research.

II. DATA SETUP

There are two elements to the setup of the data, first is the

number of cities we will test our experiments on, including

the length of each training set. Second, is how the data will

be treated and the number of attributes that will be passed to

the algorithms.

A. Choice of data

The daily rainfall data used is summarised in Table I, which

includes a total of 21 cities from around Europe. The cities

were chosen based on two aspects, firstly, the availability of

data, hence minimising the potential for missing values. The

data corresponding to the European cities were provided by

the National Centers for Environmental Information2 (NCEI).

Secondly, the climate of each city. In order to get an approach

that can be generalised, different climates are present across

the selection of cities, ranging from very wet climates to very

dry climates. This is an important factor as the climate has

an impact upon an algorithm’s performance, in the literature

individual models are built for each city.

TABLE I
THE LIST OF ALL CITIES WHOSE DAILY RAINFALL AMOUNTS WILL BE

USED FOR EXPERIMENTS.

Cities to use for daily rainfall

Amsterdam (Netherlands), Arkona (Germany), Basel (Switzerland),

Bourges (France), Bremen (Germany), Caceres (Spain),

Castricum (Netherlands), De Kooy (Netherlands), Delft (Netherlands) ,

Gorlitz (Germany), Ljubljana (Slovenia), Luxembourg (Luxembourg),

Marseille (France), Oberstdorf (Germany), Paris (France),

Perpignan (France), Potsdam (Germany), Regensburg (Germany),

Santiago (Portugal), Strijen (Netherlands).

2http://www.ncdc.noaa.gov/
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Fig. 1. The daily level of rainfall in tenths of mm of Luxembourg over the
period from 01/01/2013 till 31/12/2013.

The length of data was chosen to be 10 years of daily

rainfall for training and 1 year of daily rainfall for testing.

We leave it as a future investigation whether different training

lengths can impact the results. The length of training data is an

important aspect, given climatic shifts can occur across long

periods of time. Therefore, by using 10 years allows us to have

sufficient observations to build a model on, without having to

worry about climatic shifts within the period. Additionally,

this will capture the periodic shifts in rainfall that occur each

year, not associated with climatic shifts. As rainfall derivative

contracts are written several months ahead of time and could

span several months at a time, a testing period of 1 year is an

appropriate length. Additionally, forecasting one year ahead

really tests the robustness and suitability of the algorithm.

B. Treatment of data

The way the data is treated is an additional factor, as it

is uncommon that giving raw data values to an algorithm

will return anything of use. Therefore, the data should be

transformed to better suit our problem domain. The end goal

of this work is to price rainfall derivative contracts based on

the accumulated amount of rainfall, over the specified contract

length. For example, a contract for the month of January

would require the summation of daily rainfall over 31 days.

An important aspect, which should be taken into account is

that contracts must be in the future, usually up to a year ahead

of time and the contract period can be of any length. The most

common period lengths being monthly or seasonally, but there

is nothing stopping having a contract of 37 days or 164 days

being specified. In addition, there is an even greater necessity

for transforming the data, given the unique aspect of rainfall.

Daily rainfall is one of the most volatile and hardest data sets

to predict, which includes (depending upon climate) long or

frequent periods of wet and/or dry spells. Findings from [8]

suggest that using daily values for GP is unsuitable given

the relative poor performance of their GP. Figure 1 shows

the annual rainfall for Luxembourg and just how volatile and

unpredictable the rainfall process is over a year.

Therefore, we propose using a sliding window approach,

which will transform the data to something more manageable

and better suited for the problem domain. In this work, our

sliding window is defined by the length of a contract, i.e., the

accumulated daily rainfall amount over the contract length.

For example, pricing contracts for the month of January would

require accumulating the daily rainfall amounts over 31 days.

This allows us to model a contract over any given contract

length, which is a crucial advantage of our methodology. Once

the contract length has been specified, then the cumulative

amounts will be produced using the daily rainfall amounts, as

shown in Table 2. Figure 2 shows the benefit of applying a

sliding window approach to the data. The output appears a lot

less random, which was the motivation behind applying the

sliding window, i.e., to help smooth out the data. Additionally

the day-by-day volatility appears to have decreased and a

pattern in rainfall is more easily noticeable. This approach

is very flexible to the problem of predicting rainfall.

Fig. 2. The daily level of rainfall in tenths of mm of Luxembourg using the
sliding window approach over the period from 01/01/2013 till 31/12/2013.

TABLE II
AN EXAMPLE OF HOW THE SLIDING WINDOW IS PERFORMED, ACROSS

THREE DIFFERENT START DATES.

Start Date Daily data points to accumulate

1st January 1st January - 31st January

2nd January 2nd January - 1st February

3rd January 3rd January - 2nd February

C. Data variables

In order to predict the accumulated amount produced by

the sliding window period, data from a previous period are

required in order to predict what the accumulated rainfall will

be in the current sliding window. For example, if looking to

predict the sliding window period January 1st 2015 - January

31st 2015 (contract length of 31 days), then only the data

from December 31st 2014 and prior is available. Therefore, we

define a set variables that use the sliding window approach to
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help predict the next sliding window. The first set is the sliding

window approach but in reverse, t periods ago (where the

length of a period t in this example is 31 days). For example,

t–1 on January 1st 2015 would be the accumulated rainfall

amount from December 1st 2014 - December 31st 2014 (the

last known sliding window), t–2 would be October 31st 2014 -

November 30th 2014 (the next known sliding window with no

overlap of t–1) and so on. This process is done for a specified

number of t’s.

The second set is what was the sliding window value for

a given day y years ago. For example, the value for y–1 on

January 1st 2015 would be the accumulated rainfall amount

from January 1st 2014 - January 31st 2014, y–2 would be

January 1st 2013 - January 31st 2013 and so on. This process

is done for a specified number of y’s.

To sum up what we have discussed in this section, the

data sets that we will use consist of 21 different European

cities, from different climate types. In addition, we will use

a sliding window approach to summarise the data, instead of

daily predictions. Lastly, the attributes we will be using for

predicting the rainfall amounts are the previous contract length

periods t, e.g., t-1 period ago, t-2 periods ago, and so on, as

well as the previous years y, e.g. y-1 years go, y-2 years ago,

and so on.

III. FITNESS (EVALUATION) FUNCTION

For each of the following algorithms covered in Section IV

and Section V the fitness used for evaluation will be the root

mean squared error, given by:

RMSE =

√√√√ 1

N

N∑
t=1

(rt − r̄t)2, (1)

where N is the length of the data set, rt represents the

predicted rainfall amount and r̄t represents the actual rainfall

amount for the tth data point (time index).

IV. MARKOV-CHAINS EXTENDED WITH RAINFALL

PREDICTION

Similar to the literature, we implement MCRP, which will

act as a benchmark for our GP. MCRP’s configurations are

summarised in Table III. Here we opt for looking at different

orders of Markov-chains, to see whether using information

from the previous one or two days helps capturing the be-

haviour of rainfall. We will use the most commonly used

distribution for rainfall modelling: gamma distribution.

Three different approaches of smoothing out the transitional

probabilities and distribution parameters are used. The first

is by the use of a fourier series, which is used to smooth

out the daily volatility. More information regarding the im-

plementation can be found in [9]. Therefore, having 365

different transitional probabilities and distribution parameters

(one for each day of the year). The second is by the average

transitional probabilities and distribution parameters across a

month, thus having 12 different transitional probabilities and

distribution parameters (same daily value for each month of

a year). Both of these approaches are well established in

the literature, whereas the third approach utilises the sliding

window approach. Based on the contract length, a moving

average will be calculated on the transitional probabilities and

distribution parameters for each day. Due to calculating the

accumulated amount for the next contract length period, the

transitional probabilities and distribution parameters mimic

this in the same way as described in Section II-C.

We test each configuration value of Table III (a total of 6

different combinations) on each city using one year of testing

(01/Jan/2013 - 31/Dec/2013). Similar to the literature [1], we

use the previous 50 years of data to tune the parameters of

each city and run the process for 10,000 iterations.

TABLE III
THE DIFFERENT CONFIGURATIONS OF THE MCRP APPROACH. FOR

EXPERIMENTATION EVERY POSSIBLE COMBINATION WILL BE TESTED.

MCRP configuration Configuration values

Accumulation Method Daily, Monthly, Contractly

Order of Markov chain 1, 2

Distribution for rainfall amount Gamma

V. THE PROPOSED GENETIC PROGRAMMING METHOD

Here we outline a tailored GP for the problem of rainfall

prediction. For this paper, we opt for an extension over the

original Koza type of GP [10], and use a Strongly-typed GP

(STGP) [11], because we can include different types to avoid

illegal trees being generated. Several modifications have been

made to the STGP, which will be covered briefly here. There

are three types of elements to the terminal set. The first set of

elements in the terminal set includes all the variables available

within the data. The variables are defined by the original y’s

and t’s calculated from the original data. The second element

is an ephemeral random constant (ERC), which will pick a

uniformly distributed random number. We allow our ERC

to choose a random number between the limits of -500 to

500. We want to generate a larger spread, due to predicting

accumulated rainfall over a contract length, rather than daily

amounts. Additionally, we allow for flexibility in our ERC and

include a separate range for positive and negative numbers.

Therefore, allowing a way to reduce the search space for

choosing meaningful random numbers. The ERC requires four

parameters to control the range of random numbers. Two

parameters to control the positive range and two to control

the negative range. Each different range requires a parameter

for its upper bound and a parameter for its lower bound.

The third element is a set of constants from -4 to 4, at 0.25

intervals, which will take a separate type from the terminals

already discussed. These are constants that are specific to the

power function. Due to using a STGP, we can ensure that

the second argument of the power function is always one

of these constants and does not create an illegal tree. We

opt for choosing from within this range, to avoid excessively
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large numbers being created, whilst maintaining a reasonable

amount of options for our GP to choose from during initiali-

sation and evolution.

TABLE IV
GP FUNCTION AND TERMINAL SETS.

Set Value

Functions
ADD, SUB, MUL, DIV,

POW, SQRT, LOG

Terminals
t period, y period, ERC,

Constants in the range [-4,4]

The function set includes: Add (ADD), Subtract (SUB),

Multiply (MUL), Divide (DIV), power (POW), square root

(SQRT), and log (LOG). The functions LOG, SQRT and DIV

are protected, because the data includes zeroes and negative

numbers. If the input is zero or negative then SQRT and LOG

will return zero. If the second argument passed to DIV is

zero (denominator), then zero is also returned. Protecting these

values will stop NaN’s (not a number) and Inf’s (infinity) from

being generated. The final function that has been modified is

POW. It has been forced such that the second argument will

be a constant within a specified range as mentioned within

the previous discussion regarding the terminals. This will

stop very large values from being generated, avoiding Inf’s.

Additionally, we allow for fractional powers, which means

there is the potential for rooting negative values and producing

NaN. One final check is whether the first argument (number

to be raised by a power) is negative, if so then the second

argument must be a whole number, which will be rounded to

the nearest number if fractional. These adjustments will avoid

illegal trees being generated.

Finally, another adjustment made involves dealing with

negative number outputs. For this problem domain the values

have to be greater than or equal to zero, it is impossible

to have negative rainfall amounts. Therefore, we include a

wrapper around each individual (candidate solution) to change

the prediction to zero if the prediction was less than zero. The

final adjustment made was to ensure a good balance between

variables and random numbers in an individual. Therefore,

when initialising the population using the ramped-half-and-

half, we make sure that the first child is either a function or a

variable, whereas the second child can either be a variable,

an ERC or another function. This will avoid trees being

dominated by random numbers.

All functions and terminals presented in this section are

summarised in Table IV.

VI. EXPERIMENTAL SETUP

A. Parameter tuning - GP

iRace is a tool that is used to optimise parameters of most

algorithms [12]. It is an iterative process and will sample many

different parameter configurations and evaluate them across

multiple problem instances to find an optimal configuration

for the instances given to the algorithm. The advantage of

using such a tool is that no prior knowledge is required and

even for experienced users of a certain algorithm, iRace will

consider combinations that a user may never have considered.

Additionally, the process of finding the best configuration is

more efficient than blindly guessing or by using the best

configuration for a previous problem. A configuration that

worked well on a previous problem may not necessarily

work for a different problem. Across each iteration, iRace

will resample configurations that performed well. Therefore,

allowing iRace to search the space of the problem, and focus

on promising areas.

Each city’s complete data set will be split into 9 different

smaller subsets consisting of 10 years of rainfall data with

a preserved temporal order, and a 5 year overlap between

datasets3. To increase generalisation and reduce issues of

overfitting, we will let iRace optimise the parameters for

GP using 11 out of 21 data sets. The data sets chosen are

Amsterdam, Arkona, Basel, Bourges, De Kooy, Ljubljana,

Luxembourg, Marseille, Potsdam, Regensburg and Santiago,

which were presented earlier in Table I. To keep the process

as fair as possible, we arbitrarily chose each city in regard

to the data’s climate. Therefore, the different climates used

for optimising the GP parameters are similar to those in the

remaining data sets.

To further reduce issues of overfitting when using iRace, we

will split each city’s training data set into a build and validate

set as shown in Figure 3. The build set will consist of the

first 9 years of rainfall data and the validate set will consist

of the final year of rainfall data. The validation set length was

chosen, such that, it is consistent with the testing set length.

In total we had 99 training sets to be used by iRace, where

each city had 9 different data folds.

Fig. 3. The setup of each city’s data set and how iRace interacts with the
training set.

The results from iRace returned 5 top configurations. To

decide which configuration was the best overall, we used the

mean rank, which calculates on average how each approach

3This means that one dataset would be for the 10 year period of 2003-2012,
another one for 1998-2007, another one for 1993-2002, and so on. Using such
an overlap allows for the generation of a higher number of datasets.
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ranked across all 11 cities. The best ranking configuration,

which we will be using as part of our GP experiments, is

presented in Table V.

TABLE V
THE BEST CONFIGURATION OF GP FROM OPTIMISING THE PARAMETERS

USING IRACE.

GP Parameter Run 5

Max depth of tree 8

Population size 1400

Crossover probability 0.76

Mutation probability 0.69

Primitive probability 0.55

Terminal/Node bias 0.2

Elitism percentage 0.03

Number of gens 30

ERC negative low -495.36

ERC negative high -102.56

ERC positive low 100.77

ERC positive high 438.58

B. Parameter tuning - MCRP

It should be noted that iRace is not used for the configura-

tion of MCRP, because MCRP does not have a configuration

set that controls the behaviour of itself (compared to GP).

Furthermore, there are only two components (occurrence and

amount) that make up MCRP, which have no alternatives. The

occurrence and amount is tailored specifically for each data

set, based on the daily rainfall values. Firstly, the occurrence

process is controlled via a Markov-chain, which has its tran-

sitional probabilities calculated deterministically. Secondly,

the amount process is controlled by a single distribution (in

our case, Gamma), which is estimated based on the data.

Thus, both of these aspects fall outside the scope of iRace,

as neither component requires parameters to be optimised.

However, if any estimation is required (e.g. the fourier series

or gamma distribution parameters) we will use maximum-

likelihood estimation (MLE), which is a standard technique

used within rainfall prediction in estimating parameters for

statistical models [9]. Therefore, we keep our benchmark

consistent with the literature.

In addition, to decide which was the best MCRP configu-

ration among the ones presented in Table III, we again used

the mean rank across all cities. Results showed that the best

performing approach was to use an order 2 Markov chain,

with daily data, which would then be fitted into a gamma

distribution. Thus, this will be the approach we will be using

with MCRP.

C. Experimental methodology

Once the we have completed the choice of the best config-

uration for GP and MCRP, we are then ready to move on to

the experimental comparison of the two algorithms. Both al-

gorithms are tested on all 21 datasets. GP will use the full and

most recent training set (01/Jan/2003 - 31/Dec/2012), before

testing on the unseen test set (01/Jan/2013 - 31/Dec/2013).

The same test set is used for MCRP. As GP is a stochastic

algorithm, we run the configuration for 50 times on each city.

For MCRP, as noted earlier in Section IV, we run our MCRP

10,000 times on each city.

VII. RESULTS

The performance of MCRP and GP is presented in Table

VI based on the average RMSE performance from the testing

set for each city. The table has been split between those data

sets seen by iRace (top) and unseen (bottom), arranged by

alphabetical order. We have chosen to do this, as the best

configurations were chosen based on the validation set of the

11 cities shown in the top half. Therefore, we would expect

GP to perform better on those cities, because GP’s optimal

parameters were selected (using iRace) based on those data

sets. Whereas, the bottom 10 cities have not influenced the

parameters for the best configuration of GP and help show

the ability to generalise using GP. Thus, allowing us to use

our best configuration on future data sets that exhibit a similar

climate.

TABLE VI
THE AVERAGE RMSE PERFORMANCE IN TENTHS OF MM AND THE

ABSOLUTE DIFFERENCE FOR THE BEST MCRP METHOD AND GP
CONFIGURATION ACROSS EACH CITY.

Data MCRP GP Absolute difference

Amsterdam 475.72 432.14 43.58

Arkona 283.89 221.38 62.51

Bilbao 980.78 826.98 153.80

Bourges 400.97 341.35 59.62

Dekooy 365.29 348.08 17.21

Luxembourg 424.31 410.74 13.57

Ljubljana 706.42 669.97 36.45

Marseille 890.82 264.08 626.74

Potsdam 263.30 221.69 41.61

Regensburg 378.40 400.38 21.98

Santiago 1387.84 1428.11 40.27

Basel 281.20 269.93 11.27

Bremen 278.26 279.15 0.89

Caceres 717.11 531.65 185.46

Castricum 539.83 489.17 50.66

Delft 569.33 471.50 97.83

Gorlitz 331.18 263.56 67.62

Oberstdorf 678.43 651.18 27.25

Paris 257.14 247.61 9.53

Perpignan 955.02 516.50 438.52

Strijen 371.01 353.01 18
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As we can observe, across the 21 different cities, GP

outperforms MCRP 18 times. There are only 3 occasions

where MCRP outperforms GP. This is a remarkable result,

which demonstrates the superiority of our GP against the

MCRP approach, which as we have already explained is

currently considered the state-of-the-art in the domain of

rainfall prediction for weather derivatives. It is also worth

noting that the GP has in several cases introduced a substantial

reduction in the RMSE values, e.g. in Marseille from 890.82

to 264.08, a gain of 626.74, and in Perpignan from 955.02 to

516.50, a gain of 438.52. Another interesting point is in the

three cases where MCRP outperformed GP, the differences are

very small; on average a gain of 21.05.
To firstly check which of our algorithms performed better

in terms of wins, we will work out the mean rank based on

Table VI — the lower the rank, the better the algorithm’s

performance. Furthermore, in order to determine whether the

above results are statistically significant, we compare the

two approaches by using the Wilcoxon signed-rank test [13].

The Wilcoxon signed-rank test is a nonparametric test for

comparing two related samples, to test whether the mean ranks

of these samples differ. Essentially, the Wilcoxon signed-rank

performs a paired test by comparing the difference between

the performance of both methods on each city. The null

hypothesis is that there is no significant difference between

the average RMSE of GP and MCRP. We apply the test at the

5% significance level.

TABLE VII
THE MEAN RANKINGS OF MCRP AND GP, AND THE WILCOXON

SIGNED-RANK p-VALUE TO TEST WHETHER GP OR MCRP STATISTICALLY

OUTPERFORMED THE OTHER.

Approach Ranking

MCRP 1.86

GP 1.14

Wilcoxon p-value 0.0007

Table VII shows the mean rank of both MCRP and GP,

a value of 1.86 and 1.14 respectively, where a lower rank

indicates better performance. Therefore, across each city on

average GP outperformed MCRP. Also shown, is the p-value

rounded to 4 decimal points for the Wilcoxon signed-rank test.

As we can observe, the Wilcoxon signed-rank statistic has a

value of 0.0007, which is less than the 5% significance level

and is in fact significant at the 99.9% level. Therefore, there

is strong evidence to reject the null hypothesis, and conclude

that our proposed GP statistically outperformed the MCRP

approach.
From the above results, we can conclude that GP is a suit-

able method for predicting rainfall in the context of weather

derivatives, by statistically outperforming the current state-of-

the-art (MCRP). This is an important result, as it indicates

that GP is able to outperform the most commonly used

statistical methods currently used within the rainfall derivatives

application domain. Moreover, having more accurate rainfall

predictions could help increase the accuracy of pricing rainfall

derivatives, which as we explained at the beginning of this

paper, is another important problem of the field of weather

derivatives. Lastly, as we are able to give more confidence

surrounding the prediction of rainfall, this will help to reduce

potential mispricing and attract more investors to the rainfall

derivative market.

VIII. CONCLUSION

This paper proposes a new approach to predicting rainfall

for the application of rainfall derivatives. The motivation is

to provide a better methodology to overcome the weaknesses

of the current approach of the Markov-chain extended with

rainfall prediction (MCRP). Such an approach does not have

the same predictive power as other nonparametric approaches

such as Genetic Programming (GP). In fact, MCRP tends to

average out the past historical data, which is unable capture

patterns within the data.

Strongly-typed Genetic Programming (STGP) was our cho-

sen methodology, due to producing white box (interpretive)

models and to being a technique that can detect and learn

from nonlinear data. Furthermore, STGP was chosen over the

standard GP, because we can influence types to avoid illegal

trees being created. In this paper we compared our STGP

against MCRP, which is currently used within the literature.

This was the first application of GP within the context of

rainfall derivatives.

Instead of using daily data to feed into our GP, which is the

data required for MCRP, we proposed using a sliding window

for the problem domain. Thus, instead of accumulating rainfall

after predicting it on a daily basis, we modeled directly on

the contract length that we are interested in pricing. We

implemented the most common MCRP methods that are used

within the literature, to act as our benchmark. When comparing

GP against MCRP, we found sufficient evidence to suggest

that GP is capable of predicting rainfall for various different

climates significantly better than the MCRP approach.

Future work will include testing other state-of-the-art regres-

sion algorithms to compare against GP, to see how effective

GP really is. Furthermore, we will investigate whether the

construction of new features can improve the GP performance.

Lastly, since we have obtained promising rainfall prediction

results, we can also move towards the pricing task of rainfall

derivatives and investigate if our current results have an overall

positive effect in pricing.
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Rpackageirace package, iterated race for automatic algorithm configu-
ration,” IRIDIA, Université Libre de Bruxelles, Belgium, Tech. Rep.,
2011.

[13] F. Wilcoxon, “Individual comparisons by ranking methods,” Biometrics
Bulletin, vol. 1, no. 6, pp. pp. 80–83, 1945.

718


