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Abstract—DBSCAN is one of the most common density-based
clustering algorithms. While multiple works tried to present
an appropriate estimate for needed parameters we propose
an alternating optimization algorithm, which finds a locally
optimal parameter combination. The algorithm is based on the
combination of two hierarchical versions of DBSCAN, which
can be generated by fixing one parameter and iterating through
possible values of the second parameter. Due to monotonicity of
the neighborhood sets and the core-condition, successive levels
of the hierarchy can efficiently be computed. An local optimal
parameter combination can be determined using internal cluster
validation measures. In this work we are comparing the measures
edge-correlation and silhouette coefficient. For the latter we
propose a density-based interpretation and show a respective
computational efficient estimate to detect non-convex clusters
produced by DBSCAN. Our results show, that the algorithm can
automatically detect a good DBSCAN clustering on a variety of
cluster scenarios.

I. INTRODUCTION

Clustering refers to the task of finding multiple sets of similar

objects. While the related analysis task classification is in need

of a class label for each instance, clustering algorithms find

groups of similar items based on a similarity measure. Density-

based clustering is a common type of clustering algorithms

in which areas of higher densities, which are separated by

low-density regions, are expected to form clusters. Instances

located in sparse areas and not being part of a cluster are

usually considered to be noise or outliers.

Prototype based algorithms such as c-means, fuzzy-c-means

or expectation-maximization [1] expect the data set to include

a given number of clusters c in which the instances have

to be categorized into. This process often minimizes the

pairwise dissimilarities between all objects in a cluster and

maximizes inter-cluster-dissimilarities, which results in clusters

of preferably convex shape.

In contrast density based methods such as DBSCAN [2] and

OPTICS [3] are not limited to convex cluster shapes. Dense

regions in any given shape can be detected as long as they fulfill

the given density threshold. An additional benefit is that no

estimation for the number of clusters has to be done. However,

if available, it can be used to adjust the density threshold.

While density based methods perform very good on high-

dimensional data sets [4], the estimation of a viable density

level can become a challenging issue. As far as possible,

multiple works have suggested estimates for appropriate

parameter settings [5], [6] or reduce the number of free

parameters (e.g. [7]).

This paper discusses the algorithm DBSCAN and a method

for automatically determining locally optimal parameter settings

given an internal cluster validation measure. Section II will give

a quick overview of the algorithm DBSCAN and highlight the

monotonicity of the ε-neighborhood and the core-condition with

respect to the parameters ε and mPts. In Section III we propose

two new algorithms based on these monotonicity observations.

Furthermore we will explain how they exploit the monotonicity

to create a hierarchy of clusterings by fixing one parameter and

determining the optimal value for the other parameter. A local

optimum of possible parameter combinations can be found

using an alternating optimization approach. In addition, we

compare available optimization criteria under the perspective

of possible cluster structures produced by DBSCAN. Section

IV contains multiple experiments on standard clustering data

sets. We give a detailed view on the behavior of alternating

optimization DBSCAN and compare the performance of

optimization criteria considered.

II. PRELIMINARIES

A. DBSCAN

In the year 1996, Ester et al. [2] proposed a density based

clustering algorithm called DBSCAN, in which continuous

regions of higher density are grouped in the same cluster.

Therefore two parameters need to be fixed, the radius of a

points neighborhood further referred to as ε and the minimal

number of points mPts for a region to be considered as dense

region.

Let a region with a radius of ε centered at a point p of data

set D be dense, if it contains at least mPts-points. For each

point an ε-neighborhood can be defined as follows:

Nε(p) = { q ∈ D
∣∣ dist(p, q) ≤ ε } (1)

The ε-neighborhood equals the set of points inside a hyper-

sphere with radius ε centered at p. A point is called core-point

if its ε-neighborhood contains at least mPts points.

coresε,mPts
= { p ∈ D

∣∣mPts ≤ |Nε(p)| } (2)
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Fig. 1: Comparison of DBSCAN results for different parameter settings. Noise points are marked with ’×’. row-wise: monotonic

behavior related to ε, column-wise: monotonic behavior related to mPts.

For a given pair of (ε, mPts) a cluster is defined by the

properties density-reachability and density-connectedness.
Definition 1 ((directly) density-reachable): A point q is

directly density-reachable from point p, if q ∈ Nε(p) and

p is a core-point. Note that the conditions p ∈ Nε(q) and

q ∈ Nε(p) are equivalent. Furthermore, two points p, q are

density-reachable if there exists a chain of points p1, . . . , pn
with p1 = p and pn = q such that for each 1 ≤ i < n, pi+1 is

directly density-reachable from pi.
Definition 2 (density-connected): Two points p, q are density

connected to each other if there exists a point o from which

both points are density-reachable.
A cluster Ci is a maximal set in which all points are density

connected to each other. The set of all clusters is denoted as

C = {C1, · · · , Ck}. Note that a point, that is not a core point,

can be part of more than one cluster, if it lies on directly on the

border between two clusters. Points not located in any cluster

can be considered noise.
For a given pair of ε and mPts, DBSCAN has an average

runtime of O(n · log n), in which all clusters matching the

density condition will be found.

B. Monotonicity of DBSCAN
Monotonicity is a frequently exploited property which

enables algorithms to iterate through possible parameter values

and adjust the current result to the new parameter. One typical

example is the a-priori property in frequent item set mining [8],

which states that the set of frequent item sets can not decrease

if the minimum support is reduced. We will use a similar

strategy by exploiting the monotonicity of the ε-neighborhood

and the core-condition.
For two radii ε1 > ε2 we can show:

|{ q ∈ D
∣∣ dist(p, q) ≤ ε1 }| ≥

|{ q ∈ D
∣∣ dist(p, q) ≤ ε2 }|

|Nε1(p)| ≥ |Nε2(p)| (3)

The possible increase of the ε-neighborhood also influences

the number of cores. For a fixed value of mPts we can infer:

∣∣{ p ∈ D
∣∣mPts ≤ |Nε1(p)| }

∣∣ ≥∣∣{ p ∈ D
∣∣mPts ≤ |Nε2(p)| }

∣∣

|coresε1,mPts
| ≥ |coresε2,mPts

| (4)

Since the size of the neighborhood sets can only increase, it

is possible that more points fulfill the core-condition. This can

either increase the cluster sizes or merge multiple clusters into

one, because additional points increase the density-reachability

and density-connectedness. Figure 1 shows a comparison of

multiple DBSCAN clusterings. Each row contains clusterings

initialized with the same mPts value, each column contains

clusterings initialized with the same ε value. Changes in

the clustering result can be attributed to a change of the

neighborhood sets.

A similar approach can be used regarding the value of mPts.

For two values mPts1 < mPts2 the following inequality holds:

∣∣{ p ∈ D
∣∣mPts1 ≤ |Nε(p)| }

∣∣ ≥∣∣{ p ∈ D
∣∣mPts2 ≤ |Nε(p)| }

∣∣

|coresε,mPts1
| ≥ |coresε,mPts2

| (5)

The neighborhood of each point is unaffected by the

change of mPts. Note that a decrease of mPts cannot decrease

the size of the core-set. The columns of Figure 1 show

DBSCAN clusterings for constant values of ε and differing mPts.

Our proposed algorithms will now utilize the monotonicity

observations for producing a hierarchy of clusterings.
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III. HIERARCHICAL DBSCAN – HDBSCAN

We created two hierarchical variants of the DBSCAN

algorithm based on the monotonicity criteria presented in

Equations 4 and 5. For each variant, one of the two parameters

has to be fixed in order to produce a hierarchy of clusterings

by iterating through possible values for the second parameter.

The following sections will take a closer look at both versions

of our hierarchical DBSCAN algorithms.

A. mPts-HDBSCAN

Relating to the core condition it is straight-forward to

adjust the radius of a points neighborhood. For each point we

determine a core-distance by randomly setting the parameter

minPts ≤ |D| to a fixed value. Sorting the nodes by their core-

distance gives us levels of the desired hierarchy. Consecutive

levels include changes by either adding a new cluster, extending

an existing cluster or merging two clusters which are now

density-connected. Further hierarchy levels in between two

core distances di, dj might possibly exist, since new points

can get in range of an existing core with distance dk, where

di < dk < dj .

From this observation follows that all pairwise distances of

two points have to be processed to ensure that each different

DBSCAN level is included in the hierarchy. The process can

be stopped as soon as every point is a core-point and in the

same cluster. The mPts-HDBSCAN algorithm is summarized

in the following pseudo-code:

Algorithm 1 mPts-HDBSCAN

Input: mPts, dist mat = pairwise distance matrix of D

C ← {}
clust hierarchy ← initialize clustertree(C)
dist list ← sort dist mat in priority list as (r, c, d)

(row-index, column-index, distance)

for all (r, c, d) in dist list do
add c to neighborhood of r

if r �∈ cores and mPts ≤ |N(r)| then
add r to cores

end if
update density reachability(r)
Cdist ← update clustering(C)
if Cdist �= C then

clust hierarchy.add clustering(Cdist)
C ← Cdist

end if
end for

return clust hierarchy

For the algorithm mPts-HDBSCAN we need to estimate a

value for the parameter mPts. Choosing a value of mPts = 1
results in a hierarchical clustering with single-linkage. Note

that changing the value of mPts also changes the set of

hierarchy levels. The functions update density reachability
and update clustering can efficiently be obtained by reusing

the status of the last computed distance.

Our presented approach is closely related to the HDBSCAN

algorithm by Campello et al. [9]. Both differ by the handling of

border points. While the HDBSCAN algorithm by Campello is

based on the DBSCAN* algorithm, which ignores the presence

of border points and forms cluster by a maximal set of density-

connected core-points, our approach distinguishes such cases

and can assign border points to multiple clusters. This directly

influences the structure of generated hierarchies. For this reason

results of both hierarchical algorithms are not identical.

B. ε-HDBSCAN

Our second algorithm is based on the stepwise decrease of

mPts while ε is constant. The monotonicity shown in Equation

5 implies that while decreasing the minimum number of points

no cluster can decrease in size. Based on this observation, we

propose another variant of DBSCAN called ε-HDBSCAN.

On initialization possible values for ε are in the range of

[min(dist mat), max(dist mat)]. Our algorithm starts by

setting mPts equal to the biggest neighborhood-set size in the

data set and decreasing it stepwise until every node fulfills the

core-condition. In comparison to mPts-HDBSCAN no further

changes will be observed after each node became a core, since

the neighborhood set is not influenced by the variable mPts.

The set of hierarchy levels can be determined by:

{ |Nε(p)|
∣∣ p ∈ D }

In mPts-HDBSCAN the hierarchy levels were bound to pairwise

distances, which results in a real number value, whereas ε-

HDBSCAN is limited to natural numbers. The ε-HDBSCAN

algorithm is summarized in the following pseudo-code:

Algorithm 2 ε-HDBSCAN

Input: ε, dist mat = pairwise distance matrix of D

C ← {}
clust hierarchy ← initialize clustertree(C)
calculate neighborhood sets based on ε
mPts ← max(|Nε(p)|)

while |cores| ≤ |D| do
new core nodes = { p ∈ D

∣∣ |Nε(p)| = mPts }
add new core nodes to cores

update density reachability(new core nodes)
CmPts

← update clustering(C)
if CmPts

�= C then
clust hierarchy.add clustering(CmPts

)
C ← CmPts

end if
mPts ← mPts − 1

end while

return clust hierarchy
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For ε-HDBSCAN it occurs far more often that nodes have

to be added to the set of cores for the same value pair

(mPts, ε). Motivated by this observation, nodes are grouped

by their neighborhood size in advance. This ensures a faster

computation, since the methods for updating the density-

reachability and the clustering are only called once per group

of added cores.

C. Alternating Optimization

Both previous proposed algorithm can be combined to

an alternating optimization process to find a locally optimal

parameter combination. The produced cluster hierarchy given

a fixed parameter combination can be analyzed in order to find

an optimal value for the second parameter. This is done by

rating the clustering of each hierarchy level given an internal

cluster validation measure.

The alternating optimization process is summarized in the

following pseudo-code:

Algorithm 3 aoDBSCAN

Input: dist mat = pairwise distance matrix of D

mPts ← random() or set by user

repeat
clust hierarchy ← mPts-HDBSCAN (mPts)

ε = get best eps(clust hierarchy)

clust hierarchy ← ε-HDBSCAN (ε)

mPts = get best minPts(clust hierarchy)

until convergence of mPts and ε

return mPts, ε

It is not necessary to start the process with mPts-HDBSCAN.

In certain scenarios it can be beneficial to swap the order of

mPts-HDBSCAN and ε-HDBSCAN. Since the initial estimation

influences the found local optima we recommend to use

either ε-HDBSCAN or mPts-HDBSCAN, depending on which

parameter is easier to estimate. It proved beneficial to start with

mPts-HDBSCAN, since in average the number of hierarchy

levels is smaller than for ε-HDBSCAN.

Given an optimization criterion we can rate each possible

cut-height and choose the best in regard to the rating. In the

following subsections we compare the measures silhouette

score [10] and edge correlation [11] as two such optimization

criteria.

1) (Density) Silhouette Coefficient: The silhouette coefficient

is based on the tightness of a cluster in comparison to its

separation to other clusters. A silhouette of point i is defined

as:

s(i) =
b(i)− a(i)

max{a(i), b(i)} (6)

where a(i) is the average distance to points in the same

cluster as point i and b(i) the minimum distance to points of

other clusters. The silhouette coefficient of a cluster is defined

as the arithmetic mean of all silhouettes of points in a cluster

Ci.

sCi
=

1

nCi

∑
o∈Ci

s(o)

Accordingly the silhouette score is the mean of the silhouette

coefficients of each cluster.

sC =
1

nC

∑
Ci∈C

sCi
(7)

The inclusion of the average distance to each point in the

cluster makes the silhouette score favor convex clusters. This

is no problem for algorithms that tend to produce such shapes,

but heavily limits the area of application for the DBSCAN

algorithm. Therefore we propose a density-based interpretation

of the silhouette score, which changes the definition of a(i).
Let G = (V,E) be a graph, where V is the set of all nodes

of the cluster Ci. We start with E = ∅. For each pair of nodes

u, v ∈ V we can add an edge with weight dist(u, v). All

possible edges are sorted in ascending order by their edge

weight and added to the graph until each pair of nodes u, v is

connected by a path p(u, v) = u→ v. We define the cost of a

path cost(p) to be the largest edge weight on the path.

Let a(i) be:

a(i) =
1

nCi
− 1

∑
j∈Ci; i�=j

argmin
p

(cost(p(i, j)))

Since this formula is too complex to evaluate for every

hierarchy level, we suggest to use the ε value, for which the

cluster Ci first emerged, as an upper-bound ā(i) ≥ a(i).

ā(i) = argmin
ε

(for Ci to exist)

Another problem that can emerge is the possible existence

of border points belonging to more than one cluster. If we

exclude all border points, the inequality b(i) > ā(i) holds for

any clustering produced by DBSCAN. Otherwise, there would

exist a point p not present in i ∈ Ci, for which the distance

dist(p, i) = b(i) ≤ ε. In this case point p would be in the

neighborhood of i and therefore the Cluster Ci would not be

maximal.

The evaluation section will show that these changes in the

calculation of sC adapt well to cluster structures produced by

DBSCAN. We will use the abbreviation sC for results based on

the original silhouette coefficient and sdC for the density based

interpretation of silhouette coefficient, where a(i) is replaced

by ā(i) and border points are excluded from the calculation.

2) Edge Correlation: Correlation clustering can be seen as

maximizing the correlation of the clustering C and a given sim-

ilarity measure. Based on an analysis of correlation clustering

for graphs in [11], we calculate the Pearson-correlation ρ of a

n× n cluster matrix LC and a similarity matrix S.

Where the matrix L is defined by:

LC(i, j) =

⎧⎨
⎩
1 if i and j are in the same cluster

0 else
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The entry (i, j) of LC is 1 if i and j are in the same cluster

referring to C, and 0 if they are not.

We used 1 − dist(i, j) as a similarity measure to form

matrix S. Since we are only measuring the correlation between

the similarity matrix S and the cluster matrix there is no need

to use any special similarity measure. The only requirement is

that the mapping from distance to similarity measure is linear.

The edge correlation ρC of a clustering C can be calculated as

seen in:

ρC = ρ(LC , S)

IV. EVALUATION

We evaluated our proposed algorithm aoDBSCAN on a

variety of data sets. The alternating optimization process was

initialized using the optimization criteria silhouette coefficient

sC , density based silhouette coefficient sdC and edge correla-

tion ρC . Each run started with an initial value of mPts = 5. This

should be seen as a trade-off between single linkage behavior

(mPts = 1) and focusing on areas of high density (mPts >> 1).

Note that other local optima could be found using a different

initial value for mPts or starting with ε-HDBSCAN.

We used the external validation measures homogeneity,

completeness and v-measure [12] to validate the clustering

results. Homogeneity is highest if only data points of a

single class were assigned to a single cluster. Symmetrically,

completeness will be maximal if all data points of a single

class were assigned to a single cluster. The weighted harmonic

mean of homogeneity and completeness is called v-measure.

Tables I to VII summarize the optimization process per opti-

mization criterion.

The Aggregation data set contains clusters of various shape,

where two groups, each containing two clusters, are connected

by a bridge of lower density. All optimization criteria could

adapt to the various cluster shapes, while silhouette coefficient

and edge correlation reported few noise points and scored not

as high as density based silhouette coefficient. However none of

the optimization measures led to a separation of the connected

clusters.

Data sets including non-convex clusters such as Moons

and Spirals were best clustered using density based silhouette

coefficient. Edge correlation performed worst on both scenarios,

due to the high distances of points in the same cluster.

The performance on convex clusters was tested on the

data sets Blobs-1000D, R15 and D31. While the first data

set included 3 spherical clusters of 100 points each in 1000

dimensions per cluster, clusters in the data sets R15 and D31

consisted of less points with only 2 dimensions. The silhouette

coefficient performed best in detecting these clusters. No effects

of higher dimensionality were observed.

The data set Flame is made of a Gaussian distributed convex

cluster and a cluster following a curved line around the first

cluster. Both clusters are connected by a lower density area.

Edge correlation was the only optimization criterion, which

detected a nearly optimal clustering. The silhouette coefficient

and its variant were unable to separate both areas at the lower

density region.

Fig. 2: Best clustering results for aoDBSCAN and an initial

value of mPts = 5. The clustering of the first four data sets

(Aggregation, Moons, Blobs-1000D and Spirals) result from an

optimization using density based silhouette coefficient. Results

for R15 and D31 were created using silhouette coefficient. The

Flame data set was clustered using edge correlation.

V. CONCLUSIONS

In this paper we proposed two algorithms mPts-HDBSCAN

and ε-HDBSCAN, which are hierarchical versions of the

widely known DBSCAN algorithm. By exploiting observed

monotonies the algorithms can be efficiently implemented via

actualizing previous clustering results.

Furthermore, the two algorithms can be used in an alternating

optimization to find a local optimal parameter combination

for DBSCAN. As a drawback an internal cluster validation

measure has to be fixed as the optimization criterion. In our

work we compared the use of silhouette coefficient and edge

correlation as two such measures. However, both measures

prefer convex shaped clusters and cannot adapt to all cluster

shapes produced by DBSCAN. For this reason we proposed a

density based interpretation of the silhouette coefficient, which

rates the density of a cluster as the minimal ε-value it would be

created with and sets it in relation to the minimal distance to

the next cluster. In contrast to the original silhouette coefficient

this optimization criterion can adapt to clusters of arbitrary

shape. Fixing either mPts or ε and rating the levels of the
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TABLE I: Results for the Aggregation data set

measure ε mPts iterations homogeneity completeness v-measure

sC 1.423 5 2 0.80 0.99 0.89

sdC 1.451 1 4 0.80 1.0 0.89

ρC 3.482 11 4 0.78 1.0 0.84

TABLE II: Results for the Moons data set

measure ε mPts iterations homogeneity completeness v-measure

sC 0.224 5 2 1.0 0.52 0.68

sdC 0.324 3 3 1.0 1.0 1.0

ρC 0.210 1 4 1.0 0.40 0.57

TABLE III: Results for the Blobs-1000D data set

measure ε mPts iterations homogeneity completeness v-measure

sC 47.277 31 5 1.0 1.0 1.0

sdC 141.315 5 2 1.0 1.0 1.0

ρC 47.277 31 5 1.0 1.0 1.0

TABLE IV: Results for the Spirals data set

measure ε mPts iterations homogeneity completeness v-measure

sC 3.668 3 2 1.0 1.0 1.0

sdC 1.107 1 4 1.0 1.0 1.0

ρC 0.863 5 2 0.29 0.35 0.32

TABLE V: Results for the R15 data set

measure ε mPts iterations homogeneity completeness v-measure

sC 0.422 5 2 0.87 0.96 0.91

sdC 0.625 1 3 0.59 1.0 0.74

ρC 0.783 5 2 0.59 1.0 0.74

TABLE VI: Results for the D31 data set

measure ε mPts iterations homogeneity completeness v-measure

sC 1.025 10 5 0.82 0.92 0.87

sdC 2.225 1 3 0.04 0.97 0.08

ρC 1.163 2 3 0.53 0.98 0.69

TABLE VII: Results for the Flame data set

measure ε mPts iterations homogeneity completeness v-measure

sC 2.661 48 3 0.80 0.48 0.60

sdC 1.254 1 4 0.01 0.18 0.02

ρC 0.992 6 3 0.93 0.79 0.86
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hierarchy results in the best value for the second parameter.

The result can further be used as initialization for the next step

of the alternating optimization process.

Our experiments showed that this method is capable of

finding viable parameter combinations in a variety of cluster

settings. The comparison of internal validation measures

revealed that the density based silhouette coefficient performed

best in most experiments. However in the search for convex

shaped clusters, silhouette coefficient and edge correlation

performed better than the proposed density based silhouette

coefficient.

Future work will focus on the analysis of the produced

hierarchy. We expect other methods from hierarchical clustering

to adapt well to our hierarchical DBSCAN variants. Iterating

overt all possible ε values, i.e. every entry in the distance

matrix can be cumbersome and slow down the optimization

process. We expect that an initial binning of the distances will

not deteriorate the results but speed up the process significantly.

In our experiments, the density-based silhouette coefficient has

shown to be very effective in finding non-convex but well

separated clusters. A more detailed, theoretical analysis of this

measure would be desirable.
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