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Abstract—Clustering is one of the widely used knowledge
discovery techniques to reveal the structures in a dataset that
can be extremely useful for the analyst. In fuzzy based clustering
algorithms, the procedure acquired for choosing the fuzziness
parameter m, the number of clusters C and the initial cluster
centroids VC is extremely important as it has a direct impact
on the formation of final clusters. Moreover, the improper
selection of these parameters may lead the algorithms to the
local optima. In this paper, we proposed an Enhanced Quantum-
Inspired Evolutionary Fuzzy C-Means (EQIE-FCM) algorithm to
compute the global optimal value of these parameters. In EQIE-
FCM, we utilize the quantum computing concept in combination
with fuzzy clustering to evolve the different values of these
parameters in several generations. However, in each generation
these parameters are represented in terms of a quantum bit (Q).
At each generation (g), the quantum bit of these parameters is
updated using a quantum rotational gate. Through this, after
several generations of evolution, we get the global optimal values
of these parameters from a large quantum search space. The
EQIE-FCM algorithm is applied on the Pima Indians Diabetes
dataset and the performance of EQIE-FCM is compared with
another Quantum-inspired Fuzzy Clustering (QIE-FCM) and
other three fuzzy based evolutionary clustering algorithms from
the literature. Extensive experiments indicate that the EQIE-FCM
algorithm outperforms many baseline approaches and can be
used an effective clustering algorithm.

I. INTRODUCTION

Nowadays, data mining techniques are gaining importance
in the medical research in order to analyze the large volume of
medical data. Clustering is one of the most widely used data
mining technique. The main goal of clustering is to divide
the data set into groups such that the intra-cluster similarity
is maximized, and inter-cluster similarity is minimized. This
signifies that a cluster is a collection of data points such
that the data points lying within the same cluster are more
similar to each other than to the data points lying in the
other clusters. Clustering is also referred as an unsupervised
learning approach because it is used as an important tool for
finding the hidden patterns and structures from a large database
without the background knowledge. Clustering algorithms are
broadly classified as hierarchical and partitional clustering
[1], [2]. Hierarchical clustering groups the data points with
the sequence of partitions, either from singleton clusters to
a cluster including all individuals or vice versa. Partitional

clustering algorithm attempts to divide N data points into
C number of clusters and produce C fuzzy partitions that
optimize a criteria function. Recently, partitional clustering
algorithms have been widely adopted by the researchers due to
the linear time complexity and low computational requirements
[3].

Fuzzy C-Means algorithm is one of the most widely used
partitional clustering algorithms was initially given by Dunn
[4] and generalized by Bezdek [5]. FCM partitions a collection
of N data points X = [x1, ..., xN ] into C fuzzy clusters such
that a cluster centroid corresponding to each cluster is obtained
by minimizing a criterion function of dissimilarity measure.
FCM algorithm employs fuzzy partitioning such that a data
point can belong to the several clusters with a membership
degree U = [μil] which is allowed to take any value between 0
and 1. This membership value indicates the degree to which the
point is more representative of one cluster than the other. Even
though with the fuzzy clustering the accuracy of cluster repre-
sentation increases, but there are several fundamental sources
of ambiguity in clustering. One of the major issues with the
FCM algorithm is that the number of clusters in a dataset has to
be specified in advance. This is because to perform clustering
of different datasets, different number of clusters are required,
which is difficult to be known beforehand. The second problem
is to decide what initial cluster centroids are to be used to form
clusters. Generally, the FCM algorithm starts with the random
assignment of cluster centroids as the initialization process.
The behaviour of FCM algorithm is highly dependent upon
the selection of initial cluster centers and always converges
to the nearest local optima from the starting position of the
search. However, FCM does not guarantee unique clustering
because we get different results with randomly chosen initial
centers. Due to this, the clustering results generated by the
FCM algorithm produces inconsistent results. Thus, the final
cluster centers may not be the optimal ones as the algorithm
converges to the local optimal solutions. Another source of
ambiguity in FCM algorithm is the selection of an appropriate
value of fuzziness parameter m for a dataset because it widely
varies from one dataset to another. The choice of inappropriate
value of m may also lead the FCM algorithm to the local
optima problem.

In order to overcome the disadvantages manifested above,
the researchers from diverse fields are applying cluster validity
index [6], [7] and evolutionary fuzzy based algorithms inspired978-1-4799-7560-0/15/$31 c©2015 IEEE
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by the concept of quantum computing in many application
areas like distributed computing [8], image segmentation [9]
and control system [10]. In addition to this, some evolutionary
clustering algorithms are proposed in combination with genetic
algorithm [11] and differential evolutional [12] to overcome the
problem of local optima. Furthermore, Karegowda and Vidya
[13] proposed an approach for clustering diabetes data by
applying genetic algorithm in combination with entropy based
fuzzy clustering to find the initial cluster centroids. Chaoshun
and Jianzhong [14], proposed a new fuzzy clustering algorithm
based on chaos optimization which combines mutative scale
chaos optimization, strategy and gradient method together. It
optimizes the clustering objective function and performs clus-
tering automatically without knowing the number of clusters
in advance. Palanisamy and Selvan [15] proposed a novel
method named as entropy-based fuzzy clustering to identify
the relevant subspaces in the functional workspace. In this
approach, a heuristic method based on the Silhouette criterion
was used to find the number of clusters. In spite of the wide
popularity of above stated approaches and applications, it is
still a challenging issue to decide all the initialization param-
eters of FCM algorithm. Therefore, finding the appropriate
value of m, C and the initial cluster centroids are the key
aspects for eliminating the local convergence problem of FCM
algorithm.

Considering the shortcomings of FCM algorithm, in this
paper an Enhanced Quantum-Inspired Evolutionary Fuzzy C-
Means (EQIE-FCM) algorithm is proposed. In this approach,
we utilize the concept of quantum computing in combination
with fuzzy clustering for evolving the fuzziness parameter
m, the number of clusters C and the initial cluster centers
in several generations. In EQIE-FCM algorithm, we adopted
V IDSO index as the objective function to evaluate the fitness
of produced partitions in each generation (g). After several
generations of evolution, we guarantee to achieve the global
optimal value of these parameters from a large quantum search
space. We perform a group of experiments to validate the
performance of EQIE-FCM algorithm in comparison with
QIE-FCM algorithm [16]. The QIE-FCM algorithm is also a
quantum based fuzzy clustering approach aims to eliminate the
problem of local convergence in FCM. However, it is able to
find the global optimal value of m from a large quantum search
space by representing the parameter in terms of qubits. But,
due to the random selection of value of C in this approach,
it may again trap into the problem of local optima. Thus, in
EQIE-FCM, we aim to find the global optimal value of both the
parameters by representing these parameters in terms of qubits
which provide better characteristic of population diversity than
other representation [20]. In addition to this, to validate the
efficacy of EQIE-FCM algorithm, we compared it with the
other evolutionary fuzzy based clustering algorithms [8], [9],
[11]. We evaluate the performance of these approaches on well
known Pima Indians Diabetes data available on UCI Machine
Learning Repository [17]. The experimental results prove the
efficacy of EQIE-FCM algorithm in terms of finding the global
optimal value of m, C and initial cluster centroids.

The rest of the paper has been structured as follows:
Section II brief description of Pima Indian Diabetes dataset.
Section III briefly explains the concept of quantum computing.
The detailed discussion of the proposed algorithm is presented
in Section IV. The experimental setup and analysis with exper-

TABLE I. THE FEATURES OF PIMA INDIANS DIABETES DATA

ID Attribute ID Attribute

1 No. of times pregnant (NTP) 5 2-h serum insulin in mU/ml (SI)

2 Plasma glucose concentration (PGC) 6 Body mass index in kg/m2 (BMI)

3 Diastolic blood pressure in mmHg (DBP) 7 Diabetes pedigree function (DPF)

4 Triceps skin fold thickness in mm (TSFT) 8 Years of age (YOA)

Fig. 1. Scatter plot of Pima Indians diabetes data in two dimensional space
reflecting the presence of three clusters marked with a circle.

imental results on Pima Indians Diabetes data is presented in
Section V. Finally, Section VII present the concluding remarks.

II. DESCRIPTION OF PIMA INDIANS DIABETES DATA

Diabetes is one of the world’s most prevalent chronic
disease that occurs when the pancreas is unable to produce
enough insulin or when the body cells cannot utilize the
produced insulin. It is becoming a common crisis among the
majority of adults in developed countries and are increasing
rapidly in developing countries. This is because of the rapid
advancement in the technology which has brought a significant
change in the lifestyle and eating habits. People are getting
more prone to the wide range of fast foods and ready-to-eat
processed food promoting by multinational companies. Due to
unhealthy eating habits and intake of excessive calories, it is a
major driving force behind escalating obesity and overweight
worldwide. The overweight and obesity are driving the global
diabetes epidemic. Diabetes is broadly categories into two
types referred as type 1 diabetes and type 2 diabetes. Type
1 diabetes is caused due to the lack of insulin production
in the body, and it is commonly seen in the children and
young adults under the age of 40 years. Conversely, type 2
diabetes is the most common form of diabetes, which occurs
because the body cells is unable to utilize the produced insulin.
Worldwide, approximately 10% of the patient is suffering
from type 1 diabetes and rest 90% are suffering from type
2 diabetes. According to the World Health Organization in
2014, it is estimated that over 347 million people throughout
the world had diabetes, and the figure is expected to rise to
330 million by 2025 out of which 52 million people will be
Indians, largely due to population growth, unhealthy eating
habits and a sedentary lifestyle [18], [19]. In this study, we
performed our experiment on Pima Indians Diabetes (PID)
dataset availed from UCI Machine Learning Repository [17].
The dataset comprises of two categories, i.e. “Tested positive”
which involves 65.10% of the dataset (500 samples) whilst
“Tested negative” involves 34.89% of the dataset (268 samples)
where each sample consists of 8 numerical features. The
detailed description of each feature is given in Table I and
Fig. 1 represent the scatter plot of Pima Indian Diabetes data
in two-dimensional space.
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III. PRELIMINARIES

Quantum computing concept represents the data in terms
of quantum bits (Q). In general, a quantum bit consists of
several qubits (qp) and can be represented as follows:

Q = (q1|q2|......|qK) (1)

Where, p = 1, 2, 3, ....,K and K shows the number of qubits
to form a quantum bit (Q). Qubits (qp) are a smallest unit of
information representation. Generally, qubits differ from the
classical computer bits in terms of representation and storage.
As a classical bit represents only two possibilities of any event
at one time by bit “1” or “0”. However, a qubit can exist
in both states simultaneously using the probability concept
proposed by Han and Kim [20], [21]. Qubit shows the linear
superposition of “1” and “0” bits probabilistically, which is
denoted as follows:

qp = αp | 0〉+ βp | 1〉 (2)

where and α, β are the complex numbers representing the
probability of qubit in “1” state and in “0” state. A probability
model is applied here, which represent “0” state by α2

p and

“1” state by β2
p , where

α2
p + β2

p = 1; 0 ≤ αp ≤ 1, 0 ≤ βp ≤ 1 (3)

As shown above, a quantum bit (Q) formed by a single qubit
qp where p = 1 can represent two states, e.g. “0” or “1” state.
Similarly, a quantum bit (Q) consists of two-qubits i.e. qp
where p = 1, 2 can represent the linear superposition with four
states i.e. “00”, “01”, “10” and “11”. Here is an example that
explains the essence of a quantum bit formed using two-qubits
are represented as follows:

Q =

〈
α1|α2

β1|β2

〉
(4)

As mentioned in Eq (3) that the value of α and β lies in the
range of “0” and “1”. Therefore, α and β can be initialized
with any value in the above mentioned interval as follows:

Q =

〈
1/
√
2|1/√2

1/
√
2|1/√2

〉
(5)

A quantum bit (Q) formulated in terms of two-qubits consists
of 4 different stages, which are represented as follows:

Q = (α1 × α2)〈00〉+ (α1 × β2)〈01〉
+ (α2 × β1)〈10〉+ (β1 × β2)〈11〉 (6)

Q = (1/
√
2× 1/

√
2)〈00〉+ 1/

√
2× 1/

√
2)〈01〉

+ 1/
√
2× 1/

√
2)〈10〉+ 1/

√
2× 1/

√
2)〈11〉 (7)

Similar to the above mentioned equation, a quantum bit (Q)
formed by K qubits can represent 2K states at the same time.
As we can see in Eq (7), single quantum bit (Q) is enough
to represent four states. Thus, the quantum bit (Q) represen-
tation provides better characteristics of population diversity in
comparison with other representations and also enables us to
find the global optimal solution from the large search space.
Han and Kim [20] use the concept of quantum computing in
combination with genetic algorithm for evolving the optimal
solution of the knapsack problem in several generations. Based

on the above aforementioned idea, we proposed EQIE-FCM
algorithm, which uses the quantum computing concept in
combination with fuzzy clustering. The proposed approach
finds the global best value of the fuzziness parameter m and
the number of clusters C with the best location of initial cluster
centroids for Pima Indians Diabetes data from a large quantum
search space in several generations.

IV. PROPOSED APPROACH

As suggested by Pal and Bezdek [6], the fuzziness param-
eter m and the number of cluster C play a major to validate
the fitness of partitions produced by fuzzy based clustering
algorithms. In this study, we proposed an Enhanced Quantum-
Inspired Evolutionary Fuzzy C-Means (EQIE-FCM) Algorithm
to investigate the appropriate value of these parameters for
the effective clustering of diabetes data. In this approach,
we utilize the concept of quantum computing inspired by
the aforementioned idea of Han and Kim [20] to evolve the
different values of m and C in each generation g, so that
we can find the global optimal value of these parameters
from a large quantum search space. In EQIE-FCM firstly, the
fuzziness parameter m in generation g is represented in terms
of only one quantum bit as M

′
g which is defined as follows:

M
′
g = Qg

m (8)

Where, Qg
m consist of two-qubits denoted by qp where p =

1, 2 and represented as Qg
m = [qg1m|qg2m] or Qg

m = [αg
1m|αg

2m].
The reason behind representing Qg

m in terms of two-qubits
because the best value of m has to find within the range of
[1.5, 2.5] as suggested by Pal and Bezdek [6], which is the
single dimension real value that can be effectively searched
from the four subspaces as presented in Section III.

For each value of m represented in terms of quantum bits
in generation g, the number of clusters C is initialized in the
range of [cmin, cmax]. In general, for the initialized value of
C in generation g, the set of cluster centroid is represented as
follows:

V g
C = [(V1)

g
C , (V2)

g
C , ...., (Vt)

g
C ] (9)

Where, V g
C consist of t number of cluster centroids such that

t = 1, 2, ...C and each cluster centroid (Vi)
g
C is represented as

follows:

(Vi)
g
C = [(V1i)

g
C , (V2i)

g
C , ...., (Vdi)

g
C ]

T ∈ R
d (10)

where, (Vji)
g
C represents the jth dimension of ith cluster

centroid such that j = 1, 2, .., d and C is the number of
clusters. For each value of C, the set of cluster centroids V g

C
is represented in terms of quantum bits. As stated above and
given in Eq (8), the fuzziness parameter m will contain the
single dimension real value, therefore only single quantum
bit is enough to represent the fuzziness parameter m in a
generation g. But for each cluster number C, the set of cluster
centroids V g

C consist of d-dimensions. Thus, multiple quantum
bits are required to represent each cluster centroid. However,
the jth dimension of ith cluster centroid in generation g is
represented in terms of a single quantum bit which is given as
follows:

(V
′
ji)

g
C = (Qji)

g
C (11)

Where, (Qji)
g
C will contain only two-qubits denoted by

qp where p = 1, 2 which is represented as (Qji)
g
C =
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[(qji)
g
1C |(qji)g2C ] or (Qji)

g
C = [(αji)

g
1C |(αji)

g
2C ]. Each cluster

centroid in jth dimension will represent the real value which
can be sufficiently found from the four subspaces as presented
in Section III.

It is important to notice that, the proposed algorithm is
executed on the classical computer. Therefore, it is required
that the quantum value of fuzziness parameter M

′
g and the

single dimension of the cluster centroid (V
′
ji)

g
C has to be

converted into real coded value. This conversion is done with
the help of the transformation process. In general, we are
presenting the transformation process showing the conversion
of single quantum bit Qg into real coded value (Q

′
)g which

is also applicable for the conversion of a quantum value
of fuzziness parameter M

′
g and the single dimension of the

cluster centroid (V
′
ji)

g
C . As discussed earlier, in the proposed

algorithm we are using only two-qubits denoted by qgp to
represent a quantum bit Qg where p = 1, 2. For the conversion
of quantum value obtained in generation g into real coded
value, the transformation process starts with the selection of
random number vector Rg , where Rg = [rg1 , r

g
2 ] corresponding

to the quantum vector Qg = [qg1 |qg2 ] or Qg = [αg
1|αg

2]. Then,
further mapping is done by using binary vector Sg where Sg =
[sg1, s

g
2] and the Gaussian random number generator with mean

value μg
p and variance σg

p , which is represented as grg(μg
p, σ

g
p).

Using the random number vector and the quantum vector, the
binary vector Sg is generated as follows:

if (rgp ≤ (αg
p)

2) then sgp = 1 else sgp = 0.

Now with the help of binary vector and the Gaussian random
number generator, the real coded value is selected using
formula bin2dec(Sg) + 1. As presented in Eq 2, the qubit
(qp) is consisted of two components αp and βp. Generally
for the processing of qubits, only αp is considered because

the value of second component βp will be
√

1− α2
p [20].

The transformation process shows the conversion of a single
quantum bit (Q) into the real coded value is presented in terms
of pseudo code as follows :

Transformation process()

begin
Step-1: Initialize quantum vector Q, random number vector R
and link = 0.

for p := 1 to 2 step 1 do
Qg = αg

p; 0 ≤ αg
p ≤ 1

rgp = rand;
end for

Step-2: for p := 1 to 2 step 1 do
if rgp ≤ (αg

p)
2

sgp = 1;

else
sgp = 0;

end if
end for

Step-3: link = bin2dec(Sg) + 1
if link ∼= 0
p = link;
(Q

′
)g = grg(μg

p, σ
g
p);

end if

end
return (Q

′
)g

Once, the transformation process is completed the real coded
value for the fuzziness factor mg is represented as follows:

mg = (Q
′
)g (12)

Similarly, the real coded value of cluster centroid is represented
as follows:

(v
′
ji)

g
C = (Q

′
)g (13)

such that

(v′i)
g
C = [(v

′
1i)

g
C , (v

′
2i)

g
C , ..., (v

′
di)

g
C ]

T ∈ R
d (14)

(v′)gC = [(v
′
1)

g
C , (v

′
2)

g
C , ..., (v

′
t)

g
C ] (15)

Where, (v
′
ji)

g
C is the real coded value of the jth dimension of

ith cluster centroid and (v′)gC denote the real coded value of
set of cluster centroids such that j = 1, 2, ..., d, t = 1, 2, ...C
and C is the number of clusters.

In EQIE-FCM algorithm, we evolve the different value of
fuzziness parameter and the cluster centroids in each gener-
ation by utilizing the quantum rotational gate [21]. It is an
important parameter in quantum inspired approaches and used
to update the quantum bits of fuzziness parameter and the
cluster centroids in each generation. The new qubit is generated
using quantum rotational gate and previous value of a qubit
which is defined as follows:

αg+1
p = [αg

p ∗ cosΔθ −
√

1− (αg
p)2 ∗ sinΔθ] (16)

Where, rotational angle (Δθ) will provide a proper angle to
rotate the quantum bit so that we can get the appropriate value
of a new quantum bit. The appropriate angle is selected on
the basis of conditions presented in Table II. Furthermore, the
value of Δθ must be selected in such a way so that it can
cover a maximum number of values of αg

p in the range of (0,
1) with a minimum number of iterations. Hence, according to
Han and Kim [21], Δθ must be initialized between [0.01×π,
0.05× π].

From preventing the quantum bit αg
p from attaining values

0 or 1, following constraints are applied.

αg
p =

⎧⎨
⎩
√
ε, if αg

p <
√
ε

αg
p if

√
ε ≤ αg

p ≤
√
1− ε√

1− ε if αg
p >

√
1− ε

(17)

Where, the limiting parameter ε is assigned a very small
value (approximately approaching to zero), so that it can cover
maximum value in the range of (0, 1).

TABLE II. PARAMETERS FOR QUBITS UPDATION.

sgp sglobal
p FGbest(mbest, Cbest) > F g

Lbest(mg, C) Δθ
or

F gbest
C > F g

C

0 0 false 0
0 0 true 0
0 1 false −0.03 ∗ Π
0 1 true 0
1 0 false 0
1 0 true 0.03 ∗ Π
1 1 false 0
1 1 true 0
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The proposed algorithm is executed for gmax number
of generations to find the global optimal value of fuzziness
parameter and cluster centroid. The gmax is set as the
stopping criteria for EQIE-FCM algorithm because if
it is executed for more than gmax generations, then
it will generate the similar values of these parameters
which result in computational overhead. The step-
wise procedure of proposed EQIE-FCM algorithm with
the above stated parameters is summarized as follows:

Algorithm 1. EQIE-FCM algorithm

Input: X = [x1, x2, ..., xN ]; The best location of set of
cluster centroids vbest is initialized as φ. Initialize the local
best fitness function F gbest

C and global best fitness function
FGbest(mbest, Cbest) as ∞.
Process:
1: The current generation g is initialized as 1 and set the

maximum number of generation gmax to 100.
2: while g ≤ gmax do

(A) The fuzziness parameter (m) for generation (g) is
initialized in terms of quantum bits using Eq (8).

(B) Call transformation process(M
′
g): Obtain the real

coded value mg corresponding to the quantum value

M
′
g using transformation process and Eq (12).

(C) Initialize the parameters like termination criteria
T , number of clusters C, σ, Δθ and ε using Table III.

(D) for C := cmin to cmax step 1 do
(I) Initialize criteria function Jmg

((v′)gC :
X,mg, C, U

g) = ∞ and cluster centroids (Vji)
g
C in

terms of quantum bits using Eq (11).
(II) Call transformation process(V

′
ij)

g
C : Obtain

the real coded value (v
′
ji)

g
C corresponding to

the quantum value (V
′
ij)

g
C using transformation

process and Eq (13).
(III) repeat

(a) Compute the fuzzy partition matrix Ug = [μg
il]

for 1 ≤ i ≤ C and 1 ≤ l ≤ N .

μg
il =

‖ xl − (v
′
i)

g
C ‖

−2
mg−1

∑C
i=1 ‖ xl − (v

′
i)

g
C ‖

−2
mg−1

(18)

(b) Check the fuzzy partition matrix Ug

obtained in Eq (18) satisfy the condition
stated below:

C∑
i=1

μg
il = 1 (19)

(c) Update the cluster centroids (v
′
i)

g
C for 1 ≤ i ≤ C.

(v
′
i)

g
C =

∑C
i=1[(μ

g
il)

mg ]xl∑C
i=1(μ

g
il)

mg

(20)

(d) Compute the criteria function Jmg
((v′)gC :

X,mg, C, U
g) to evaluate the fitness of

obtained fuzzy partition.

Jmg
((v′)gC : X,mg, C, U

g) =
N∑
l=1

C∑
i=1

(μg
il)

mg‖xl − (v
′
i)

g
C‖2

(21)

until (Jmg
((v′)gC : X,mg, C, U

g) ≥ T )
end for

(E) Compute the V IDSO index [7] which is used as
the objective function V IDSO(C,Ug) in this algorithm
to evaluate the fitness of obtained partitions for all the
values of C corresponding to mg .

(F) Compute the summation of V IDSO(C,Ug) as follows:

V IsumDSO(C,Ug) =

cmax∑
C=cmin

V IDSO(C,Ug) (22)

for C := cmin to cmax step 1 do
i) Compute the normalized value of V IDSO(C,Ug)

corresponding to all the values of C.

V INormalized
DSO (C,U) =

V IDSO(C,U)

V IsumDSO(C,U)
(23)

ii) Store the fitness of fuzzy partition corresponding
to each cluster number C in F g

C .

F g
C = V INormalized

DSO (C,Ug) (24)

iii) if (F g
C ≤ F gbest

C ) then
F gbest
C = F g

C

vbest = (v
′
)gC

Update the quantum bits of (V
′
ji)

g
C by using

Table II and Eqs (16) and (17).
else
F gbest
C =F gbest

C
vbest = vbest
Update the quantum bits of (V

′
ji)

g
C by using

Table II and Eqs (16) and (17).
end if

end for
(H) Compute local best fitness F g

Lbest(mg, C) to determine
the best fitness value in generation (g) as follows:

F g
Lbest(mg, C) =

min
cmin≤C≤cmax

[V INormalized
DSO (C,Ug)]

(25)

(I) Compute the global best fitness denoted by
FGbest(mbest, Cbest) to identify the best value
of fuzziness factor and the number of clusters from
the overall generations as follows:

FGbest(mbest, Cbest) =

min(FGbest(mbest, Cbest), F
g
Lbest(mg, C))

(26)

(J) Update the quantum bits of (M
′
g) by using Table II and

Eqs (16) and (17).
3: Update g = g + 1.
4: end while
5: return mbest, Cbest and best location of set of initial

cluster centroids vbest.
6: End

V. EXPERIMENTS

A. Experimental Setup and Parameters Specification

The proposed EQIE-FCM algorithm is implemented in
MATLAB computing environment and executed on MATLAB
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TABLE III. PARAMETERS SPECIFICATION

Parameters Description Values

T Termination criteria 0.001
m Fuzziness parameter [6] [1.5, 2.5]
N Number of instances [22] 768
C Number of clusters [cmin, cmax]
cmin Minimum number of clusters 2

cmax Maximum number of clusters
√
N ≈ 28

σ Variance 0.6
ΔΘ Rotation angle 0.03× π
ε limiting parameter 0.01
gmax maximum number of generations 100

version R2014a. The experimentation is done on an Intel(R)
Xeon(R) E5-1607 Workstation PC of 3.0 GHz with 64 GB of
RAM and running on the Windows 7 Professional operating
system. The performance of EQIE-FCM algorithm is compared
with QIE-FCM algorithm [16]. The parameter settings of these
algorithms are given in Table III. In QIE-FCM algorithm, the
set of initial cluster centroids for each cluster number C is
initialized randomly. On the contrary, in case of EQIE-FCM
algorithm, it is generated using the quantum bits as mentioned
in Section IV.

B. Results and Discussion

In this section, we present the experimental results to
judge the superiority of proposed EQIE-FCM algorithm in
comparison with QIE-FCM algorithm. The efficacy of EQIE-
FCM algorithm is measured based on following parameters:

1) Evaluation of best fitness value and fuzziness parameter
for Pima Indians Diabetes data: The best value of fuzziness
parameter and the fitness function achieved by EQIE-FCM
algorithm in comparison with QIE-FCM algorithm for Pima
Indians Diabetes data are presented in Fig. 2. The compar-
ative result is reported on different values of a fuzziness
parameter obtained in 100 generations. In both the algorithms,
the V IDSO [7] index is used as the objective function and
the fitness functions used in these algorithms are formulated
using this objective function as discussed in Section IV and
[16]. The fitness functions formulated in these algorithms
are used to evaluate the fitness of produced fuzzy partitions.
The small value of V IDSO index [7] in turns reflects the
small value of fitness function and thus represents the better
fuzzy partitions. Fig. 2, show that the minimum value of the
fitness function achieved by EQIE-FCM algorithm is 5.0807E-
06 at m = 1.5154 which is comparatively 6.12 times lesser
than the fitness value attain by QIE-FCM algorithm at m
= 1.5154. Although, both the algorithms identify the best

Fig. 2. The EQIE-FCM algorithm identify the best value of fuzziness
parameter denoted by mbest in comparison with QIE-FCM algorithm for
Pima Indians Diabetes Data.

value of fuzziness parameter m at 1.5154 but the EQIE-
FCM algorithm achieved the optimal value of fitness function
in comparison with QIE-FCM algorithm. Hence, the above
reported results justify the superiority of EQIE-FCM algorithm
over QIE-FCM algorithms in terms of fitness value.

2) Sensitivity analysis of m over C: As observed by Pal
and Bezdek [6] that fuzzy based clustering algorithms achieved
the best clustering results if the fuzziness parameter m is
selected within the range of [1.5, 2.5]. In addition to this,
researchers also pointed out that these algorithms are consid-
ered reliable when the number of clusters C identified by these
approaches is insensitive with change in m. Based on the above
consideration in Fig. 3a, we have reported the optimal number
of clusters identified by EQIE-FCM algorithm on ten different
values of m. It is seen that the number of clusters C identified
by EQIE-FCM algorithm is similar to the number of clusters
as per the distribution of data shown in Fig. 1. Moreover, IQIE-
FCM algorithm always identifies the same number of clusters
on different values of m. Thus, it is inferred that EQIE-FCM
algorithm is considered reliable because the number of clusters
identified by EQIE-FCM algorithm is insensitive with change
in m. The similar observation can be drawn from the Fig. 3b
corresponding to QIE-FCM algorithm. Even though, both the
algorithms are considered reliable in terms of predicting the
number of clusters and also the identified number of clusters is
insensitive with change in m. Despite, the value of the fitness
function achieved by EQIE-FCM algorithm while predicting
the optimal number of clusters C on different values of m is
comparatively much lesser than the fitness value attained by
QIE-FCM algorithm.

(a) EQIE-FCM algorithm

(b) QIE-FCM algorithm

Fig. 3. Result of EQIE-FCM and QIE-FCM algorithm showing the number
of clusters C identified on ten different values of m ∈ [1.5, 2.5] by varying
C from [cmin, ..., cmax].
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TABLE IV. COMPARISON OF INITIAL CLUSTER CENTROID LOCATION OF EQIE-FCM ALGORITHM

Algorithm cluster NTP PGC DBP TSFT SI BMI DPF YOA

1 16.9558 169.3641 6.2682 1.2567 347.1789 37.5227 1.0896 43.28969
EQIE-FCM 2 11.8800 108.8000 10.4400 36.7589 136.7000 45.4500 0.8345 55.1400

3 4.0778 181.8700 1.0892 49.7660 197.5400 44.9360 2.2782 32.1470

1 3.38842 121.1809 69.0090 20.9514 81.5108 31.6374 0.4810 33.3568
QIE-FCM 2 3.9476 120.9351 68.7671 20.1197 75.6281 32.2555 0.4686 33.5969

3 3.7266 121.1631 69.5013 20.5423 81.5276 32.1018 0.4683 32.8297

3) Comparison of initial cluster centroid location: The
initial cluster centroids location predicted by EQIE-FCM al-
gorithm in comparison with the randomly chosen location of
cluster centroids by QIE-FCM algorithm is presented in Ta-
ble IV. In this table, the content highlighted in bold represents
the location of cluster centroids found by both the algorithms
corresponding to the two-dimensional scatter plot of Pima
Indians Diabetes data shown in Fig. 1. It is observed that
the initial cluster centroid location predicted by EQIE-FCM
algorithm is reasonable because each predicted location of the
centroid is almost in the center of the cluster shown in Fig. 1.
However, the initial cluster centroid location chosen by QIE-
FCM algorithm almost collides with each other. Due to the
random selection of the initial cluster centroids by QIE-FCM
algorithm, the clustering results achieved by this algorithm
may trap into the local optima. Conversely, in EQIE-FCM
algorithm the cluster centroids are initially represented in terms
of quantum bit and after several generations of evolution, the
EQIE-FCM algorithm comes out with the best location of
initial cluster centroids. As we can see in Table IV, the initial
cluster centroid location predicted by EQIE-FCM algorithm is
more accurate than the randomly chosen location by QIE-FCM
algorithm thus, the clustering results obtained with EQIE-FCM
algorithm will guarantee to achieve the global optimal solution.

4) Computational performance comparison between EQIE-
FCM algorithm and QIE-FCM algorithm in terms of iterations
count per cluster: The number of iterations required to find the
stable cluster centroid on each cluster number by EQIE-FCM
in comparison with QIE-FCM algorithm in 100 generations
with a step size of 20 generations is reported in Fig. 4.
The results show that, the proposed EQIE-FCM algorithm
always takes the least number of iterations in comparison with
QIE-FCM algorithm for finding the stable cluster centroid
on each cluster number. The reported results after every 20
generations show that the QIE-FCM algorithm is much more
computationally intensive than the EQIE-FCM algorithm. The
reason behind the better computational performance of EQIE-
FCM algorithm in comparison with QIE-FCM algorithm is
that in QIE-FCM algorithm, the locations of initial cluster
centroids are decided randomly and if the data points are
located far away from the specified location of initial cluster
centroid, then the algorithm will converge slowly by taking
many iterations to find the stable cluster centroid. However, in
case of EQIE-FCM, due to the selection procedure of the initial
cluster centroid it takes the least number of iterations in finding
the stable cluster centroid and result in the fast convergence
of the algorithm.

VI. COMPARISON WITH EVOLUTIONARY FUZZY

CLUSTERING ALGORITHMS

In this section, to further investigate the efficacy of pro-
posed EQIE-FCM algorithm, it is compared with three evolu-

(a)

(b)

(c)

(d)

(e)

Fig. 4. Performance comparison between the proposed (EQIE-FCM) algo-
rithm and QIE-FCM algorithm is reported in terms of number of iterations
acquired on each cluster number (C) with a step size of 20 generations.

tionary fuzzy based clustering algorithms [8], [9], [11]. These
algorithms are also tested on Pima Indian Diabetes data and
efficacy is judged in terms of two parameters, i.e. number
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TABLE V. PERFORMANCE COMPARISON OF EQIE-FCM ALGORITHM WITH FUZZY BASED EVOLUTIONARY CLUSTERING ALGORITHMS

Datasets EQIE-FCM RQEC [8] QM-FCM [9] FCMVGA [11]

Fitness Number of Fitness Number of Fitness Number of Fitness Number of
function Clusters function Clusters function Clusters function Clusters

Pima Indian
5.08E-06 3 0.001174 22 0.00458 16 0.011029 5

Diabetes

of clusters and value of the fitness function. Table V, shows
that the proposed approach is found to be significantly better
than compared approaches in terms of finding the optimal
value of the fitness function and its corresponding number of
clusters. The number of clusters identified by the proposed
EQIE-FCM algorithm for Pima Indian Diabetes (PID) data
is exactly similar to the number of clusters shown according
to the distribution of PID data shown in Fig. 1. Moreover,
the optimal value of the fitness function achieved by EQIE-
FCM algorithm is comparatively much lesser than the fitness
value attained by the other compared approaches. Hence, the
discussed results quantify the effectiveness of the proposed
algorithm over the compared algorithms.

VII. CONCLUSION

In this work, we have proposed An Enhanced Quantum-
inspired Fuzzy C-Means (EQIE-FCM) algorithm. This algo-
rithm is proposed for finding the global optimal value of
fuzziness parameter m, the number of clusters C and the
initial cluster centroid VC which play an important role in
fuzzy based iterative algorithms. In EQIE-FCM algorithm, the
clustering of data is performed by evolving these parameters
in several generations using the quantum computing concept.
The larger search space provided by the quantum computing
concept enables us to find the global optimal value of these
parameters. To investigate the effectiveness of the proposed
algorithm, we tested it on the Pima Indian Diabetes dataset.
The performance of the proposed algorithm is compared with
another Quantum-inspired Fuzzy Clustering and three evolu-
tionary fuzzy clustering algorithms. The proposed algorithm is
found to be very effective and converges to the global optimal
value of these parameters. Experimental results show that the
EQIE-FCM algorithm found the consistent cluster centroids
location as compared to the random initial cluster centroids.
This verifies the effectiveness of the proposed approach over
other comparable approaches.
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