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Abstract—The notion of clusterability is often used to deter-
mine how strong the cluster structure within a set of data is, as
well as to assess the quality of a clustering model. In multivariate
applications, however, the clusterability of a data set can be
obscured by irrelevant or noisy features. We study the problem
of finding low dimensional projections which maximise the
clusterability of a data set. In particular, we seek low dimensional
representations of the data which maximise the quality of a binary
partition. We use this bi-partitioning recursively to generate high
quality clustering models. We illustrate the improvement over
standard dimension reduction and clustering techniques, and
evaluate our method in experiments on real and simulated data
sets.

I. INTRODUCTION

Clustering is one of the fundamental problems in data
mining, machine learning and statistics. Clustering deals with
finding structure in data by identifying groups of similar points,
without any explicit information regarding group associations
of any of the data. This has applications in diverse areas from
bioinformatics to computer vision to marketing.

The notion of clusterability refers to the strength, or
conclusiveness of the cluster structure within a given set of
data [1]. A variety of measures of clusterability have been
proposed in the literature (the readers are directed to [1] for a
thorough study). Generally in order to determine clusterability,
a clustering model over the given data set is required, and
as such determining the clusterability of a data set has the
same complexity as finding the optimal clustering model.
Furthermore, it has been shown [1] that even determining
whether or not clusterability exceeds a given threshold is in
some cases NP hard.

In the context of multivariate data analysis, the potential
irrelevance of certain features in the data makes inference and
knowledge discovery especially challenging, and clustering is
no exception. In the clustering context these irrelevant features
can significantly obscure the cluster structure present in the
data, and so even if an optimal clustering model is available,
the clusterability of the data under that model may be mis-
leading. Dimension reduction techniques seek to mitigate the
effect of irrelevant features by attempting to identify subspaces
which contain the most information from the data. However
traditionally, dimension reduction and clustering have been
performed in isolation from one another. Popular techniques
such as Principal and Independent Component Analysis (PCA,
and ICA) have shown good performance in a number of cases
[2], however the information retained by these methods might

not be relevant to the cluster structure in the data and it
is trivial to construct examples in which these methods will
fail. More recent approaches have been designed with the
notion of cluster separation in mind, and so are able to find
low dimensional subspaces which retain information relevant
to the clustering objective. In statistics, clusters are often
associated with the modes of a probability distribution. Di-
mension reduction in this context has included maximising the
departure from unimodality [4] and minimising the integrated
density on a separating hyperplane admitted by a univariate
projection [5]. Dimension reduction for spectral clustering [6]
seeks to find subspaces which minimise the connectivity of
a data set as measured by spectral graph theory. Maximum
margin clustering [7], [8] can also be viewed in the context of
dimension reduction as the univariate subspace admitting the
largest margin hyperplane through the data.

In this paper we propose a combined dimension reduction
and clustering algorithm, motivated by recursively finding the
univariate subspace which maximises the 2 way clusterability
of (subsets of) the data within that subspace. This recursive bi-
partitioning results in a hierarchical divisive clustering model.
We focus on a common measure of clusterability known as
the Variance Ratio, first introduced in [3]. Variance Ratio
clusterability is given by the ratio of the between cluster vari-
ability to the within cluster variability. If the between cluster
variability is large relative to the within cluster variability, then
the data set is well clusterable. The variance ratio is closely
connected to the K-means objective, in that the optimal K-
means solution is that which results in the highest variance
ratio clusterability. Let C1, ..., Ck be a k clustering of a data
set X , then the variance ratio for this clustering is given by,

V R(C1, ..., Ck|X) =

∑k
i=1

|Ci|
|X| ‖μCi

− μX‖2

σ2
X −

∑k
i=1

|Ci|
|X| ‖μCi − μX‖2

, (1)

where μX = 1
|X|

∑
x∈X x and σ2

X = 1
|X|

∑
x∈X ‖x − μX‖2

are the mean and variance of the points in X respectively.
Henceforth we write only V R(C1, ..., Ck), noting that the data
set giving rise to the clusters C1, ..., Ck will be apparent from
the context.

For a data set X = {x1, ..., xn} ⊂ R
d, the bi-partitioning

subproblem associated with our clustering algorithm is given
by,

max
v∈Rd\{0},C⊂X

V R
({v�x|x ∈ C}, {v�x|x ∈ X \ C}) . (2)

The vector v parameterises the univariate subspace, while the
set C determines the 2 way clustering of X into C,X \C. One
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of the benefits of considering univariate subspaces is that the
corresponding optimal clustering can be efficiently computed,
as we discuss in Section II. In what follows we will use the
following notation. For a univariate data set R = {r1, ..., rn}
we write R(i) for the i-th order statistic of R and R(i):(j) =
{R(i), . . . R(j)} for i ≤ j. We break ties for order statistics by
the order of the original indices in R. For multivariate data
set X = {x1, ..., xn} ⊂ R

d and projection vector v ∈ R
d we

write v�X for the projected data set {v�x1, . . . , v
�xn}. We

use xv,i to denote the element in X which corresponds to the
i-th order statistic of v�X .

The remainder of the paper is organised as follows. Sec-
tion II details our methodology for projection pursuit for
maximum clusterability, and how iterating the resulting bi-
partitioning process is used to build clustering models. In
Section III we present the results of experiments on simulated
and real data sets utilising our proposed method. Finally we
give concluding remarks in Section IV.

II. METHODOLOGY

In this section we provide details of our methodology for
divisive clustering using maximum clusterability projections.
We refer to this method as Maximum Clusterability Divisive
Clustering (MCDC). Divisive clustering algorithms recursively
bi-partition (subsets) of a set of data until a desired number
of clusters results. There are two main components to such an
algorithm, (i) how to implement a binary division of a given
set of data and (ii) given a collection of disjoint data sets (the
clusters so far discovered) how to determine which should
be partitioned next. The first is addressed in Section II-A,
where we formulate the optimisation subproblem, Eq. (2),
in the context of projection pursuit. The second presents a
challenging problem, and we provide a heuristic argument
inspired by analysis of variance in Section II-B. In Section II-C
we formally describe the MCDC algorithm and discuss its
computational complexity.

A. Maximum Clusterability Binary Partitions

Here we describe how we find optimal projections based
on the variance ratio clusterability criterion. We formulate the
problem in the context of projection pursuit, for which the
projection index, Φ(v|X), is given by the maximum cluster-
ability over all binary partitions of the projected data set. The
variance ratio (2) is unbounded if ∃v ∈ R

d, C ⊂ X s.t. v�C
and v�(X \C) each take on only a single value. For subspace
optimisation we therefore consider a slight modification as
follows,

max
v∈Rd\{0}

Φ(v|X)

Φ(v|X) := max
C⊂X

V R′(v�C, v�(X \ C)), (3)

where V R′(·, ·) is exactly V R(·, ·) as before, except that we

replace σX in the denominator with
|X|
|X|−1σX . We note that

these are equivalent in that for a fixed data set, X , the same
clustering maximises both V R and V R′. In addition, for two
data sets X1, X2 with |X1| = |X2| the more clusterable of the
two is the same under both V R and V R′. As a result (3) has
the same solution as the original optimisation problem (2).

We show that this projection index, when parameterised
using polar coordinates, is Lipschitz continuous and continu-
ously differentiable almost everywhere. Thus the negative of
the projection index satisfies the conditions for almost sure
convergence to a local minimum using the Gradient Sampling
algorithm (GS, [9]). GS is a generalised gradient descent
algorithm that works by sampling points in a shrinking radius
around the current iterate. The smallest element in the convex
hull of the gradients evaluated at the sampled points is an
approximate steepest descent direction for the current iterate,
which is used as a search direction. When 0 lies within this
convex hull, then the current iterate is close to an ε Clarke-
stationary point of the objective and the algorithm terminates.
For full details of the gradient sampling algorithm, the reader
is directed to [9].

Throughout this section we will use the fact that for a
univariate data set R = {r1, ..., rn}, if C1, C2 ⊂ R satisfy
μC1

, μC2
≥ μR then,

V R′(C1, R \ C1) > V R′(C2, R \ C2)

⇐⇒ 1√|C1|(|R \ C1|)
∑

ri∈C1

ri >
1√|C2|(|R \ C2|)

∑
ri∈C2

ri.

(4)

The following lemma establishes that the optimal 2 way
clustering of a univariate data set, R, partitions the data
above/below an order statistic.

Lemma 1: Let R = {r1, . . . , rn} ⊂ R. Then ∃i ∈
{1, . . . , n− 1} s.t.

V R′(R(1):(i), R(i+1):(n)) = max
C⊂R

V R′(C,R \ C).

Proof: Let C ⊂ R be such that ∃ri, rj ∈ C, rk ∈ R \ C
with ri ≤ rk ≤ rj . If μC ≥ μR then define C ′ = (C \ {ri})∪
{rk}. Then,

1√|C ′|(|R \ C ′|)
∑
rl∈C′

rl ≥ 1√|C|(|R \ C|)
∑
rl∈C

rl

⇒ V R′(C ′, R \ C ′) ≥ V R′(C,R \ C).

If instead we have μC < μR then set C ′ = (C \ {rj})∪ {rk}
and the same inequality holds. This process can be iterated
until no triples ri, rj ∈ C ′, rk �∈ C ′ with ri < rk < rj exist.
At this point ∃i ∈ {1, . . . , n − 1} s.t. V R′(C ′, R \ C ′) =
V R′(R(1):(i), R(i+1):(n)) and V R′(C ′, R \C ′) ≥ V R′(C,R \
C). Since C was arbitrary, this proves the result.

The importance of this lemma is that it tells us that in
order to determine the optimal partition of a projected data
set, v�X , we need only consider n − 1 possible partitions,
corresponding to the order statistics of v�X . In the context
of projection pursuit, we can therefore define the objective
function, Φ(v|X), as

Φ(v|X) = max
i∈{1,...,n−1}

V R′i(v|X) (5)

V R′i(v|X) := V R′
(
(v�X)(1):(i), (v

�X)(i+1):(n)

)
. (6)

Now, for i ∈ {1, . . . , n−1} let v be such that (v�X)(i) �=
(v�X)(j) for j �= i. Then V R′i(v|X) is differentiable at v,
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and

∇vV R′i(v|X) =
n∑

k=1

αk − βk(
|X|
|X|−1σ

2
v�X

−BCv�X,i

)2x
v,k (7)

αk :=

⎧⎨
⎩

2
n

(
μ(v�X)(1):(i) − μv�X

)
|X|
|X|−1σ

2
v�X , k ≤ i

2
n

(
μ(v�X)(i+1):(n)

− μv�X

)
|X|
|X|−1σ

2
v�X , k > i

(8)

βk :=
2

n− 1

(
v�xv,k − μv�X

)
BCv�X,i (9)

BCv�X,i :=
i

n

(
μ(v�X)(1):(i) − μv�X

)2

+
n− i

n

(
μ(v�X)(i+1):(n)

− μv�X

)2

. (10)

Furthermore we can see that ∇vV R′i(v|X) is contin-
uous for such v. Therefore, if v is such that i′ =
argmaxi∈{1,...,n−1}V R′i(v|X) is a singleton and v�X contains

only unique points, then ∇vΦ(v|X) exists and is continuous
at v. The following lemma shows that under a reasonable as-
sumption, such v occur almost everywhere for any continuous
sampling distribution.

Lemma 2: Suppose X = {x1, ..., xn} satisfies the property
that for S, S′ ⊂ X with S �= S′ we have

1√|S|(|X| − |S|)
∑
xi∈S

xi �= 1√|S′|(|X| − |S′|)
∑
xi∈S′

xi.

(11)
Then the function Φ(v|X) is continuously differentiable a.e. v
for any continuous sampling distribution.

Proof: No generality is lost in assuming 1
n

∑n
i=1 xi = 0,

since clusterability is invariant to translation. Notice also that
a consequence of the above assumption is that X contains no
repeated points. We prove the result by showing that the set

D := {v ∈ R
d
∣∣v�X contains only unique points and

argmaxi∈IV R′
(
(v�X)(1):(i), (v

�X)(i+1):(n)

)
is a singleton.}

is open and dense in R
d.

D is clearly open since V R′(·, ·) is continuous in
its arguments and the elements of v�X are continu-
ous in v. To see that it is dense, take w �∈ D and
ε > 0. Since X contains no repetitions ∃v ∈ Bε(w)
s.t. v�X contains only unique points. If in addition
we have that argmaxi∈IV R′

(
(v�X)(1):(i), (v

�X)(i+1):(n)

)
is a singleton, then Bε(w) ∩ D �= ∅ and we are
done. Suppose then that it is not and let I ′ =
argmaxi∈IV R

(
(v�X)(1):(i), (v

�X)(i+1):(n)

)
. Define

i′ ∈ argmaxi∈I′
1√

i(n− i)

∥∥∥∥∥∥
n∑

j=i+1

xv,j

∥∥∥∥∥∥ ,
and set v′ =

∑n
j=i′+1 x

v,j . ∃δ > 0 s.t. the following
conditions hold

1) v + δv′ ∈ Bε(w)
2) order(v�X) = order((v + δv′)�X)

3) V R′
(
((v + δv′)�X)(1):(i), ((v + δv′)�X)(i+1):(n)

)
>

V R′
(
((v + δv′)�X)(1):(j), ((v + δv′)�X)(j+1):(n)

)
for all i ∈ I ′, j �∈ I ′.

Take j ∈ I ′, j �= i′. We know
1√

i′(n−i′)

∑n
k=i′+1 x

v,k �= 1√
j(n−j)

∑n
k=j+1 x

v,k. However,

1√
i′(n−i′)

∑n
k=i′+1 v

�xv,k = 1√
j(n−j)

∑n
k=j+1 v

�xv,k,

and therefore
∑n

k=i′+1 x
v,k �∝ ∑n

k=j+1 x
v,k ⇒

v′�
∑n

k=j+1 x
v,k < ‖v′‖‖∑n

k=j+1 x
v,k‖. So,

1√
j(n− j)

n∑
k=j+1

((v + v′)�X)(k)

=
1√

j(n− j)

n∑
k=j+1

(v�X)(k) +
1√

j(n− j)

n∑
k=j+1

v′�xv,k

=
1√

i′(n− i′)

n∑
k=i′+1

(v�X)(k) +
1√

j(n− j)

n∑
k=j+1

v′�xv,k

<
1√

i′(n− i′)

n∑
k=i′+1

(v�X)(k) +
1√

j(n− j)
‖v′‖

∥∥∥∥∥∥
n∑

k=j+1

xv,k

∥∥∥∥∥∥
≤ 1√

i′(n− i′)

n∑
k=i′+1

(v�X)(k) +
1√

i′(n− i′)
‖v′‖

∥∥∥∥∥
n∑

k=i′+1

xv,k

∥∥∥∥∥
=

1√
i′(n− i′)

n∑
k=i′+1

((v + v′)�X)(k).

The equality 1√
j(n−j)

∑n
k=j+1(v

�X)(k) =

1√
i′(n−i′)

∑n
k=i′+1(v

�X)(k) holds since both

i′, j ∈ I ′. Therefore V R′(((v + v′)�X)(1):(j), ((v +
v′)�X)(j+1):(n)) < V R′(((v + v′)�X)(1):(i′), ((v +
v′)�X)(i′+1):(n)). Since j ∈ I ′ was arbitrary we have

argmaxi∈IV R′
(
((v + v′)�X)(1):(i), ((v + v′)�X)(i+1):(n)

)
is a singleton, and thus D∩Bε(w) �= ∅. Since ε was arbitrary,
we have that D is dense in R

d.

Notice that the assumption given in the previous lemma, (11),
holds with probability 1 if X is a sample of realisations of a
continuous random variable.

Now, for v ∈ D as in the above proof,
we have ∇vΦ(v|X) = ∇vV R′i′(v|X), where
i′ = argmaxi∈{1,...,n−1}V Ri(v|X). If we consider Eq. (7)

we see that ‖∇vΦ(v|X)‖ scales inversely with ‖v‖, and so
Φ(v|X) is not Lipschitz continuous. It is quite straightforward
to show, however, that for v, w ∈ R

d \ {0} we have

|Φ(v|X)− Φ(w|X)| ≤ K
(‖v‖+ ‖w‖)‖v − w‖

‖v‖‖w‖2 , (12)

where K = 4n2Diam(X)2λM

λ2
m

and λM , λm are the largest and

smallest eigenvalues of the covariance matrix of X respec-
tively. Since the variance ratio is scale invariant we lose no
generality by restricting v to lie on the surface of the unit
sphere. This leads us to consider a reparameterisation of v in
terms of its polar co-ordinates as follows. Let Θ = [0, π)d−1
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and for θ ∈ Θ define v(θ) by,

v(θ)i =

{
cos(θi)

∏i−1
j=1 sin(θj), i = 1, . . . , d− 1∏d−1

j=1 sin(θj), i = d− 1.
(13)

Notice that lemma 2 still applies if we sample elements of
Θ via a continuous sampling distribution and consider their
mapped values in R

d via Eq. (13). In addition, it is clear that
v(θ) is Lipschitz continuous in θ, as a collection of products of
Lipschitz functions, and that since ‖v(θ)‖ = 1, Eq. (12) tells
us that Φ(v(θ)|X) is Lipschitz continuous as a composition of
Lipschitz functions.

The variance ratio is closely connected with the K-means
objective, and so we initialise the projection pursuit by setting
v0 = μ1 − μ2, where μ1 and μ2 are the centers of a 2-means
clustering of X . We then use the gradient sampling algorithm
to find a local maximum of the projection index Φ(v|X), which
also automatically determines a locally optimal bi-partition of
X .

B. Which Cluster to Split

The question of which of a collection of data sets (the
clusters discovered so far by the divisive algorithm) should
be split next boils down to how we should compare variance
ratios. A direct comparison can be misleading especially when
the number of dimensions is high relative to the number of
data. In the extreme case, for data set, X , of size n in d ≥ n−2
independent dimensions and for any partition of X into two
clusters C1, C2 ∃v ∈ R

d s.t. v�C1 and v�C2 each take on only
a single value. The variance ratio can therefore be made infinite
for any partition of the data. Even when d is slightly larger
than the number of data the variance ratio can be misleading
in determining cluster structure within a univariate subspace.
We require a measure which factors in the number of data as
well as their dimensionality.

Here we provide a heuristic for the comparison of variance
ratios. Despite the motivation coming from statistical theory
we do not propose this as a statistically robust selection
technique, and offer it rather as a rule of thumb. While the
reasoning underpinning our argument is based on an overly
simplified case of a mixture of two homoscedastic multivariate
Gaussian components, we have found it to perform adequately
in varied cases. It is well established that high dimensional
data projected into low dimensional spaces have a tendency
to appear as a mixture of Gaussians [10], [11], due to the
aggregation of the features resulting in a sort of central limit
effect. This observation has been addressed theoretically in the
context of random projections [10]. The more questionable of
our simplifications might then be that of homoscedasticity.

The variance ratio objective, Eq. (2), minimises the scaled
sum of square deviations from two parallel hyperplanes. This
can be viewed roughly as a random effects linear model in
which the class identities are latent variables. The number of
free parameters in this model depends on the number of data,
n. If n ≤ d then the data can be embedded in an n − 1
dimensional subspace without affecting their relative structure.
The maximum number of free parameters in v is therefore
min{n − 2, d − 1}, since v is forced to lie on the surface of
the unit ball, which has 1 dimension fewer. The total number

of free parameters, including the two intercepts, is therefore
min{n, d+1}. If the class labels are known, rather than being
latent variables, then the variance ratio, if appropriately scaled
follows a non-centralised F distribution. When the classes are
well separated along the optimal projection, v, the means of the
projected data assigned to each class will closely approximate
the means of the projected data arising from the true classes
and so even in the latent variable model the variance ratio is
approximately distributed non-centralised F .

The non-centrality parameter, γ, is unknown, and we use a
single reference rule for all cases. We note that this parameter
has little effect on performance provided it is not set too large.
We choose the infimum value from the collection of bimodal
two component Gaussian mixtures with equal variance and
mixing proportion, under the assumption that class labels are
known. This leads to γ = n.

From a collection of clusters {C1, ..., Ck}, the next to be
split is that which minimises

P(FαCi
,βCi

,γCi
> fCi) (14)

fCi
=

βCi

αCi

max
v∈Rd,C⊂Ci

V R(v�C, v�(Ci \ C)) (15)

αCi = min{|Ci|, d+ 1} (16)

βCi
= max{0, |Ci| − d− 1} (17)

γCi
= |Ci|, (18)

where Fα,β,γ is a random variable with non-centralised F dis-
tribution with α and β degrees of freedom and non-centrality
parameter γ. We note that these should not be interpreted as
probabilities, but rather we use the probability function as
a measure of how much more separable a data set is than
the supremally overlapping case which still has discernable
clusters.

C. The MCDC Algorithm

Algorithm 1 contains the algorithmic structure of the
MCDC algorithm. The objects FαC′ ,βC′ ,γC′ and fC′ can be
found in Eq.‘s (14)-(18). The optimisation determining the
optimal partition, C, is described in Section II-A

Algorithm 1 MCDC

Input: Data set X , number of clusters K

C ← {X}
while |C| < K do
C ′ ← argmaxC∈CP(FαC ,βC ,γC

> fC)
[v, C]← argmaxw∈Rd,B⊂C′V R(w�B,w�(C ′ \B))
C ← (C \ {C ′}) ∪ {C,C ′ \ C}

end while
return C

The maximum clusterability binary partition of a univariate
data set is determined by a single order statistic. The variance
ratio of such a partition can easily be computed from the
cumulative sum vector of the sorted data set, CS(R) :=
(R(1),

∑2
i=1 R(i), ...,

∑n−1
i=1 R(i),

∑n
i=1 R(i)), with a computa-

tional cost O(1). The total cost of determining the optimal bi-
partition of a univariate data set is thus O(n log(n)), with the
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log factor resulting only from the sorting algorithm. We note
that the order of the data projected onto consecutive iterates
in the gradient descent algorithm tends to be similar, and so
the sorting cost can be reduced by warm starting using the
previous order. The gradient sampling algorithm requires at
least d+1 sampled gradients for each iteration. The total cost
for performing a binary partition is therefore O(d2n log(n)i),
where i is the number of iterations in the gradient descent
algorithm. Total complexity for the MCDC algorithm is thus

O(d2n log(n)
∑K−1

j=1 ij) where ij is the number of iterations
in the j-th gradient descent scheme.

The bottleneck in terms of computation lies in the gradient
sampling. For high dimensional examples we alleviate this
burden by checking with each iteration whether the current
solution is close to a point of non-differentiability. If the second
largest variance ratio is at least 99% of the largest, or the order
statistic defining the largest variance ratio is within 0.001 of
another projected datum then an iteration of the GS algorithm
is performed. If not, then a standard gradient step is done
instead. This approach still has a worst case complexity as
above, however we have found empirically that it tends to
improve computational speed significantly. We also note that in
no cases did this approach fail to converge to a local maximum.

III. EXPERIMENTAL RESULTS

In this section we provide the results from experiments
using the proposed method. We asses the performance as a
dimension reduction method and as a clustering algorithm.

A. MCDC Dimension Reduction

In this subsection we consider the dimension reduction
aspect of the MCDC method. We compare our method with
PCA, projection pursuit for maximisation of the Dip statis-
tic [4] (Dip), dimensionality reduction for spectral cluster-
ing [6] (DRSC) and iterative Support Vector Regression [8]
(iterSVR). The latter is an algorithm for finding maximum
margin hyperplanes for clustering.

Table I shows the univariate density plots for the various
dimension reduction methods applied to three benchmark data
sets from the UCI machine learning repository [15]. The ver-
tical lines indicate the binary partition of the data. We include
the class components (unknown to the algorithms) to illustrate
the class separability within the subspaces. All objective driven
dimension reduction methods find substantially stronger cluster
structure than standard PCA in general. MCDC and iterSVR
visually appear to find the best subspaces to separate classes.

The poor performance of DRSC on the Yeast data set
highlights an important feature of dimension reduction for
clustering. In many cases the optimal partition based on
various cluster definitions will only separate singletons, or
small groups of data which do not constitute entire clusters.
As such dimension reduction techniques such as the minimum
density [5] and large margin methods [8] have been designed
to take as input a balancing parameter, good values of which
will not always be known in practice. The MCDC method does
not appear to suffer this limitation. Figure 1 shows the variance
ratio clusterability of the 2 dimensional S1 data set [12]. This
2 dimensional example allows us to visualise the objective
as a function of a single projection angle, θ, and the order

statistic (i), where lighter colour indicates higher variance
ratio clusterability. We can see for all projections the optimal
partition leads to a roughly balanced split of the data

Fig. 1. Variance ratio clusterability of the S1 data set [12]. Lighter colour
indicates higher variance ratio value.
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B. Clustering Performance

In this subsection we present the results from experiments
on publicly available data sets. We compare the clustering
results of the following algorithms

1) K-means (KM): We use the R implementation of the
standard K-means algorithm

2) PCA K-means (PCA KM): Standard K-means ap-
plied to the data projected onto the first K − 1
principal components

3) Spectral Clustering (SC): We use the implementation
in the R package kknn, which is based on the
symmetric normalised Laplacian with affinity matrix
based on 7 mutual nearest neighbours.

4) PCA Spectral Clustering (PCA SC): Spectral cluster-
ing as above applied to the data projecetd onto the
first K − 1 principal components

5) Iterative Support Vector Regression [8] (iterSVR): We
set the balancing parameter � = 0.3 as in [8], where
we argue the balance of classes will not be known
in general. We split the cluster with the most data at
each iteration. We use the linear kernel as this gives
the most meaningful comparison with our method.

6) Maximum Clusterability Divisive Clustering
(MCDC): Our proposed method

All algorithms are given the correct number of clusters as
input. All cases of the K-means algorithm are based on the
best solution from 10 initialisations.

Table II reports the clustering performance from a collec-
tion of benchmark data sets from the UCI machine learning
repository [15]. The data sets range in dimensionality from
4 to 72 and in size from 150 to ≈ 700. The number of
clusters ranges from 2 to 6. Algorithms are compared based on
Purity [13] and V-Measure [14]. Both measures compare the
clustering result with the true class labels, with high values
indicating a better agreement between the two. The table
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TABLE I. UNIVARIATE DENSITY PLOTS
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reports the average clustering performance (± one standard
deviation) from 10 replications. The results are encouraging
and show that the MCDC algorithm is capable of building high
quality clustering models in various environments. In almost
all cases MCDC outperforms standards K-means and PCA K-
means, which is an important comparison due to their similar
objectives. MCDC also achieves the best performance of all
algorithms in most cases considered.

C. Image Segmentation

One of the key tasks in image segmentation lies in identify-
ing the focal objects in the image while including as little noise
from the background as possible. In this section we present
the results of image segmentation tasks using the MCDC
algorithm, iterSVR, 2-means and PCA 2-means. Two way
clustering was performed on the RGB pixel values. Spectral
clustering was not performed in these tasks due to the high
computational cost.

Table III shows the results of the image segmentation task
on three images from the Berkeley image database [16]. The
first row shows the original image. The second shows the
results from 2-means and the third row shows PCA 2-means.
The fourth row shows the result from the iterSVR algorithm,
and finally MCDC resutls are in row 5. MCDC clearly does
the best job separating the objects from background in these
examples.

IV. CONCLUSION

We proposed a novel combined dimension reduction and
clustering algorithm which is based on maximising the vari-
ance ratio clusterability of the data projected into a univari-

ate subspace. We showed that the sufficient conditions for
convergence to a local optimum using the gradient sampling
algorithm are satisfied. We proposed a heuristic method for
comparing variance ratios within projected subspaces which
allowed us to order the clusters discovered using a binary
divisive procedure and thereby iterate such binary divisions
to generate high quality clustering models.

We evaluated the proposed methodology on tasks in di-
mension reduction, clustering and image segmentation. We
found the method to be versatile in its varied applications. The
results indicated strong performance of the proposed method
in comparison with existing methods.

A limitation of the proposed approach lies in the fact that
the number of clusters is assumed to be known. However this
knowledge will not always be available in practice. Deter-
mining the number of clusters in a data set is a challenging
problem, and remains a very active area of research. One
of the benefits of divisive hierarchical clustering models is
that the problem of determining the number of clusters is
equivalent to determining whether a data set contains one
cluster or more than one cluster, since this defines a stopping
criterion for the divisive procedure. In many cases this is a
less challenging problem than determining overall the number
of clusters present. Determining such a stopping criterion
represents a promising direction to improve the current method
in the future.
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TABLE II. COMPARATIVE PERFORMANCE ON PUBLICLY AVAILABLE DATA SETS

KM PCA KM SC PCA SC iterSVR MCDC

Iris Purity 0.833±0.000 0.833±0.000 0.820±0.000 0.773±0.000 0.827±0.000 0.847±0.000
V-Measure 0.659±0.000 0.659±0.000 0.627±0.000 0.586±0.000 0.653±0.000 0.673±0.000

Ionosphere Purity 0.709±0.000 0.700±0.000 0.640±0.000 0.683±0.000 0.700±0.000 0.711±0.000
V-Measure 0.129±0.000 0.115±0.000 0.030±0.000 0.085±0.000 0.121±0.000 0.134±0.000

Yeast Purity 0.707±0.002 0.715±0.002 0.739±0.000 0.639±0.000 0.746±0.004 0.744±0.000

V-Measure 0.527±0.001 0.529±0.009 0.560±0.000 0.403±0.000 0.547±0.006 0.555±0.011

Seeds Purity 0.919±0.000 0.924±0.000 0.938±0.000 0.900±0.000 0.947±0.002 0.948±0.000
V-Measure 0.728±0.000 0.738±0.000 0.774±0.000 0.689±0.000 0.799±0.005 0.824±0.000

Dermatology Purity 0.870±0.027 0.910±0.019 0.962±0.000 0.943±0.000 0.803±0.000 0.966±0.004
V-Measure 0.868±0.012 0.876±0.009 0.924±0.000 0.901±0.000 0.769±0.001 0.944±0.007

Chart Purity 0.715±0.051 0.707±0.052 0.667±0.000 0.823±0.000 0.720±0.000 0.820±0.005

V-Measure 0.759±0.016 0.753±0.013 0.795±0.000 0.871±0.000 0.664±0.000 0.758±0.004

TABLE III. IMAGE SEGMENTATION RESULTS
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