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Abstract—The aim of collaborative clustering is to reveal the
common underlying structure of data spread across multiple data
sites by applying clustering techniques. The idea of Collaborative
Clustering is that each collaborator share some information
about the segmentation (structure) of its local data and improve
its own clustering with the information provided by the other
collaborators. This paper analyses the impact of the Quality of
the potential Collaborators to the quality of the collaboration
for a Topological Collaborative Clustering Algorithm based on
the learning of a Self-Organizing Map. Experimental analysis
on four real vector data-sets showed that the diversity between
collaborators impact the quality of the collaboration. We also
showed that the internal indexes of quality are a good estimator
of the increase of quality due to the collaboration.

I. INTRODUCTION

The current growth in real-time communication networks
leads to new categories of problems. One of these new prob-
lems is the distribution of information between multiple loca-
tions and owners. For example, there are data distributed across
different sites (banks, supermarkets, medical organizations,
administrations) describing the same people with different
information (i.e. with different variables). The analysis of
distributed data-sets requires appropriate methods, particularly
where the different sites can not share data directly for privacy
reasons. Collaborative Clustering addresses this issue by using
the clusters from remote data (the collaborators) to improve the
clustering of local data [1], [2]. If all the data cannot be used
in a single analysis, a local clustering is nevertheless possible
in each site without breaching, for example, confidentiality
rules. The idea of the Collaborative Clustering is that every
collaborators shares information on the clustering (i.e. the
structure) of its local data and improves its own clustering with
information provided by other collaborators. As the actual data
are not shared, confidentiality is preserved.

While most distributed data clustering [3], [4] produce a
consensus taking into account all their data-sets, the funda-
mental concept of the collaborative clustering is that each
algorithms operate locally on each data-set, then collaborate
by exchanging information about the local data structure [5],
[6], [7], [8]. Collaborative clustering is divided into two
phases: a local phase and a phase of collaboration. The local
phase would apply a clustering algorithm based on prototypes,
locally and independently on each database. The phase of
collaboration aims to collaborate each of the databases with
all classifications associated to other databases obtained from
the local phase. Thus, as a result, we obtain on each site a

clustering results similar to the results that we would obtain
if we had ignored the constraint of confidentiality, i.e. to
collaborate databases themselves. At the end of the two phases,
all the local clustering will be enriched.

Mainly, there are three different types of collaborative
learning: horizontal, vertical and hybrid Grozavu2011. The
vertical collaboration is to collaborate the clustering results
obtained from different data sets described by the same
variables with different objects. In horizontal clustering we
deal with the same patterns and different feature spaces. The
hybrid collaboration is a combination of the both horizontal
and vertical collaboration. In this work we focus on Hori-
zontal Topological Clustering. Grozavu et al. [9] proposed
a Topological Collaborative Clustering method based on the
learning of a Self-Organizing Map (SOM) [10]. They showed
that the potential collaborators are not equivalent for the
collaboration. Indeed, if the collaborator is not adequately
chosen, the resulting partition can be of lesser quality than
the local clustering (without collaboration). This variability is
still not clearly understood.

In this paper we address the problem of the choice of
the collaborator. More precisely, as some collaborators can
decrease the quality of the collaboration, we investigated
several methods to characterize the collaborators in order to
be able to predict the potential quality of a collaborator for
the collaboration. We tested the impact of several indexes of
Diversity and internal Quality of the collaborators to the gain
of quality after collaboration. The Diversity indexes measure
the similarity between the two partitions before collaboration,
whereas the internal Quality indexes measure the compactness
and the separability of the partition proposed by the collabora-
tor. Diversity and Quality indexes are known to be important
for Ensemble Clustering [11], [12], which is a problem related
to Collaborative Clustering.

The rest of the paper is organized as follows: the Horizontal
Topological Collaborative Clustering algorithm used in this
paper is described and discussed in Section II. In Section III
we define the notion of Diversity and we present the different
indexes used in the experiments, then the experimental protocol
and the obtained results are described. Section IV focus on
the Internal Quality of the collaborators, we present several
indexes and the experiments performed to test their impact
on the final quality of the collaboration before describing and
analyzing the obtained results. Finally, the paper ends with a
conclusion and some future works.
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II. TOPOLOGICAL COLLABORATIVE CLUSTERING

According to the structure of data-sets to collaborate,
there are three main types of collaboration learning princi-
ple: horizontal, vertical and hybrid collaboration. The vertical
collaboration is to collaborate the clustering results obtained
from different data-sets described by the same variables, but
having different objects. In the case of horizontal clustering,
all data-sets are described by the same observations but in
different feature spaces: the same number of objects but a
different number of variables. The hybrid collaboration is not
more than a combination of the both horizontal and vertical
collaboration.

In this work, we are specifically interested in horizontal
collaborations. Horizontal collaboration is the most difficult
one, since in such cases, the groups of data are described in
different spaces: each data-set is described by different vari-
ables, but has the same objects (samples) as other data-sets. In
this case the problem is how to collaborate the clusters derived
out of a set of classifications from different characteristics?
and how to manipulate the collaborative/confidence parameter
where no information is available about the distant clustering?

In the Topological Collaborative Clustering, each data-set is
clustered with a Self-Organizing Map (SOM). To simplify the
formalism, the maps built from various data-sets will have the
same dimensions (number of neurons) and the same structure
(topology). The main idea of the horizontal collaboration
principle between different SOM is that if an observation from
the ii-th data-set is projected on the j-th neuron in the ii -
map, then that same observation in the jj-th data-set will be
projected on the same j-th neuron of the jj-th map or one of its
neighboring neurons. In other words, neurons that correspond
to different maps should capture the same observations. There-
fore, an additional term reflecting the principle of collaboration
is added to the classical SOM objective function. This function
is adapted/weighted by a collaborative parameter in order to
represent the confidence and the cooperation between the [ii]
classification and [jj] classification. A new collaboration step
is also added to estimate the importance of the collaboration,
during the collaborative learning process. To compute the
relevance of the collaboration, two parameters are introduced:
the first one is to adapt the distant clustering information, and
the second is for weighting the collaborative clustering link
(the map which receive information about the distant map).

Formally, the following new objective function is composed
of two terms:
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where P represents the number of data-sets (or the classi-
fications), N - the number of observations, |w| is the number
of prototype vectors from the ii SOM map (the number of
neurons).

χ (xi) is the assignment function which allows to find the
Best Matching Unit (BMU), it selects the neuron with the
closest prototype from the data xi using the Euclidean distance.

χ(xi) = argminj

(‖xi − wj‖2
)

σ(i, j) represents the distance between two neurons i and
j from the map, and it is defined as the length of the shortest
path linking cells i and j on the SOM map.

K[cc]
σ(i,j) is the neighborhood function on the SOM [cc] map

between two cells i and j. This function depends on the
distance between two neurons and is defined as follows:

K
[cc]
σ(i,j) = exp

(
−σ2 (i, j)

T 2

)

where T is the temperature which allows to control the
neighborhood influence of a cell on the map, it decreases with
the T parameter. The value of T can vary between two values
Tmax and Tmin.

The nature of the neighborhood function K[cc]
σ(i,j) is identical

for all the maps, but its value varies from one map to another:
it depends on the closest prototype to the observation that is
not necessarily the same for all the SOM maps.

The value of the collaboration parameter α is determined
during the first phase of the collaboration step, and β = α2.
This parameter allows to determine the importance of the
collaboration between each two data-sets, i.e. to learn the
collaboration confidence between all data-sets and maps [2].
Its value belongs to [1-10], it is 1 for the neutral link, when no
importance to collaboration is given, and 10 for the maximal
collaboration within a map. Its value varies each iteration
during the collaboration step.

The value of the collaboration confidence parameter de-
pends on topological similarity between the both collaboration
maps. In this case, one cannot use the prototypes vectors to
compute this parameter because of the different feature spaces.

To compute the collaborated prototypes matrix, a gradient
optimization is used as follow:

w∗[ii] = argmin
w

[
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where:

Lij =
(
K

[ii]
σ(j,χ(xi))

−K
[jj]
σ(j,χ(xi))

)2

Indeed, during the collaboration with a SOM map, the
algorithm takes into account the prototypes of the map and
its topology (the neighborhood function).

The horizontal collaboration algorithm is presented in
Algorithm 1.

Algorithm 1 The horizontal collaboration algorithm

for t = 1 to Niter do

1. Local step:
for each map [ii], ii = 1 to P do

Find the prototypes minimizing the classical SOM objec-
tive function:

w∗ = argmin
w

⎡
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|w|∑
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‖x[ii]
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⎤
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end for

2. Collaboration step:
for each map [ii], ii = 1 to P do

Update the prototypes of the [ii] map minimizing the

objective function R
[ii]
H of the horizontal collaboration:

w
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end for
end for

In [6], the authors show that not all of the potential
collaborators are suitable to collaborate (Table I). This table
presents the purity [13] of the clustering before and after
collaboration. The purity is the average proportion of the
majority label in each cluster; ”true” labels of the data must
be known in order to compute the purity. A local clustering is
noted Mx and a collaboration between x and y is noted Mx→y

if x uses information from y and My→x if y uses information
from x. It is quite clear that Mx→y is beneficial for x when y
have a higher purity than x. However, if the collaborator have a
lower purity, the purity of the collaboration usually decreases.
This shows that is is important to choose carefully the best
collaborators among the potential candidates. The purity is
computed based on already known labels of the data (it is
an External Quality Index) and cannot usually be computed as
the labels are rarely known in real case clustering problem. We

TABLE I. EXPERIMENTAL RESULTS OF THE HORIZONTAL

COLLABORATIVE APPROACH ON DIFFERENT DATA SETS [14]

data-set Map Purity DB Index

Waveform M1 86.54 1.14
M2 39.5 3.75

M1→2 73.24 1.73
M2→1 58.34 0.91

Isolet M1 80.79 1.04
M2 93.27 0.89

M1→2 81.46 0.97
M2→1 92.87 0.83

Wdbc M1 94.02 0.87
M2 96.49 0.92

M1→2 95.23 0.84
M2→1 96.57 0.9

SpamBase M1 80.57 1.12
M2 84.95 0.95

M1→2 82.84 1.06
M2→1 83.79 0.92

therefore need to find another criteria to estimate the quality
of the collaborator for the collaboration.

The objective of this work is to test several criteria in order
to choose the most relevant collaborators. The purpose is to
find the best collaborator to collaborate with and improve the
local results. For this, we tested two types of Internal indexes:
Diversity between collaborators (Section III) and the individual
Quality of each collaborators (Section IV).

III. IMPACT OF THE DIVERSITY BETWEEN

COLLABORATORS

The Diversity is the difference between two cluster parti-
tioning (local and collaborator). In ensemble methods, there is
a relation between ensemble efficiency and ensemble diversity
and a diversity measure can be useful to choose the combina-
tion method [11], [12].

In Ensemble Learning, because of the relationship between
the diversity of the ensemble and the ensemble performance,
diversity measures is therefore helpful in designing the indi-
vidual classifiers, the ensemble, and choosing the combination
method. Several diversity indexes have been proposed for this
tasks, both for classification [11], [15], [16], [17] and clustering
[18], [19], [12], [20] ensembles, as well as different way of
using theses diversity index to improve the consensus function.
The general result is that the diversity of the ensemble is indeed
related to the accuracy of the ensemble. A diversity not too low
neither too high is preferable. However, the definition of the
diversity index is still difficult and the effect of the diversity
remains difficult to quantify [11]

In this paper, we address the question of the use of the
diversity for a different task. In unsupervised collaborative
methods we don’t try to find a consensus between several
partitions, but the aims is to find the best collaboration between
several clustering during the learning. In order to test if the
diversity between collaborators is a relevant index to choose
the best collaborator, we first tried several diversity indexes
to select the most discriminant index between informative and
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non-informative collaborators. We also examined the different
way of using these diversity index to find and improve the
results. In general, a low diversity means that the two data
sets (representing the same objects in two different spaces)
are partitioned in a same way by the two clustering algorithms.
A high diversity means that the two data sets are partitioned
in a very different way, either because of differences in the
two clustering methods used or because of intrinsic difference
in the data representation in the two different spaces. In this
study, any high diversity was due to a difference in the data
space, because we used the same algorithm to partition both
data sets.

A. Relevance of the Diversity indexes

To compute the Diversity indexes we used several well-
known indexes of similarity between two data partitions. These
indexes are usually based on the agreement between the two
partitions, i.e. each pair of object should be either in the same
cluster in both partitions or in different clusters in both parti-
tions. Diversity among a pair of partitions can be defined as
a measure that quantifies the degree of disagreement between
them. A simple diversity measure consists in calculating the
complement of a similarity measure S between two partitions
P1 and P2: D(P1, P2) = 1− S(P1, P2).

We tested six Diversity indexes based on Similarity mea-
sures (Table II). We define a11 as the number of object pairs
belonging to the same cluster in P1 and P2, a10 denotes the
number of pairs that belong to the same cluster in P1 but
not in P2, and a01 denotes the pairs in the same cluster in
P2 but not in P1. Finally, a00 denotes the number of object
pairs in different clusters in P1 and P2. N the total number
of objects, ni the number of objects in cluster i in P1, nj the
number of objects in cluster j in P2 and nij the number of
object in cluster i in P1 and j in P2. In Adjusted Rand, nc is
the agreement we would expect to arise by chance alone using
Rand index.

TABLE II. SIMILARITY MEASURES

Index Formula

Rand [21]: R =
a00+a11

a00+a01+a10+a11

Adjusted Rand [22]: AR =
a00+a11−nc

a00+a01+a10+a11−nc

Jaccard [23]: J =
a11

a01+a10+a11

Wallace [24]: WP1→P2 =
a11

a11+a10

Adjusted Wallace [25]: AW =
WP1→P2−

∑|P2|
i

ni(ni−1)

N(N−1)

1−
∑|P2|

i
ni(ni−1)

N(N−1)

Normalized Mutual Information [26]: NMI =
−2

∑
ij nijlog

nijN

ninj∑
i nilog

ni
N

+
∑

j njlog
nj
N

Variation of Information [27]: V I = - 2
∑

ij

nij
N log

nijN

ninj

-
∑

i
ni
N log

ni
N -

∑
j

nj
N log

nj
N

To analyze the relevance of the different indexes, we tested
how discriminant each index is between informative and non-
informative collaborators. In that order, we used noisy features

in the waveform data-set to manipulate the quantity of relevant
information shared by the collaborator. In that case, the quality
of the collaboration depends directly on the percentage of noise
in the collaborators data-set. We used that property to test
different diversity indexes. The waveform data-set is made
of 5000 observation described by 40 features, 19 of them
being random noise. We constructed ten subsets with only five
features each, five subsets (db1 to db5) with informative fea-
tures (Relevant data-sets) and five subsets (db6 to db10) with
uninformative features (Noisy data-sets). Then we computed
several diversity measures between two Relevant data-sets, a
Noisy and a Relevant, and two Noisy data-sets, based on the
comparison between the two SOM representations. A relevant
diversity index should be high (close to 1) as soon as a Noisy
data-set is involved, and low (close to 0) otherwise.

Table III presents the values of the Similarity indexes
(i.e. 1-Diversity) in several cases of collaboration. As we can
see, the Adjusted Rand index and the NMI (Normal Mutual
Information) Index are both very low (close to zero) as soon
as a Noisy data-set is involved and have a much higher value
when two non-noisy data-sets collaborate. Therefore, they both
are good candidate for a Diversity measure. The other indexes
show little difference between collaboration with and without
noisy and are probably not suitable be used as a Diversity
index. In the following experiments, we chose to use the
Adjusted Rand index as a Diversity index.

B. Effect of the Diversity on the quality of the collaboration

Tu evaluate the impact of Diversity among collaborators
on the quality of the clustering after collaboration, we used
four databases of different sizes and complexities: ”Wave-
form”, ”Isolet”, ”WDBC” and ”SpamBase” [28]. ”Waveform”
is describer in Section III-A. ”Spambase” is a data-set with
4601 observations and 58 features, describing different types
of emails (spam and non-spam). ”Isolet” is a real data-set
with of 7797 observations and 617 features divided into two
classes. Finally, ”WDBC” contains 2 classes on medical data
(569 observations and 32 features).

The criteria we chose to estimate the quality of the col-
laboration is the gain of purity after collaboration (i.e. the
difference between the purity of the local clustering before and
after collaboration). For each data-set we generated 1000 pairs
of collaborators by generating subsets of 4 random features,
then we computed the gain of purity of each collaboration,
i.e. for each pair. In [6], one member of the pair (noted
”local” collaborator) was chosen to have a high purity before
collaboration, the other (noted ”remote” collaborator) being
chosen randomly, and the gain was computed only for the
high purity collaborator (over 0.8). Figure 1 shows the results
for each data-sets, each dot represent a collaboration. Blue
points represent collaborations where the local collaborator
have a lower purity than the remote collaborator, red points
represent the opposite case. It is clear from this Figure that the
local collaborator should receive information from a remote
collaborator with a higher purity to increase its own purity
through the collaboration. In most real case in clustering
problems we don’t have the true labels of the data and it is
no possible to compute the Purity index, however we can see
here that the Diversity between Collaborators can provide some
information about the quality of the Collaboration. Indeed,
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TABLE III. DIVERSITY MEASURE ON THE WAVEFORM SUBSETS

Subset Relevant data-sets Relevant vs Noisy data-sets Noisy data-sets
Diversity index db2/db3 db3/db4 db2/db8 db4/db9 db7/db8 db9/db10
Rand 0.6707 0.7042 0.5539 0.555 0.5430 0.5553
Adjusted Rand 0.2625 0.3356 0.00008 0.0002 0.0000 0.0000
Jaccard 0.3429 0.3869 0.2017 0.2008 0.2000 0.2003
Wallace’s coefficient 0.5079 0.5578 0.3332 0.3342 0.3300 0.3334
Adjusted Wallace 0.5135 0.5581 0.3383 0.3347 0.3500 0.3411
Normal Mutual Information 0.2620 0.3072 0.0002 0.0006 0.0003 0.0004
Variation of Information 2.334 2.1918 3.1577 3.1631 3.1680 3.1664

when the diversity is low, the two collaborators propose very
similar results and the collaboration is not informative, leading
to a gain close to 0. However, as the local collaborator have a
high purity, if the remote collaborator proposes a very different
solution (high diversity), this solution is probably incorrect
and the collaboration will decrease the purity of the local
collaborator. An intermediate diversity is therefore optimal.

This is valid only if the local collaborator have a high
purity. In the general case, the relationship between Diversity
and gain of purity is different. We tested 1000 collaborations
between collaborators chosen randomly (Figure 2). In the
general case, it is clear that the Diversity is directly linked
to the variability of the quality of the collaboration. A low
Diversity between collaborators will lead to an useless col-
laboration. In the contrary, a high Diversity can potentially
greatly improve the result after collaboration, when the local
collaborator propose an incorrect solution and receive a very
good solution from the remote collaborator, or greatly decrease
the quality of the clustering after collaboration (in the opposite
case), or anything between these two extremes. Actually the
most important information here seems to be the quality of the
collaborator. As the Purity is an external index which cannot
be computed most of the time, we investigated the impact of
several Internal Quality index to predict the gain in purity after
collaboration.

IV. IMPACT OF THE INTERNAL QUALITY OF THE

COLLABORATORS

In this section we analyse the link between the proportion
of relevant information in a data-set and the Internal Quality of
a clustering on these data. Then we show how Internal Quality
indexes and gain of purity after collaboration are related to
each other.

A. relationship between quantity of information and Internal
Quality

We used the percentage of noisy features as an indicator of
the proportion of relevant information in a data-set. Noisy data-
set are less informative than noise-free data-set, because noisy
features contain random values. Noise is not the only cause
to explain the lack of relevant information in a collaborator:
unrelated description of the objects between the two collabo-
rators can be another one (in that case the two partitions are
very different). However noise is the easiest to manipulate and
only depend on the internal property of the data-set.

We investigated the Correlation between the percentage of
noise in the data and the internal indexes, in order to find the

best index to predict the percentage of relevant information (i.e.
here the percentage of noise). In this experiment we studied six
different internal indexes: Calinski-Harabasz, Davies-Bouldin,
Krzanowski-Lai and Silhouette, as well as two SOM-specific
indexes: Topological error and Quantization error (Table IV).

In this Table, k is the number of clusters and n is the
number of data x of dimension d. W is the sum of the
within-cluster variances and B is the sum of the between-
cluster variances. xm is the center of gravity of cluster m. In
Silhouette, a(i) is the average distance between xi and the
observations belonging to the same cluster as xi and b(i) is
the lowest average distance between xi and the observations
in each other clusters.

TABLE IV. INTERNAL QUALITY INDEXES

Index Formula

Calinski-Harabasz [29]: CH(k) =
B(k)/(k−1)

W (k))/(n−k)

Davies-Bouldin [30] DB = 1
k

k∑
max
l�=m

avgxi∈l‖xi−xl‖+avgi‖xi−xm‖
‖xl−xm‖

Krzanowski-Lai [31]: KL =

∣∣∣∣W (k−1)(k−1)2/d−W (k)k2/d

W (k)k2/d−W (k+1)(k+1)2/d

∣∣∣∣
Silhouette [32]: S(i) =

b(i)−a(i)
max {a(i),b(i)}

Topological error [33]: Te = proportion of data with the two
closest neurons not connected

Quantization error [34] Qe = average distance between the data
and their closest neurons

The experimental data-set is the waveform data-set. We
generated 1000 subsets from the waveform data-set, by choos-
ing randomly 10 features with replacement among the 40
features of waveform. As waveform contain 20 informative
and 20 noisy features, the proportion of noisy features varies
between 0 and 100% in the subsets. A SOM was applied of
each of the subsets, and the quality indexes were computer
to evaluate the SOM quality. Finally, a correlation analysis
between the percentage of noise and the quality indexes were
performed to find the best index to predict the noise.

Figure 3 shows the correlation between each index and
the percentage of noise. There is a clear correlation with at
least three indexes: Davies-Bouldinn, Calinski-Harabasz and
Silhouette. Silhouette index is the best candidate to predict the
proportion of relevant information due to the presence of noise
in the data.
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(a) ”Waveform” data-set (b) ”SpamBase” data-set

(c) ”Isolet” data-set (d) ”Wdbc” data-set

Fig. 1. Gain of Purity (ordinate) in function of the Diversity between collaborators (abscissa) for a collaboration of a clustering wit a high quality receiving
information from a collaborator of random quality.

B. Correlation between the Internal Quality of the collabora-
tor and the gain in Purity after collaboration

Then we conducted in 1000 collaborations between random
collaborators to calculate the Pearson correlation r and the
statistical significance of this correlation (t-test) between the
Internal Quality Index of the remote collaborator and the gain
in purity of the local collaborator after collaboration (Table V).

TABLE V. CORRELATION BETWEEN THE GAIN IN PURITY AND THE

QUALITY OF THE COLLABORATOR FOR SEVERAL QUALITY INDEXES. r IS

THE PEARSON’S CORRELATION, ALL p < 0.001 (T TEST).

Indices r p
Quantification error -0.3395 0.0087
Topological error -0.4497 0.0000
Silhouette 0.3915 0.0001
Davis-Bouldin 0.3936 0.0001
Calinski-Harabasz 0.3000 0.1593
Krzanowski-Lai -0.3193 0.0405

The gain of purity is clearly significantly correlated to most
internal Quality index. The best correlations are with Silhou-
ette, Davies-Bouldin and the Topological error. Topological

error is the best predictor of the gain in Purity, but this index
is specific to SOM-based methods. It seems that Silhouette
index is at the same time a good predictor of the proportion
of noise in the data and the potential gain in Purity from a
collaboration.

V. CONCLUSIONS

In this paper, we studied the impact of the collaborators
Diversity and Quality on the collaboration. The results show
that the Diversity between collaborators can be an important
information for predicting the gain in purity due to the col-
laboration. However the Diversity must be completed with
an estimation of the Internal Quality of the collaborators. If
the Quality of the local clustering is low, any collaborator
with higher Quality will improve the quality of the clustering.
However, if the Quality of the local clustering is high, the
optimal collaborators should have both a high Quality and an
intermediate Diversity (far from 0 and 1). This is due to the fact
that two good clustering solutions must be different enough to
add new information to the collaboration. We showed that the
Adjusted Rand index and the Normalized Mutual Information
index are good candidates to estimate the diversity between
Collaborators and that Silhouette index is a good estimator of
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(a) ”Waveform” data-set (b) ”SpamBase” data-set

(c) ”Isolet” data-set (d) ”Wdbc” data-set

Fig. 2. Gain of Purity (ordinate) in function of the Diversity between collaborators (abscissa) for randomly chosen pairs of collaborators.

the quantity of noise in the data and the final Quality of the
collaboration.

We plan, to pursue this work, to develop an index that
combines Quality and Diversity. The idea will be to associate a
confidence score to each potential collaborator and to propose
new algorithms capable of multiple collaborations weighted
according to these scores.
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