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Abstract—The introduction of social robots in human liv-
ing spaces has brought to attention the need for robots to
be equipped with emotion recognition capabilities to facilitate
natural and social human-robot interactions. This paper explores
the recognition of continuous dimensional emotion from facial
expressions. It further investigates the use of principal component
analysis (PCA), locality preserving projections (LPP) and factor
analysis (FA) for reduction of the many features that are typically
produced by facial feature extraction algorithms. The reduced
features sets are modelled using Nonlinear AutoRegressive with
eXogenous inputs Recurrent Neural Networks (NARX-RNN).
The results show that PCA significantly outperfoms both LPP
and FA techniques, and that the NARX-RNN model is a powerful
predictor of continuous emotion.

I. INTRODUCTION

Robots have become prevalent in our society with their

use spanning many domains such as manufacturing, education

and health care. Those applied in social environments are

autonomous and are typically endowed with cognitive abilities

to emulate human reasoning, experiential learning and commu-

nication. Their interaction with humans is a key element that

necessitates in-depth research and careful design. Reeves and

Nass [1] argue that people tend to treat computers (and other

media) as if they were real people and their interactions are

fundamentally social and natural. Since emotions are central

to human experience and behavior and inherent in all forms of

communication [2], it is important for social cognitive robots

to be equipped with an affective component that can recognize

emotion and respond appropriately. This will allow for natural

interactions between humans and robots.

Ekman and Friesen [3] suggest that non-verbal behaviours

are the primary vehicles for expressing emotion. This is

corroborated by Mehrabian [4] who found that the predom-

inant form of communication is non-verbal with the body

language and tone of voice accounting for 55% and 38%

of affective information respectively, and spoken words only

accounting for the remaining 7%. Thus, the analysis of non-

verbal communication is a key component in the recognition

and synthesis of emotion in robots.

According to research in psychology, there are three the-

oretical perspectives on emotion: categorical, dimensional

and appraisal-based theories [5]. The categorical emotion

theory is based on the findings that there exists six ba-

sic, universally-recognised emotions with prototypical facial

expressions namely, anger, disgust, fear, joy, sadness and

surprise [6]. Baron-Cohen et al. [7] argued that the list is not

reflective of the emotions typically experienced by people in

work and social environments and as a result incorporated

cognitive mental states such as frustration and interest. In

contrast, the dimensional emotion theory argues that emotions

are not independent but are related in a systematic way and

can be represented on a common multidimensional space

[8], [9]. The two primary dimensions are valence which

refers to how positive or negative an emotion is, and arousal
which describes the intensity of an emotion (ranging from

sleepiness to excitement). The dimensional emotion model

therefore encompasses discrete emotion classes and provides

a wider range of emotion varieties as shown in Figure 1.

This emotion model will allow a robot to model variability

in emotion and be able to distinguish intensities of emotion,

for example anger, which ranges from mild irritation to intense

fury. The appraisal-based emotion theory claims that emotions

arise from one’s perceptions and cognitive evaluations of

their circumstances [10]. The theory accounts for individual

variances of emotional reactions to the same event. However,

its application to automatic emotion recognition is still in the

early stages.

Fig. 1. This figure shows various discrete emotions expressed by the robot
Kismet that fall along the valence (pleasant or unpleasant), arousal (high or
low) and stance (advance or withdraw) dimensions. [11]
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This paper focuses on the recognition of dimensional emo-

tion from facial expressions. It further addresses the challenge

of processing high-dimensional emotion features. It is not

uncommon for facial feature extraction techniques to produce

features in excess of 1000 dimensions for facial expres-

sion analysis. Recently, the Audio-Visual Emotion Challenge

(AVEC) - a workshop aimed at providing a platform for

comparative analysis of emotion prediction approaches using

the same dataset - provided participants with baseline feature

sets consisting of 1188 video features and 1841 audio features

[12]. Various studies emanating from the AVEC competition

used these features or added to them resulting in increased

feature sets [13], [14]. The cost of using high-dimensional

features is often evident in the poor performance of models

or increased model complexities. In the interest of building

efficient and compact emotion recognition systems that will

allow for real-time processing of emotion in human-robot

interactions, it is imperative to consider feature reduction

that will yield much lower features. This study provides

a comparative analysis of feature reduction techniques for

continuous dimensional emotion recognition. Although such

analyses exist in other domains and in emotion recognition,

they have mostly been applied for categorical emotions which

is a classification task rather than the regression task that is

at hand. The techniques compared in this work are principal

component analysis (PCA), factor analysis (FA) and locality

preserving projections (LPP). These techniques are described

in section III and the results thereof are presented in section

IV-C.

II. EMOTION RECOGNITION

This section describes the affective computing framework

(depicted in Figure 2) for analysis of facial expressions to

inform a robot of a person’s cognitive state. A robot is typically

fitted with a camera to capture its environment. The image

sequences captured by the camera are fed into a face tracker

which attempts to locate a face on each image. Once located,

the facial expression features are extracted from the image

sequence and a dimension reduction technique is applied prior

to modelling the data.

Fig. 2. Emotion Recognition Framework

The training task is of a supervised form where target

emotion labels are fed into the model to learn mappings

between the input data and desired emotion. The subsections

below provide detailed information of the analysis of emotion.

A. Face Tracking

Tracking of the face is achieved through the use of the

GAVAM-CLM tracker [15] which combines non-rigid face

tracking and rigid head pose tracking approaches for accurate

location of the face. Non-rigid tracking approach refers to

locating facial landmarks of interest from an image such as

the corner of the eyes and the outline of the lips. Rigid head

pose tracking refers to the estimation of the location and

orientation of the head. The tracked face is thereafter cropped

to remove environmental background which could present

itself as noise to the emotion recognition model. The cropped

faces are thereafter normalized to compensate for orientation

and illumination variations.

B. Feature Extraction

The cropped image sequences from the previous subsection

are passed onto a temporal local binary pattern algorithm to

extract facial features that will enable sucessful modelling of

the face expressions. The temporal local binary algorithm used

in this work is an extension of the original local binary pattern

(LBP) operator [16] which captures the motion and appearance

of an image sequence and produces a feature descriptor that

describes the dynamic textures.

The original LBP operator assigns a code to every pixel p
of an image by thresholding the neighbourhood of the pixel

(that is, its 8 immediate neighbours) and assigning the value 1

if the grayscale value of a neighbouring pixel value is greater

than that of the center pixel, and 0 otherwise. The threshold

result is considered as an 8-bit code which is converted to a

decimal value for convenience. This is represented by

LBPp =

N−1∑
n=0

s(gn − gp)2
n, s(x) =

{
1 if x ≥ 0

0 if x < 0
(1)

where n indexes the neighbouring pixels (N = 8), gn is the

greyscale value of a neighbouring pixel and gp is the greyscale

value of centre pixel p.

Once each pixel has been assigned a code, the image is

sectioned into a 3×3 grid of non-overlapping blocks to capture

micro-patterns, such as edges and flat areas, that could help

discriminate between different facial expressions. A histogram

of each block is computed and used as a texture descriptor.

Uniform patterns are applied which reduce the dimensionality

of the histogram from 256 (2N = 28) to 59. The basic LBP

operator captures the spatial domain information of an image.

To incorporate temporal features, the local binary patterns of

three orthogonal planes - XY, XT and YT - are computed and

the statistical information of the three planes are concatenated

into a single histogram. The XY-LBP accounts for the ap-

pearance statistics while the XT-LBP and YT-LBP encode the

spatial-temporal co-occurrence statistics as shown in Figure 3.

This extended algorithm is called LBP-TOP [17]. A complete

feature vector is obtained by concatenating the histograms of

each block over the three orthogonal planes resulting in a

1593-dimensional vector (59 features× 3 planes× 9 blocks).

C. Feature Reduction

Machine learning algorithms are known to degrade in

performance when faced with many features that are not

necessary for predicting the desired output - a concept known
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Fig. 3. (a) Three planes from which spatio-temporal local features are
extracted (b) LBP histogram from each plane (c) Concatenated feature
histogram. [17]

as the curse of dimensionality. Therefore the selection or

extraction of relevant features lead to efficient modelling of

data. The reader is referred to section III for a description

of the feature reduction techniques investigated in this work.

The reduced feature set serves as input to a machine learning

model to learn facial expression patterns that can predict the

correct emotion. The learning model applied is discussed in

the following subsection.

D. Emotion Modeling: NARX Recurrent Neural Network

The modeling of emotion remains a challenging task due to

the large variance in emotion expressions and the temporal na-

ture of emotion, amongst other factors. This can be addressed

by employing prediction models that capture the temporal

dynamics of emotion as it unfolds. One such model is the

Nonlinear AutoRegressive with eXogenous inputs Recurrent

Neural Network (NARX-RNN) which is a dynamic network

with feedback connections (as depicted in Figure 4) that allow

the model to retain information about past inputs and to learn

correlations between temporally distant events. It has shown

remarkable success in tasks such as time series analysis [18],

traffic modelling [19] and grammatical inference [20].

Fig. 4. Architecture of the NARX recurrent neural network

The NARX-RNN is characterized by the non-linear relations

between past outputs, current and past independent (exoge-

nous) inputs. The mathematical representation of the model

is

y(t) = f(u(t−Du), · · · ,u(t− 1),u(t),

y(t−Dy), · · · , y(t− 1))
(2)

where u(t) ∈ R
N and y(t) ∈ R

1 are inputs and output of

the network at time t, Du and Dy are the input and output

orders, and f is a non-linear function. For this work, past

inputs are disregarded and Du is set to zero. The function f
is approximated by a Multilayer Perceptron (MLP) consisting

of three layers, namely, the input, hidden and output layer with

recurrent connections from the output to the input layer. The

input to the MLP at time t becomes the concatenated vector of

the exogenous features and past predicted outputs as shown:

x(t) = [u(t), y(t−Dy), · · · , y(t− 1)]. (3)

The hidden layer computes a nonlinear transformation of

the input with the sigmoid or hyperbolic tangent being the

common choice for activation functions. A similar transfor-

mation is applied from the hidden layer to the output layer

producing the predicted outputs. The hidden layer states h(t)
and output prediction ŷ(t) are computed as follows:

h(t) = Ψ(Whx · x(t) + bh) (4)

ŷ(t) = Γ(Wyh · h(t) + by) (5)

where Whx and Wyh are the input-to-hidden and hidden-

to-output weight matrices respectively, bh and by and the

biases and Ψ and Γ are the activation functions. The network

weights determine the significance of a node in the prediction

of emotion. Ψ and Γ are both set to hyperbolic tangents in

this work. The authors break away from the common practise

of applying a linear activation function at the output layer by

using a hyperbolic tangent function instead as it has the added

effect of re-scaling the output predictions to lie between -1

and 1; a necessary step prior to feeding back the predictions

as delayed output.

The optimal weights of the model θ = [Whx Wyh bh by]
are learnt through the minimization of a loss (objective)

function, the mean squared error (MSE), which measures the

deviations of the predicted outputs, ŷ, from the target outputs,

y. The loss function is defined as

J(θ) =
1

2m

∑
c

∑
t

(y(t)− ŷ(t))2 (6)

where m is the total number of instances. A regularization

term is added to the loss function,

J(θ) = J(θ) +
λ

2m

∑
j

∑
k

(wjk)
2, (7)

to penalize large weights that could lead to the model overfit-

ting the training data. The penalty parameter (λ) is usually de-

termined through a cross-validation exercise. The weights are
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adjusted concurrently through an iterative process that applies

the backpropagation-through-time algorithm and the L-BFGS

optimization algorithm. Details of the training procedure can

be found in [21].

III. DIMENSIONALITY REDUCTION

Dimensionality reduction is an essential preprocessing tech-

nique for high-dimensional data as too many features could

lead to overfitting of models and an increase in noise. There

are two basic approaches to dimensionality reduction: feature

selection and feature extraction. Feature selection is a process

of selecting a subset of relevant features from the original

feature set, while feature extraction creates a new feature set

by transforming the existing features into a lower dimension.

The data transformation can be linear or nonlinear.

This paper investigates the application of the following

linear feature extraction techniques for analysis of temporal

data: principal component analysis (PCA), factor analysis (FA)

and locality preserving projections (LPP). These techniques

have been shown to be effective in different problem domains,

but have not been compared to each other in continuous

emotion recognition tasks.

The subsections below provide an overview of each tech-

nique and list the steps involved in the data transformation.

Each technique receives input data x ∈ R
m, and the goal is

to find a linear transformation A that produces the reduced

dataset y = A′x ∈ R
d where d < m and A′ is the transposed

matrix of A.

A. Principal Component Analysis

Principal component analysis is a popular dimensionality re-

duction method. It operates on the basis that highly correlated

features carry redundant information. It therefore reduces the

number of variables by decorrelating input vectors.

The goal of PCA is to find a direction A that maximizes

the variance of the projections of all input features xj for

dimension j = 1, · · · , N . This is achieved through the

following steps:

Step 1: Center the data

Subtract the mean for each data dimension to produce a

dataset with a zero mean,

xj = xj − x̄j (8)

where x̄j is the average of all data points in dimension j.

Step 2: Calculate the covariance matrix of dataset x

Cx =
1

n
xx′ (9)

The matrix Cx captures the covariance between all pairs

of features. The covariance values reflect the noise and

redundancy in the features.

Step 3: Compute eigenvalues and eigenvectors

PCA works on the assumption that the transformed data,

y, should be as uncorrelated as possible. This is equivalent

to the off-diagonal elements of the covariance matrix of the

transformed data Cy (interactions between the variables) being

as close to zero as possible. The covariance matrix Cy is

approximated by

Cy = ACxA
′ (10)

where, given a square covariance matrix Cx, the eigenvalue

decomposition method computes the matrix A such that Cy is

diagonal. The resulting Cy contains eigenvalues while matrix

A contains eigenvectors.

The eigenvalues and eigenvectors are arranged with respect

to the descending order of the eigenvalues (relaying the order

of importance). The eigenvalues indicate how much of the

data’s variability is explained by its corresponding eigenvector,

and the eigenvectors indicate the directions of the principal

components which are orthogonal to each other. The first

principal component therefore accounts for maximal amount

of the total variance in the observed variables.

One can thereafter select the first d components that explain

most of the variance in the data. This will yield a reduced

eigenvector matrix.

Step 4: Apply linear mapping

The transformed data is therefore computed using the re-

duced eigenvector matrix A:

y = A′x

B. Factor Analysis

Factor analysis is a statistical technique whose objective is

to represent a set of variables in terms of a smaller number

of hypothetical variables called factors [22]. It achieves this

by analyzing the interrelationship (correlations) among the

original data variables and determines whether the observed

correlations can be explained by the factors.

The observed variables x are therefore represented in terms

of the factor variables z that model correlations between

variables of x and matrix u which accounts for independent

noise in each feature of x. The model is given by:

x = Λz+ u (11)

where Λ is the factor loading matrix whose elements represent

how much a factor explains a variable. Factor analysis works

on the assumption that the factor variables are normally

distributed with zero mean and a unit variance, N (0, I) and

that the random variable u has the distribution N (0,Ψ) where

Ψ is a diagonal matrix. According to the model in equation

(11), x is therefore distributed with zero mean and covariance

Cx = ΛΛ′ +Ψ. The goal of factor analysis is to find the Λ
and Ψ that best model the covariance structure of x [23].

Below is a summary of the procedure for factor analysis.

The technique makes use of the expectation-maximization

algorithm to determine the required Λ and Ψ.

Step 1: Initialization

806



Initialize Ψ to an identity matrix of size m×m, and Λ to be

uniformly distributed U(0, 1) and be of size m × d where d
is the number of desired output components.

Step 2: Expectation step

Calculate expected values of the factors given x:

E[z|x] = βx (12)

where β = Λ′Cx
−1. Thereafter, calculate the second moment

of the factors which measures the uncertainty in the factors,

according to

E[zz′|x] = var(z|x) + E[z|x]E[z|x]′ (13)

= (I− βΛ) + βxx′β′ (14)

where I is a d× d identity matrix.

Step 3: Maximization step

Compute the maximum likelihood estimates of Λ and Ψ as

follows:

Λnew = xE[z|x](E[zz′|x])−1 (15)

Ψnew =
1

n
diag{xx′ −ΛnewE[z|x]x′} (16)

where the diag operator sets all non-diagonal entries to zero.

Next compute the log-likelihood of the factor analysis model,

ll =
1

2

(
log(det(Cx

−1))− 1

n

∑∑
(Cx

−1x) ∗ x
)

(17)

where ∗ denotes element-wise multiplication, and repeat steps

2 and 3 until convergence has been reached.

Step 4: Apply linear mapping

Let A = Λ, the d-dimensional transformed matrix is

calculated through the linear combination of the factor

loadings and the original dataset as presented below:

y = A′x (18)

C. Locality Preserving Projections

Locality Preserving Projections (LPP) is a manifold learning

algorithm proposed by He et al. [24] which aims to discover

the meaningful low dimensional structure. He et al. present

the LPP algorithm as an alternative to PCA as PCA fails

to capture underlying data structures that lie on a nonlinear

manifold [25]. LPP has the added benefit that it is a linear

dimension reduction algorithm unlike other manifold learning

algorithms such as ISOMAP [26] which are nonlinear and are

computationally expensive.

The projections of the algorithm are obtained by firstly

building a graph that incorporates neighbourhood information

of the dataset, and then computing a transformation matrix

which maps the data points to a subspace using the notion of

the Laplacian of the graph.

Step 1: Construct a neighbourhood graph

Let G denote a graph with m nodes which correspond to

the number of variables in the original dataset. Using the

k-nearest neighbours algorithm, an edge is placed between

node i and j, if i is among k nearest neighbours of j and

vice-versa. Once the graph is obtained, LPP will attempt to

preserve it when choosing projections.

Step 2: Choose weights using a Gaussian kernel

Given graph G, an m × m weight matrix W is constructed

by assigning a weight Wij based on equation (19) if a

connection (edge) exists between node i and j. A weight of

zero is assigned if there is no connection between the nodes.

This results in the weight matrix being sparse and symmetric.

Wij = e−
‖xi−xj‖2

t (19)

Step 3: Compute eigenvalues and eigenvectors

Compute the Laplacian matrix L as shown in equation (20),

L = D−W (20)

where D is a diagonal matrix whose entries are column sums

of weight matrix W, Dii =
∑

j Wji.

Thereafter, compute the eigenvalues and eigenvectors for

the generalized eigenvector problem:

XLX′a = λXDX′a (21)

The eigenvector decomposition algorithm yields a full

matrix a where the columns correspond to eigenvectors,

and a diagonal matrix of generalized eigenvalues, λ. The

The column vectors of a are ordered according to their

eigenvalues in ascending order.

Step 4: Apply linear mapping

The transformation vector A = (a0,a1, · · · ,ad−1) is then

embedded in the linear equation,

y = A′x, (22)

to output the transformed data matrix y.

IV. EXPERIMENTS AND RESULTS

This section describes the database used and the experi-

mental setup for the comparative analysis of the three linear

techniques described in section III. It also also reports the

parameter search procedure for the different NARX recurrent

neural networks used. The results are presented and discussed

in section IV-C.

A. Emotion Database

The emotion database used in this work forms part of the

SEMAINE corpus [27] which was recorded to study natural

social signals that occur between humans and artificially

intelligent agents. It contains audiovisual recordings of humans

who interact with four emotionally stereotyped characters -

role-played by humans - portraying the following personalities:

807



(i) even-tempered and sensible, (ii) happy and outgoing, (iii)

angry and confrontational, and (iv) sad and depressive. The

recordings were filmed at a frame rate of 50 frames per second,

with each human-agent interaction session lasting an average

of 5 minutes. Due to the high frame rate, a block averaging

technique was applied to reduce the samples to 25 frames per

second.

The interactions were annonated by two to eight raters in

continuous time using continuous values along the dimensions

valence, arousal, power and expectation. Only the valence and

arousal dimensions are considered in this work.

The dataset was partitioned into a training set of 41 videos

and a test set of 18 videos.

B. Experimental Setup

An experiment was designed to determine the optimal

dimension size of each feature reduction technique. Each

technique was setup to reduce the features to the following

dimensions: 10, 20, 40, 60, 80 and 100. A NARX recurrent

neural network was optimized for each feature reduction tech-

nique per dimension size. A grid-search was conducted to esti-

mate the NARX-RNN model parameters using five-fold cross-

validation with Pearson’s correlation coefficient as the evalu-

ation metric. The parameters that had to be optimized were

the number of hidden nodes (nh ∈ {20, 40, 60, 80, 100, 120}),
the regularization parameter (λ ∈ {22, 24, 26, 28, 210}), the

output time lag (Dy ∈ {1, · · · , 15}). The resulting ouput time

lags were 10 and 5 for the arousal and valence dimensions

respectively. In addition, a NARX network was trained on all

1593 video features to serve as a baseline model.

The LPP algorithm uses the k-nearest neighbours algorithm

to construct its neighbourhood graph. A default value of

k = 12 was used for all LPP implementations. All the feature

reduction techniques were implemented using the Matlab

Toolbox for Dimensionality Reduction1 [28].

C. Results

The feature reduction techniques were evaluated using the

average Pearson’s correlation coefficient which is obtained by

computing the correlation between the emotion predictions

and ground truth for each video in the dataset, and then

averaging over all videos in a specific emotion dimension.

The performance of the investigated techniques was estimated

over 30 independent runs. The following subsections present

the averages of the 30 independent runs.

1) Optimal dimension sizes: Figure 5 is a plot of the

performance of each feature reduction technique over the

investigated dimension sizes. The PCA technique outperforms

the LPP and FA techniques across all component (dimen-

sion) sizes for both the arousal and valence emotions. The

correlation results, apart from the FA results, follow a bell-

shaped curve indicating that the chosen dimension sizes were

sufficient to locate the optimal dimension configurations for

each technique.

1http://lvdmaaten.github.io/drtoolbox/

Fig. 5. Correlation results of all the techniques trained with different
dimension sizes

Exploring the component make-up of the PCA technique,

Figure 6 reveals that the first 20 dimensions explain approx-

imately 50% of the variance while the first 100 dimensions

explain 70% of the variance. This reveals that the majority

of the 1593-long dimension dataset is not required, and that

the chosen dimensions are within Kaiser’s eigenvalue rule of

thumb which states that the eigenvalues of the components

retained should be greater or equal to 1 [29].

Fig. 6. Component-variance analysis of the PCA technique

2) Technique Comparison: The best performing models for

each technique are listed in Table I with the correspond-

ing network configurations and dimension sizes. A statical

analysis was conducted using the Mann-Whitney U test at

95% confidence level to determine if the techniques differed

significantly. The results of the Mann-Whitney U test indicate

that the PCA technique significantly outperformed all other

techniques for the arousal and valence emotions, however,
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there was no significant difference between LPP, FA and the

NARX network with no feature reduction for the arousal

emotion. For the valence emotion, it was found that LPP

performed better than FA and the no-reduction model, and

that FA outperformed the no-reduction model.

TABLE I
COMPARISON OF FEATURE REDUCTION TECHNIQUES

TECHNIQUE DIM NARX-nh NARX-λ CORR

AROUSAL

PCA 40 40 4 0.372
LPP 60 40 16 0.275

FA 100 20 4 0.268

No reduction 1593 20 256 0.273

VALENCE

PCA 40 40 64 0.436
LPP 40 20 4 0.359

FA 80 100 4 0.316

No reduction 1593 80 1024 0.220

To remove any performance advantage that may have been

caused by having trained the networks with different param-

eters, another analysis was conducted where 20 components

were extracted from each technique and were trained using the

same NARX-RNN model. The parameters used for the NARX-

RNN models were nh = 20 and λ = 16 for arousal, and

nh = 100 and λ = 64 for valence. The results of this analysis

are presented in Table II. According to the Mann-Whitney U

test, the PCA still significantly outperforms other techniques.

LPP outperformed FA for the valence emotion, a result that

is consistent with the results in Table I. However, LPP was

significantly outperformed by FA for the arousal emotion.

These results seem to be consistent with Baek et al.’s [30]

findings that PCA outperforms factor analysis. Furthermore,

van der Maaten et al. [28] submitted that from the results

they obtained from their comparative analysis of PCA with

twelve nonlinear feature reduction techniques, they found that

nonlinear techniques are not yet capable of outperforming

traditional PCA. However, Shermina’s results [25] showed

superior performances of the LPP over the PCA. Zhang et
al. [31] noted that very often feature reduction techniques are

problem specific. It is therefore expected to have conflicting

reports in different domains.

TABLE II
COMPARISON OF FEATURE REDUCTION TECHNIQUES USING 20

DIMENSIONS AND THE SAME NARX-RNN MODEL

TECHNIQUE AROUSAL VALENCE

PCA 0.357 0.432
LPP 0.181 0.135

FA 0.235 -0.001

D. Data Analysis

The annotation of continuous dimensional emotion is a very

challenging task as it is highly subjective, and requires a higher

amount of attention and cognitive processing compared to non

real-time, discrete annotation tasks [32]. This affects the learn-

ing ability of a model as it relies on accurate and consistent

ground truth. Therefore an analysis of the data is required to

determine whether efficient modeling of emotions is inhibited

by unreliable emotion labels or by the shortcomings of the

model.

Table III lists the nine groups of raters which consist of two

to eight raters. Each group annotated at least one video, with

the highest number of videos (26) being annotated by group

7. An inter-rater reliability test was conducted for the database

used using intraclass correlation. Intraclass correlation is a

measure that assesses the degree of agreement and consistency

of raters. The overall results for valence report a consistency

of 0.66 and absolute agreement level of 0.55 which indicate

low agreement between raters. The consistency and absolute

agreement measures for arousal are 0.63 and 0.3 respectively.

This challenge is highlighted in [32] and suggestions for better

annotation of continuous emotions are tabled there.

TABLE III
INTER-RATER ANALYSIS FOR VALENCE EMOTION LABELS

RATER NUMBER OF VIDEOS MEAN MEAN

GROUP RATERS RATED CONSISTENCY AGREEMENT

Group 1 2 8 0.536 0.498

Group 2 2 3 0.413 0.354

Group 3 3 2 0.744 0.733

Group 4 3 2 0.456 0.393

Group 5 4 1 0.540 0.405

Group 6 5 1 0.863 0.597

Group 7 6 26 0.780 0.670

Group 8 6 4 0.806 0.675

Group 9 8 12 0.786 0.646

AVERAGE RESULTS 0.658 0.552

V. CONCLUSION

This paper comparatively discussed three feature reduction

techniques, namely principal component analysis (PCA), lo-

cality preserving projections (LPP) and factor analysis (FA) on

the problem of continuous dimensional emotion recognition.

Various dimension sizes were explored for each technique

and a NARX-recurrent neural network was optimized for

each technique variant. Experimental results showed that PCA

significantly outperformed LPP and FA for both arousal and

valence emotion dimensions. The large reduction of features

and corresponding better performance confirm that feature

reduction is a crucial step for building compact and accurate

models, especially for incorporation in human-robot technolo-

gies.

Recently, the input modalities of emotion recognition sys-

tems have been extended to allow for detection of facial and

vocal expressions, gestures and body postures. The multiple

modalities often increase the accuracy and robustness of

emotion systems since some modalities may carry comple-

mentary information. Thus, multiple feature sets representing

each modality have to be obtained which leads to a very
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large feature space of different forms. Therefore, future work

includes exploring dimensionality reduction methods that can

transform the multiple feature sets into a unified space of lower

dimension. The fusion of multiple kernel learning algorithms

with dimension reduction techniques show great promise, and

provide a good starting point.
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